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Abstract—Graph-based data occurs in various applications,
e.g. finite-element simulations and computer-generated imagery.
There are several techniques to compress these data sets with
prediction methods and encoding of the residual. The focus of
these methods is almost always on the prediction rather than on
encoding. The model of induced Markov chains (iMc) is a new
strategy to approximate the information content of graph-based
data. For this purpose, we define transition probabilities between
the occurring values that are dependent on the topology of the
graph. The basic idea is to transform a topological relation into a
value-based one. The transition probabilities along with an initial
distribution can be interpreted as a Markov chain, the so-called
iMc. The topology combined with the transition probabilities can
be used as side information for an encoder. We combine an iMc
encoding scheme with graph differences as a prediction method,
since some correlations cannot be entirely removed neither by
the prediction method, nor by the iMc by its own.

I. INTRODUCTION

Data compression is nowadays an essential component
for the storage and transmission of all kinds of data. One
application field is the simulation of car crashes, which began
in the early 1980s [1]. It is a central component in the
development and quality management of automakers. Due to
safety regulations and quality management, a portion of the
simulations is stored for some months up to several years.
This leads, on the one hand, to a huge number of stored
datasets. On the other hand, the simulation results increase
in size as the engineers want to improve the accuracy of
the simulation results, e.g. by refining the model. The sim-
ulation results consist of various data sets like header, initial
components like connectivities, and time dependent data like
coordinates, velocity, and stresses. The time dependent data
will be calculated numerically, and thus it is only precise up
to a certain accuracy. This justifies a lossy compression up to
a respective precision. Moreover, these data sets are usually
defined on elements of a mesh, e.g. nodes, edges, or elements.
Hence, we may assume that the correlation of the data can
be expressed by the topology of the underlying graph, see
also [2]. When we describe a two dimensional shell-element
part of a car by a finite element mesh, there generally is a
high redundancy in the data. For a good compression rate, it
is crucial to eliminate these redundancies. This task can be
tackled in two ways. The first one is to find the underlying
dependencies in the data. The second one is to predict the
data in a way that the resulting variables are independent or
at least close to independent. A prediction usually modifies the

distribution of a data set. We will investigate a combination of
these two approaches, which will lead to the best compression
rates in our test case, see Section VIII. For the prediction
part, we will use an iterative application of graph differences,
which will be specified in Section IV. We exploit the re-
maining dependencies by considering transition probabilities
which are defined on relations between neighbored values, see
Section III. We call this technique induced Markov chain (iMc)
and will use its statistics as side information for an entropy
encoder.
The strategy to use the topology of a general undirected
graph for a specialized encoding scheme on node values is
otherwise only considered in Markov random fields (MRF).
When we consider an entropy encoding scheme with MRFs
on a spanning tree for one time step, the time complexity
is O(n · m2) with n the number of nodes and m the size
of the alphabet [3]. Thus, it is mostly used in situations
where the size of the alphabet is very small, e.g. black/white
images. Regarding iMc, the time complexity can be bounded
by O(n+m), see Section V.

II. ENTROPY RATE OF A MARKOV CHAIN

In this section, we introduce some general definitions and
theorems for the entropy calculation of Markov chains.
For an independent and identically distributed (iid) stochastic
process X with values in S, the entropy rate can be calculated
by

H(X) = −
∑
s∈S

P[X = s] log2 P[X = s]. (1)

In the case of any dependency the given formula would over-
estimate the information content, see [4]. Hence, the entropy
rate will not provide an upper bound for the compression rate

K = Ips/H(X), (2)

where Ips is the size of a symbol. In the context of crash test
simulation results Ips is usually 32 bits.
We will list some properties of a Markov chain and its entropy
calculation to prove that it is well-defined in the iMc case. Let
X0, X1, ... be a sequence of random variables with values in S,
which is a finite set with m elements s1, ..., sm, the so-called
state space. A discrete Markov chain M is a sequence of these
Xi satisfying the Markov property for all t0, ..., tk ∈ S:

P[Xk+1|X0 = t0, ..., Xk = tk] = P[Xk+1|Xk = tk],∀k ∈ N.



