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Abstract. This paper is concerned with weak solutions (e, h) ∈ L2 ×L2 of the Maxwell

equations with nonlinear Ohm law and under perfect conductor boundary conditions.

These solutions are defined in terms of integral identities with appropriate test functions.

The main result of our paper is an energy equality that holds for any weak solution (e, h).

The proof of this result makes essential use of the existence of time-continuous repre-

sentatives in the equivalence classes (e, h). As a consequence of the energy equality, we

prove the well-posedness of the L2-setting of the Maxwell equations with regard to the

initial-boundary conditions under consideration. In addition, we establish the existence of

a weak solution via the Faedo-Galerkin method. An appendix is devoted to the proof of

a Carathéodory solution to an initial-value problem for an ordinary differential equation.

1. Introduction

Let Ω ⊂ R3 be a bounded domain with smooth boundary Γ := ∂Ω, and let 0 < T < +∞.

The evolution of an electromagnetic field in the cylinder QT = Ω × ]0, T [ is governed by

the Maxwell equations

∂t(εe) = curlh− j,(1.1)

∂t(µh) = − curl e,(1.2)

where e = e(x, t) and h = h(x, t) ((x, t) ∈ QT ) represent the electric and magnetic field,

respectively. The 3 × 3 matrices ε = ε(x) and µ = µ(x) (x ∈ Ω) characterize the electric

permittivity and the magnetic permeability, respectively, of the medium under consider-

ation. The vector field j denotes a current density (for details, see, e.g. [12, Ch. 1], [15,

Ch. 6], [28, Teil I, §§ 3–4]).
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In the present paper we consider vector fields j of the form

j = j0(x, t) + j1(x, t, e), (x, t) ∈ QT , e ∈ R3.

Here, j0 = j0(x, t) represents a given current density field, while j1 characterizes the current

density caused by the electric field e. The most common constitutive relations between j1

and e are Ohm laws.

Example 1. The well-known linear Ohm law reads

j1 = σ(x, t) e,

where σ = σ(x, t) denotes a symmetric non-negative 3 × 3 matrix which describes the

conductivity of the medium. If

σ(x, t) = σ0(x, t) δ
(
0 < σ0(x, t) ≤ const, δ = (δkl)k,l=1,2,3 unit matrix

)
,

it follows U = IR, where U = |e| voltage, I = |j1| current and R = 1/σ0(x, t) resistance

(see [28, pp. 19–20]). �

Example 2. Let σ0(x, t) and δ be as above. Define

σ(x, t, |e|) =
σ0(x, t)

(1 + |e|2)1/2
δ, (x, t, e) ∈ QT × R3.

Then the nonlinear Ohm law

j1 = σ(x, t, |e|) e =
σ0(x, t)

(1 + |e|2)1/2
e

models the effect of “asymptotic saturation of current at large voltages” in certain semi-

conductors, i.e.

I = |j1| ↗ σ0(x, t) for U = |e| increasing.

We note that the mapping

e 7−→ 1

(1 + |e|2)1/2
e, e ∈ R3,

is strictly monotone, i.e. for all e, ē ∈ R3, e 6= ē,(
e

(1 + |e|2)1/2
− ē

(1 + |ē|2)1/2

)
· (e− ē) =

1

(1 + |e|2)1/2
|e− ē|2 > 0 if |e| = |ē|

and (
e

(1 + |e|2)1/2
− ē

(1 + |ē|2)1/2

)
· (e− ē)

≥
(

|e|
(1 + |e|2)1/2

− |ē|
(1 + |ē|2)1/2

)
· (|e| − |ē|) > 0 if |e| 6= |ē|.

Figure 1 illustrates two current-voltage characteristics which are well-known from semicon-

ductor engineering of field-effect transistors. �
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Figure 1. Current-voltage characteristics I vs. U (I0/U0 = σ0(x, t)). Bro-

ken line: I = I0 U/(U
2
0 + U2)1/2; bold-faced line (experimental data): linear

slope for “small” voltages U ≤ Us; saturation level I = I0 for “large” volt-

ages U ≥ U0.