A Markov chain M is called time homogeneous, if for all
k ∈ N and all s, t ∈ S, it holds:

P[Xk = s|Xk−1 = t] = P[X1 = s|X0 = t].

A Markov chain is said to be irreducible, if for all combina-
tions of s, t ∈ S, there exists a k ∈ N such that

P[Xk = t|X0 = s] > 0.

A Markov chain is called positive recurrent, if the mean
recurrence time, see [5], of all states s ∈ S is finite. A Markov
chain M is called mean ergodic if and only if

lim
n→∞

1

n

n−1∑
k=0

P[Xk = sj |X0 = si] = µj , ∀i, j ∈ {1, ...,m}.

Theorem 2.1 ([6]): An irreducible Markov chain with a
finite number of states is positive recurrent.
A stochastic matrix is a matrix whose rows are distributions.
The transition probability matrix P = (Pij)i,j=1,...,m with
Pij = P[X1 = sj |X0 = si] is a special case of a stochastic
matrix. A distribution µ on S is called invariant if µP = µ.

Theorem 2.2 ([6]): If a Markov chain with a finite number
of states is irreducible, it will have an invariant distribution.

Theorem 2.3 ([7]): Let M be an irreducible, positive recur-
rent Markov chain with invariant distribution µ. Then M is
mean ergodic.
The definition of mean ergodicity coincides with the definition
of ergodicity in dynamical systems [7].

Theorem 2.4 ([8]): Let M be a mean ergodic, time ho-
mogeneous Markov chain with invariant distribution vector µ
and transition probability matrix P . The entropy rate for the
Markov chain is

H(M) = −
m∑

i,j=1

µiPij log2 Pij . (3)

The proof of Theorem 2.4 mainly depends on the chain rule
for entropy [4], the finiteness of the state space, and the time
homogeneity of the current Markov chain.

Corrollary 2.5: The entropy rate of a time homogeneous,
irreducible, finite state Markov chain M is determined by
Formula (3).

III. INDUCED MARKOV CHAINS

In this section, we define the iMc and its entropy rate.
The identification of graph-based data with a Markov chain
is based on the calculation of transition probabilities between
values of adjacent nodes.

Lemma 3.1 ([5]): The tuple (P, ν) of a stochastic matrix
P and a distribution ν defines a finite state space, time
homogeneous Markov chain M with transition probabilities
given in P and an initial distribution ν.

P[X0 = s] = νi, P[Xk+1 = t|Xk = s] = Pij , ∀s, t ∈ A.

Let a connected graph G = (N,E) with n nodes, an alphabet
A = {a1, ..., am}, and a node value vector v ∈ An be given.
We assume that all values of the alphabet A will be part of

the node values vector v.
We introduce the transition probabilities based on a graph with
node values by the relative frequency of letter pairs as:

Pij :=
#{(k, l) ∈ E|vk = ai ∧ vl = aj}

#{(k, ·) ∈ E|vk = ai}
, (4)

for all i, j ∈ {1, ...,m}. For an example, see Figure 1. We
store the probabilities Pij in the transition probability matrix
P . The initial distribution ν is defined by the relative frequency
of the node values:

νi :=
#{k ∈ N |vk = ai}

n
. (5)

We introduce the induced Markov chain (iMc) as the Markov
chain from Lemma 3.1 with transition probabilities defined by
Formula (4) and initial distribution defined by (5).

Lemma 3.2: An iMc M induced by a connected graph G
is irreducible.

PROOF: Let the node values v ∈ An of the graph G and
s, t ∈ A be given. W.l.o.g. E 6= ∅. Let first s and t be different.
Because of the minimality of A, there have to be two nodes
ni and nj with values s and t, respectively. As the graph G
is connected, there exists at least one path from ni to nj with
length k consisting of edges in E. Every edge of this path
can be matched to a nonzero probability that connects two
values of the state space A. Thus, P[Xk = t|X0 = s] > 0.
For s = t, let ni be a node with value vi = s. There exists an
adjacent node nj . W.l.o.g. let its value be vj = t. Then it holds:
P[X2 = s|X0 = s] ≥ P[X2 = s|X1 = t]P[X1 = t|X0 = s].