Let σ : QT × R+ −→ R3×3 satisfy the following two conditions

(a) growth: for all (x, t, e) ∈ QT × R3,∣∣σ(x, t, |e|) e
∣∣ ≤ c1|e|, c1 = const > 0;

(b) monotonicity : for all (x, t) ∈ QT and all e, ē ∈ R3,(
σ(x, t, |e|) e− σ(x, t, |ē|) ē

)
· (e− ē) ≥ 0.

Then the Ohm law

j1 = σ(x, t, |e|) e
includes Examples 1 and 2 as special cases. For developing our L2-theory of (1.1)–(1.4),

below we further generalize conditions (a) and (b) (see hypotheses (H1)–(H3) in Section 2,

and hypothesis (H7) in Section 4).

Remarks on nonlinear Ohm laws can be also found in [12, p. 14] and [31, pp. 256–257]

(see also the references listed in this paper). In [16], the author studies (1.1), (1.2) with

e 7−→ j1(·, e) monotone and of class C1. �

Let n = n(x) denote the outward directed unit normal at x ∈ Γ. We complement sys-

tem (1.1), (1.2) by the boundary and initial conditions

n× e = 0 on Γ× ]0, T [,(1.3)

e = e0, h = h0 in Ω× {0},(1.4)

where (e0, h0) are given data. Boundary condition (1.3) models a perfect conductor. A brief

discussion of boundary conditions for the Maxwell equations can be found in [28, p. 30].

The author points out that both boundary condition (1.3) and the boundary condition

n× h = 0 on Γ× ]0, T [ imply vanishing of the integral
∫

Γ
n · S dΓ (see Section 2). �
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For notational simplicity, in what follows we write j(x, t, e) (or briefly j(e)) in place of

j(x, t, e(x, t)) ((x, t) ∈ QT ).

We multiply scalarly (1.1) and (1.2) by e and h, respectively, and add the equations so

obtained. Thus

(1.5)
1

2

∂

∂t

(
(εe) · e+ (µh) · h

)
+ divS + j(e) · e = 0 in QT ,

where

S := e× h 1)

denotes the Poynting vector of (e, h). The field S represents the flux of electromagnetic

energy through QT .

Integration of (1.5) over Ω× [0, t] (0 ≤ t ≤ T ) gives

(1.6) E (t) +

t∫
0

∫
Ω

divS dx ds+

t∫
0

∫
Ω

j(e) · e dx ds = E (0), t ∈ [0, T ],

where

E (t) :=
1

2

∫
Ω

(
(εe)(x, t) · e(x, t) + (µh)(x, t) · h(x, t)

)
dx,

E (0) =
1

2

∫
Ω

(
(εe0)(x) · e0(x) + (µh0)(x) · h0(x)

)
dx

(cf. (1.4)). The non-negative function E (t) represents the electromagnetic energy of (e, h)

at time t. Equation (1.6) is called balance of electromagnetic energy (or Poynting theorem).

The term j(e) · e in equation (1.6) characterizes the conversion of electromagnetic energy

into heat (see, e.g. [15, pp. 236–237], [28, pp. 25–26]).

We next combine the divergence theorem with boundary condition (1.3) to obtain∫
Ω

(divS)(x, t) dx =

∫
Γ

n(x) · S(x, t) dΓ = 0

for all t ∈ ]0, T [. Thus, equation (1.6) turns into the energy equality

(1.7) E (t) +

t∫
0

∫
Ω

j(e) · e dx ds = E (0), t ∈ [0, T ]

(see, e.g. [12], [28]).

The equations (1.6) and (1.7) are fundamental to the theory of electromagnetism. This

aspect has been discussed in great detail (with R3 in place of Ω) by J. C. Maxwell in

his celebrated work [23, pp. 486–488]. �

1) Note that a · (b× c) = b · (c× a) = c · (a× b) for any a, b, c ∈ R3, and div(u× v) = v · curlu− u · curl v

for any u, v ∈ C1.
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We note that the scalar function E (t) introduced above is well-defined (for a.e. t ∈ [0, T ])

for vector fields (e, h) ∈ L2(QT )3 × L2(QT )3, provided the entries of the matrices ε(·) and

µ(·) are bounded measurable functions in Ω.

2. Weak solutions of (1.1)–(1.4)

Integral identities for classical solutions. Let Ω ⊂ R3 be a bounded domain with

smooth boundary Γ. To motivate the definition of weak solutions of (1.1)–(1.4) which

will be introduced below, we consider a classical solution (e, h) ∈ C1(QT )3 × C1(QT )3

of (1.1)–(1.4) and test functions (Φ,Ψ) ∈ C1(QT )3 × C1(QT )3 such that

(2.1) Φ(·, T ) = Ψ(·, T ) = 0 in Ω.

We multiply (1.1) and (1.2) scalarly by Φ and Ψ, respectively, integrate over QT and

integrate by parts with respect to t the terms ∂t(εe) · Φ and ∂t(µh) · Ψ. Observing (2.1)

and initial conditions (1.4) we obtain

−
∫
QT

(εe) · ∂tΦ dx dt+

∫
QT

(
− curlh+ j(e)

)
· Φ dx dt =

∫
Ω

(εe0)(x) · Φ(x, 0) dx,(2.2)

−
∫
QT

(µh) · ∂tΨ dx dt+

∫
QT

(curl e) ·Ψ dx dt =

∫
Ω

(µh0)(x) ·Ψ(x, 0) dx.(2.3)

Next, we apply the Green formula

(2.4)

∫
Ω

(curl a) · b dx−
∫
Ω

a · curl b dx =

∫
Γ

(n× a) · b dΓ, a, b ∈ C1(Ω)3

to

a = −h(·, t), b = Φ(·, t) such that n× Φ(·, t) = 0 on Γ× ]0, T [

resp.

a = e(·, t) (observing (1.3)), b = Ψ(·, t)
(t ∈ ]0, T [) in the second integral of the left-hand side of (2.2) and (2.3). Thus, (2.2)

and (2.3) turn into the integral identities

−
∫
QT

(εe) · ∂tΦ dx dt+

∫
QT

(
−h · curl Φ + j(e) · Φ

)
dx dt =

∫
Ω

(εe0)(x) · Φ(x, 0) dx,(2.5)

−
∫
QT

(µh) · ∂tΨ dx dt+

∫
QT

e · curl Ψ dx dt =

∫
Ω

(µh0)(x) ·Ψ(x, 0) dx.(2.6)

If the entries of the matrices ε(·) and µ(·) are bounded measurable functions in Ω, if

j(e) ∈ L2(QT )3 and (e0, h0) ∈ L2(Ω)3 × L2(Ω)3, then all the integrals in (2.5) and (2.6)
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are well-defined for (e, h) ∈ L2(QT )3 × L2(QT )3 and an appropriate class of test functions

(Φ,Ψ). More specifically, let Φ ∈ C1(QT )3 satisfy (2.1) and suppose that

(2.7)

∫
Ω

(curl Φ(·, t)) · z dx =

∫
Ω

Φ(·, t) · curl z dx for all t ∈ ]0, T [ and all z ∈ C1(Ω)3.

Clearly, (2.7) holds true when n×Φ = 0 on Γ× ]0, T [ (see (2.4)). We note that (2.7) does

make sense regardless of whether the boundary Γ is smooth or not.

Thus, appropriate conditions for Φ and Ψ are

curl Φ ∈ L2(QT )3 satisfies (2.7), curl Ψ ∈ L2(QT )3.