�

Corrollary 3.3: The entropy rate of an iMc induced by a
connected graph G is well defined and can be calculated by
Equation (3).
As we do not want to compress a Markov chain with infinite
many time steps but a graph with n nodes, we use the
relative frequencies of the values ν instead of the stationary
distribution µ in Formula (5).

IV. ITERATIVE GRAPH DIFFERENCES AND THEIR IMC

In this section, we introduce graph differences as a predic-
tion method for graph-based data. Furthermore we investigate
how these differences can be applied iteratively and state some
properties of the resulting graphs and their iMc.
Let a graph G, an alphabet A, and a node value vector v as
in Section III be given. We match every edge the absolute
difference of the starting node and the ending node:

u = |vend − vstart| ∈ A(1), (6)

with a new alphabet A(1) that contains all edge values.
We construct the line graph, see [9], G(1) = (N (1), E(1)),
whereby every edge ei ∈ E is assigned to a node n(1)i ∈ N (1),
and the node value vector consists of the edge values of the
graph G. Two nodes of N (1) are adjacent, if and only if their
corresponding edges are incident in G. If two edges ei, ej ∈ E
are connected in G, the corresponding nodes n(1)i , n

(1)
j are
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Fig. 1. Mesh with node values and the induced Markov chain with transition probabilities calculated by Formula (4).
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Fig. 2. Mesh with edge and node values, the corresponding line graph and its induced Markov chain. The edge values in the left graph are calculated by
Formula (6). The transition probabilities are determined by Equation (4).

connected in G(1). For the example of Figure 1, we get a
graph as in Figure 2. The line graph has usually more edges
than the underlying graph

#E(1) =
∑

〈ni,nj〉∈E

(deg(ni)− 1 + deg(nj)− 1). (7)

As the number of neighbors in shell element graphs is on
average about four, the number of iterative applications of
graph differences is limited, due to the size of the line graphs.
We will now combine the graph differences with the iMc. For
this purpose, we have to ensure that a mean ergodic iMc for G
results in a new mean ergodic iMc for G(1) after an application
of the graph differences.

Lemma 4.1 ([9]): The line graph of an irreducible graph is
irreducible.
Due to Lemma 4.1 and Corollary 3.3, the entropy rate of the
iMc for a line graph is also well-defined by Equation (3), if
it is well-defined for the underlying graph.
In the construction of the line graph, we omit the signs of
edge values. Without the sign, the data can generally not be
reconstructed. Hence, in an application, it has to be saved as
side information. The following Lemma helps us to quantify
the amount of information of the signs.

Lemma 4.2: The entropy rate of an iid process X with
a finite number of states a1, ..., am ∈ A and a symmetric

distribution with mean 0 can be expressed by

H(X) = H(|X|) + #Nonzero Entries
#Entries

. (8)

PROOF: Let a1, ..., am ∈ A be the states with probabilities
p1, ..., pm and

∑m
i=1 pi = 1. For m even, set k = m

2 , q = 0,
and 0 log2 0 = 0. For m odd, set k = m−1

2 and q = pk+1.

H(X) = −
m∑
i=1

pi log2 pi

= −
k∑

i=1

2pi log2 2pi − q log2 q + (1− q)

= H(|X|) + #Nonzero Entries
#Entries

�

V. TIME COMPLEXITY OF IMC GENERATION

In this section, we estimate the time complexity of the iMc
statistics calculation.
Let the maximal degree of a node in G be denoted by d, the
number of nodes by n, the number of time steps by r, and
the number of quantum steps and the size of the alphabet by
m, respectively. The time complexity for the calculation of the
transition probabilities is O((d+d·r)·n+m), see Table I. For



TABLE I
TIME COMPLEXITY OF THE IMC STATISTIC CALCULATION.