Definition of weak solutions. Let Ω ⊂ R3 be an open set. We define

V :=

{
u ∈ L2(Ω)3; there exists F ∈ L2(Ω)3 such that

∫
Ω

u · curlϕ dx =

∫
Ω

F · ϕ dx for all ϕ ∈ C∞c (Ω)3

}
,

i.e., the vector field u ∈ L2(Ω)3 is in V , if the distribution curlu can be represented by

F ∈ L2(Ω)3. We identify this distribution with F . The space V is usually denoted by

H(curl; Ω). It is a Hilbert space with respect to the scalar product

(u, v)V :=

∫
Ω

(
u · v + (curlu) · curl v

)
dx.

We next define the closed subspace

V0 :=

{
u ∈ V ;

∫
Ω

(curlu) · ψ dx =

∫
Ω

u · curlψ dx for all ψ ∈ V

}
.

To our knowledge, the analogue of this space with H1(Ω)3 in place of V has been introduced

for the first time in [20, pp. 215–216] and was then used by other authors, see e.g. [16]

and [30].

Remark 2.1. 1. For u ∈ L2(Ω)3 the following conditions are equivalent:

(i) u ∈ V0;

(ii) there exists G = G(u) ∈ L2(Ω)3 such that

(2.8)

∫
Ω

u · curlψ dx =

∫
Ω

G · ψ dx for all ψ ∈ V .



WELL-POSEDNESS OF THE MAXWELL EQUATIONS WITH NONLINEAR OHM LAW 7

To prove this it suffices to show (ii) =⇒ (i). The equation in (2.8) evidently holds for all

ψ ∈ C∞c (Ω)3. This means that the distribution curlu is represented by G. Hence, u ∈ V .

Again appealing to (2.8) gives∫
Ω

(curlu) · ψ dx =

∫
Ω

G · ψ dx =

∫
Ω

u · curlψ dx for all ψ ∈ V ,

i.e. u ∈ V0. �
2. Define

W0 := closure of C∞c (Ω)3 in V .

It is readily seen that W0 ⊂ V0. In fact, we have

W0 = V0.

Following an argument by [8, Ch. IX, § 1.2, Proof of Thm. 2, p. 207], take u0 ∈ V0 such

that (u0, w)V = 0 for all w ∈ W0. Writing ψ0 = curlu0 it follows∫
Ω

ψ0 · curlϕ dx = −
∫
Ω

u0 · ϕ dx for all ϕ ∈ C∞c (Ω)3.

Thus, ψ0 ∈ V and curlψ0 = −u0. Therefore, by the definition of V0,∫
Ω

|u0|2 dx = −
∫
Ω

u0 · curlψ0 dx = −
∫
Ω

(curlu0) · ψ0 dx = −
∫
Ω

|curlu0|2 dx.

Whence, u0 = 0. �

If Ω ⊂ R3 is an open set the boundary of which is locally representable by Lipschitz

graphs, then the space V0 is usually denoted by H0(curl; Ω) (cf. [14, Thm. 2.11, Thm. 2.12,

pp. 34–35], [8, pp. 204–206]).

Remark 2.2. An example of a bounded domain the boundary of which cannot be repre-

sented locally by Lipschitz graphs can be found in [24, p. 39, Fig. 3.1 (“crossed bricks”)].

Domains of this type seem to be relevant in electrical engineering. We note that our ap-

proach to the weak formulation of (1.1)–(1.4) based on the spaces V and V0 we introduced

above, does not make any assumption on the boundary of the underlying domain. In

particular, this approach suits well to an energy equality of type (1.7). �
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Remark 2.3. Let the boundary Γ be locally representable by Lipschitz graphs. Then there

exists a linear continuous mapping γτ : V −→ H−1/2(Γ)3 2) such that

γτ (u) = n× (u|Γ) for all u ∈ C1(Ω)3,∫
Ω

(curlu) · ψ dx−
∫
Ω

u · curlψ dx = 〈γτ (u), ψ〉H1/2(Γ)3 for all u ∈ V and all ψ ∈ H1(Ω)3

(see, e.g. [1], [8, Ch. IX, § 1.2], [24, Thm. 3.26, Thm. 3.33]). It follows

V0 =
{
u ∈ V ; γτ (u) = 0 in H−1/2(Γ)3

}
.

For a precise description of the image of the tangential trace mapping γτ , cf. [4], [5]. �

We introduce more notations. Let X be a real normed space with norm |·|X . By Lp(0, T ;X)

(1 ≤ p ≤ +∞) we denote the vector space of equivalence classes of strongly measurable

functions u : [0, T ] −→ X such that the function t 7−→ |u(t)|X is in Lp(0, T ). The norm on

Lp(0, T ;X) is given by

‖u‖Lp(0,T ;X) :=



 T∫
0

|u(t)|pX dt

1/p

if 1 ≤ p < +∞,

ess sup
t∈]0,T [

|u(t)|X if p = +∞,

(for details see, e.g. [2], [3, Appendice, pp. 137–140], [9], [32]). If X is a Banach space,

then Lp(0, T ;X) does.

Let H be a real Hilbert space with scalar product (· , ·)H . Then L2(0, T ;H) is a Hilbert

space with respect to the scalar product

(u, v)L2(0,T ;H) :=

T∫
0

(u(t), v(t))H dt.

Given u ∈ Lp(QT ) (1 ≤ p < +∞), we define

[u](t) := u(·, t) for a.e. t ∈ [0, T ].

By the Fubini theorem, [u] ∈ Lp(0, T ;Lp(Ω)) and∫
QT

|u(x, t)|p dx dt =

T∫
0

‖[u](t)‖pLp(Ω) dt.

It is easily seen that the map u 7→ [u] is a linear isometry from Lp(QT ) onto Lp(0, T ;Lp(Ω)).

Throughout our paper we identify these spaces. �

2) For the definition and the properties of the spaces Hs(Γ) (s > 0 real) see, e.g., [26, Ch. 2, §§ 3.8, 5.4].

By 〈z∗, z〉H1/2(Γ)3 we denote the value of z∗ ∈ H−1/2(Γ)3 (dual space of H1/2(Γ)3) at z ∈ H1/2(Γ)3.
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To introduce the notion of weak solutions of (1.1)–(1.4), we make the following hypotheses

on ε, µ in (1.1), (1.2), the field j, and (e0, h0) in (1.4):{
the entries of the 3× 3 matrices ε(·) and µ(·)
are bounded measurable functions in Ω;

(H1)

j(x, t, ξ) = j0(x, t) + j1(x, t, ξ), (x, t, ξ) ∈ QT × R3,

where 
j0 ∈ L2(QT )3,

j1 : QT × R3 −→ R3 is a Carathéodory function, i.e.,

(x, t) 7−→ j1(x, t, ξ) is measurable in QT for all ξ ∈ R3,

ξ 7−→ j1(x, t, ξ) is continuous in R3 for a.e. (x, t) ∈ QT ;

(H2)

{
there exists c1 = const > 0 such that

|j1(x, t, ξ)| ≤ c1|ξ| for all (x, t, ξ) ∈ QT × R3;
(H3)

and

(H4) (e0, h0) ∈ L2(Ω)3 × L2(Ω)3.

Remark 2.4. 1. Given any measurable vector field u : QT −→ R3, from (H2) it follows

that the mapping (x, t) 7−→ j(x, t, u(x, t)) is measurable in QT . Hence, by (H3),

j(u) = j(· , · , u(· , ·)) ∈ L2(QT )3 for all u ∈ L2(QT )3.

2. Hypotheses (H2), (H3) on j1 include the Ohm laws considered in Examples 1 and 2

in Section 1. �

The following definition extends integral identities (2.5) and (2.6) to the L2-framework.