Calculation of Time complexity
Adjacency matrix O(d · n)

Quantized node values O(r · n)
Initial probabilities O(m+ r · n)

Transition probabilities O(m+ d · n · r)∑
O((d+ d · r) · n+m)

a part with shell elements, the average number of neighbors is
approximately four. The maximal degree of a node d is usually
be bounded by ten. Thus, d can be neglected.
The time complexity of an encoding scheme with iMc does not
depend on a product of the number of nodes and the number
of quantum steps like for MRFs [3]. Therefore iMc encoding
is applicable in the case of a large number of quantum steps.

VI. APPLICATION OF IMC IN AN ENCODER

The modeling of graph-based data as an iMc can be used
in an arithmetic encoder that uses the connectivities and
statistics as side information. A possible implementation is
to establish the graph, then define a tree, and walk from the
root to the leafs. We store the root value without encoding.
For non-root elements of the tree, we have the information
of its predecessor, and therefore, we can apply the transition
probabilities. This leads to an encoding scheme whereby the
applied distribution from one node to another will generally
change. Arithmetic encoders can handle this situation [10].
There are several possibilities to find a tree of a graph, like
breadth-first search and depth-first search [11]. If we use a
deterministic strategy, we will not have to store the structure
of the tree. In [12], it was shown that in some cases, it can
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Fig. 3. Snippet of a tree for the example from Figure 1 with two graph differ-
ences. The bold-framed values, the signs, and the two transition probabilities
have to be provided to an iMc encoder as side information.

be useful to store the tree. In these cases, we can build a
minimal spanning tree on the graph with edge values equal
to − log2(Pij), if ai is the value of the starting node and aj
of the ending node. When we employ graph differences, we
additionally have to save the sign of the difference between
the value of a node and its predecessor. The usually increasing
number of edges in the difference graph (see Equation (7))
does not increase the amount of information when encoding
the differences, as we do not have to visit all nodes of the new
graph, but n−1 nodes. For the prediction, we need a spanning
tree of the underlying graph G and the nodes n(1)i ∈ N (1) of
the line graph that correspond to edges of the spanning tree.

A possible realization of iMc with two graph differences in
an encoder is pictured in Figure 3.

VII. STRATEGY FOR THE GENERATION OF RESULTS

In this section, we briefly introduce our strategy to generate
the results listed in Section VIII.
We investigate the iMc in a way that is independent of the
special choice of either an entropy encoder or a spanning tree.
Thereby, the distinctions of iid and iMc distributions will be
considered, although the entropy encoder shall not be fixed.
Therefore, we list the theoretical best compression rate, see
Equations (2) and (3), for the iMc on an average tree. We
compare these results with those of the iid case, see Equations
(1) and (2).
We compress the statistics losslessly by exploiting that the
probabilities are rational numbers. For this purpose, we split
the probabilities into one array of numerators and one of
denominators. For the structure of the transition probability
matrix, we use the Compressed Sparse Row format. All integer
arrays are predicted and encoded with the zlib [13] afterwards.
When we apply graph differences, we add the percentage
amount of non-zero entries per difference to the entropy rate,
see Equation (8), for both the iid case and the iMc case. For
certain spanning trees, it is possible that the entropy rate of the
sign array is smaller than the percentage of non-zero values.

VIII. RESULTS

In this section, we list and discuss the results of applying
the iMc for data on graphs and on their line graphs as a
distribution for an entropy encoder. We compare the results
with those regarding the assumption that the data on graphs
and their line graphs is independent and identically distributed.
We investigate the x coordinate of the biggest part in a
variation of the Dodge Neon model [14] with a refined
mesh. It is a underbody part with cardan tunnel, has a shell
element mesh with 78869 nodes and an x coordinate range of
[−4016,−1900]. The model was simulated with Pam-Crash
[15] where 25 time steps were recorded.
The practical results are listed in Table II and III. The
outcomes of iid and iMc encoding differ in two aspects: the
size of the encoded data and the size of the statistics as side
information. For the iMc case, we have to store the transition
probability matrix P for the statistics. In the iid case, the
relative frequencies of the values have to be stored as side
information. The differences in the size of side information
depend on the precision, and whether the data was predicted
or not.
The entropy rate is calculated by the Formulas (1) and (3)
with the initial distribution, which is equal to the relative
frequencies in the iid case. As already mentioned in Section
II the entropy rate of iid modeled data overestimates the
information content, if there are any dependencies. The iMc
can reveal the existence of these dependencies even after
two graph differences. Thus, the entropy in the iMc case is
always smaller than the entropy for the iid model, see columns
“Entropy rate” in Table II and III. Therefore, the size of the