Definition. Let hypotheses (H1)–(H4) hold. The pair

(e, h) ∈ L2(QT )3 × L2(QT )3

is called weak solution of (1.1)–(1.4) if
−
∫
QT

(εe) · ∂tΦ dx dt+

∫
QT

(
−h · curl Φ + j(e) · Φ

)
dx dt =

∫
Ω

(εe0)(x) · Φ(x, 0) dx

for all Φ ∈ L2(0, T ;V0) such that ∂tΦ ∈ L2(QT )3 and Φ(·, T ) = 0 a.e. in Ω;

(2.9)


−
∫
QT

(µh) · ∂tΨ dx dt+

∫
QT

e · curl Ψ dx dt =

∫
Ω

(µh0)(x) ·Ψ(x, 0) dx

for all Ψ ∈ L2(0, T ;V ) such that ∂tΨ ∈ L2(QT )3 and Ψ(·, T ) = 0 a.e. in Ω.

(2.10)
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Let Γ = ∂Ω be smooth. Then from the discussion above it follows that every classical

solution of (1.1)–(1.4) is a weak solution of this problem, too, cf. (2.5), (2.6). We note that

our definition of weak solutions basically coincides with the definitions introduced in [10,

Ch. VII, § 4.2], [11], [12, p. 326], [17].

In case of linear Ohm laws, existence theorems for weak solutions of (1.1)–(1.4) are

established in [10, Ch. VII, § 4.3] (cf. also Section 5 below), [11] and [12, Ch. 7, § 8.3].

In [29], the author proves the local well-posedness of (1.1)–(1.4) for a class of nonlinear

Maxwell equations in spaces of differentiable functions.

The aim of the present paper is to prove that for any initial datum (e0, h0) ∈ L2(Ω)3 ×
L2(Ω)3 (with Ω possibly unbounded), every weak solution (e, h) ∈ L2(QT )3 × L2(QT )3

of (1.1)–(1.4) in the sense of the above definition

• has a representative in C
(
[0, T ];L2(Ω)3

)
× C

(
[0, T ];L2(Ω)3

)
,

• obeys an energy equality (which implies well-posedness) and

• can be obtained as limit of Faedo-Galerkin approximations.

Existence of the distributional derivatives (εe)′ and (µh)′. We will prove that (2.9)

and (2.10) imply the existence of the t-derivatives of εe and µh in the sense of vector-valued

distributions. To this end, we introduce some more notation.

Let X be a real normed space. By X∗ we denote the dual space of X, and by 〈x∗, x〉X
the dual pairing between x∗ ∈ X∗ and x ∈ X. Let H be a real Hilbert space with scalar

product (· , ·)H and suppose that X is continuously and densely embedded into H. We

identify H with its dual space H∗ via the Riesz representation theorem to obtain

H ⊂ X∗ continuously,

〈z, x〉X = (z, x)H for all z ∈ H and all x ∈ X(2.11)

(cf. [32, Ch. 23, § 4]). If X is reflexive, then H ⊂ X∗ densely.

Next, let X and Y be two real normed spaces such that X ⊂ Y continuously and

densely. Given u ∈ L1(0, T ;X), we identify u with an element in L1(0, T ;Y ) and denote

it by u again. An element U ∈ L1(0, T ;Y ) will be called derivative of u in the sense of

distributions from [0, T ] into Y if

T∫
0

ζ̇(t)u(t) dt = −
T∫

0

ζ(t)U(t) dt in Y

for all ζ ∈ C∞c (]0, T [) and denoted by

u′ := U

(see [3, Appendice, Prop. A.6, p. 154], [9, Ch. 2.1], [21, Ch. 1, § 1.3] and [32, Ch. 23,

§§ 5–6]). The derivative u′ is uniquely determined, if Y ∗ is separable. If Y is reflexive, then
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there exists an absolutely continuous representative ũ : [0, T ] −→ Y in the equivalence

class L1(0, T ;Y ) such that

(2.12) ũ(t) = ũ(0) +

t∫
0

w(s) ds for all t ∈ [0, T ]

(see [3, Appendice, Prop. A.3, p. 145]).