TABLE II
SIZE OF COMPRESSED STATISTICS, ENTROPY AND COMPRESSION RATES FOR THE FIRST TIME STEP OF THE x COORDINATE OF THE NEON PART.

Absolute Number of iMc iid Ratioprecision differences Entropy rate Size of statistics Compression rate Entropy rate Size of statistics Compression rate

0.01
0 2.53 479267 0.63 15.64 4779 1.98 0.32
1 7.62 165073 1.31 9.62 3290 3.22 0.41
2 8.32 297348 0.83 9.90 3204 3.13 0.27

0.1
0 3.62 205689 1.31 13.53 4072 2.30 0.57
1 5.71 9898 4.77 6.35 428 5.00 0.95
2 6.20 11852 4.32 7.20 413 4.42 0.98

1.0
0 2.98 24480 5.86 10.47 1042 3.02 1.94
1 3.24 644 9.69 3.39 93 9.42 1.03
2 4.02 693 7.82 4.36 93 7.32 1.07

TABLE III
SIZE OF COMPRESSED STATISTICS, ENTROPY AND COMPRESSION RATES FOR SECOND TO 25TH TIME STEP OF THE x COORDINATE FOR THE NEON PART.

ALL TIME STEPS ARE PREDICTED BY ITS PREDECESSOR.

Absolute Number of iMc iid Ratioprecision differences Entropy rate Size of statistics Compression rate Entropy rate Size of statistics Compression rate

0.01
0 2.28 304320 8.97 11.18 926 2.86 3.13
1 1.39 36944 20.65 1.75 147 18.25 1.13
2 0.77 23838 36.71 0.99 124 32.25 1.14

0.1
0 0.69 24943 40.28 7.91 422 4.04 9.96
1 0.44 2282 71.47 0.57 68 56.28 1.27
2 0.18 1628 168.65 0.25 51 127.54 1.32

1.0
0 0.14 1559 224.95 4.97 139 6.44 34.92
1 0.11 267 301.43 0.12 31 260.51 1.16
2 0.03 213 1188.76 0.04 28 786.40 1.51

entropy encoded data in the iid case is bigger than in the iMc
case. If we consider only one time step, the differences in the
sizes of the side information is too big to gain an improvement
compared to iid encoding. When we consider time dependent
data that is predicted in time, and we save only one transition
probability matrix for 24 time steps, then the iMc encoding
achieves significant better compression rates. Furthermore, as a
result of the high amount of zeros in the case of time predicted
data, it is optimal to apply two graph differences in contrast
to one graph difference in the case of one time step.

IX. CONCLUSION

We investigated data compression of time and spatial depen-
dent data defined on a graph. Even after two graph-differences
the data is not yet fully decorrelated. This can be exploited by
an encoder that uses the connectivities and the iMc statistics as
side information. Especially if the number of different values
can be reduced by time differences or a coarse quantization,
this leads to significantly better compression rates. The iMc
can be combined with a connectivity compression method like
the TG coder [2] or the Cut Border Machine [16]. One big
advantage of the iMc is, that it can be employed on general
graphs and is not limited to a certain regularity of the mesh.
Another advantage is that the iMc can easily be combined
with multiple graph differences, although this can become
computationally expensive. A possible strategy to avoid the
growth of the line graphs, is to specify a certain spanning tree
or a set of spanning trees as the underlying graph.
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