Let X and H be as above and suppose that X ⊂ H continuously and densely. Then we

have the following formula of integration by parts

(2.13)



for every u ∈ L1(0, T ;H) such that u′ ∈ L1(0, T ;X∗),

T∫
0

〈α(t)u′(t), x〉X dt = 〈α(T ) ũ(t)− α(0) ũ(0), x〉X −
T∫

0

(α̇(t)u(t), x)H dt

for all α ∈ C1([0, T ]) and all x ∈ X.

This formula is easily seen by routine arguments and observing (2.11) and (2.12). We will

need (2.13) for the proof of Theorem 2.1. �

We make use of the above notations with

X = V resp. X = V0, and H = L2(Ω)3,

where H is furnished with the standard scalar product

(u, v)H :=

∫
Ω

u(x) · v(x) dx.

Then

H ⊂ V ∗ resp. H ⊂ V ∗0 continuously and densely.

Theorem 2.1. Let hypotheses (H1)–(H4) be satisfied. Then for any weak solution

(e, h) ∈ L2(QT )3 × L2(QT )3

of (1.1)–(1.4) there exist the distributional derivatives

(2.14) (εe)′ ∈ L2(0, T ;V ∗0 ), (µh)′ ∈ L2(0, T ;V ∗).

For a.e. t ∈ [0, T ] these derivatives satisfy the identities

〈(εe)′(t), ϕ〉V0 +

∫
Ω

(
−h(·, t) · curlϕ+ j(e(·, t)) · ϕ

)
dx = 0 for all ϕ ∈ V0,(2.15)

〈(µh)′(t), ψ〉V +

∫
Ω

e(·, t) · curlψ dx = 0 for all ψ ∈ V .(2.16)
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The absolutely continuous representatives

ε̃e : [0, T ] −→ V ∗0 , µ̃h : [0, T ] −→ V ∗

in εe, µh ∈ L2(0, T ;H) fulfill the initial conditions

(2.17) (ε̃e)(0) = εe0 in V ∗0 , (µ̃h)(0) = µh0 in V ∗.

Moreover, for a.e. t ∈ [0, T ],

(2.18) ‖(εe)′(t)‖V ∗
0
≤ ‖h(·, t)‖H + ‖j(e(·, t))‖H , ‖(µh)′(t)‖V ∗ ≤ ‖e(·, t)‖H .

Proof. We identify εe ∈ L2(0, T ;H) with an element of the space L2(0, T ;V ∗0 ) and deduce

from (2.9) the existence of the distributional derivative (εe)′ ∈ L2(0, T ;V ∗0 ) and (2.15) for

a.e. t ∈ [0, T ].

Define F = F (e, h) ∈ (L2(0, T ;V0))∗ by

〈F ,Φ〉L2(0,T ;V0) :=

∫
QT

(
−h · curl Φ + j(e) · Φ

)
dx dt, Φ ∈ L2(0, T ;V0).

The linear isometry (L2(0, T ;V0))∗ ∼= L2(0, T ;V ∗0 ) enables us to identify F with its iso-

metric image in L2(0, T ;V ∗0 ) which will be denoted by F again. Thus, F (t) ∈ V ∗0 for a.e.

t ∈ [0, T ] and

〈F ,Φ〉L2(0,T ;V0) =

T∫
0

〈F (t),Φ(t)〉V0 dt for all Φ ∈ L2(0, T ;V0).

Given any ϕ ∈ V0 and ζ ∈ C∞c (]0, T [), we insert Φ = Φ(x, t) = ϕ(x) ζ(t) ((x, t) ∈ QT )

into (2.9) to obtain〈 T∫
0

ζ̇(t)(εe)(t) dt, ϕ

〉
V0

=

T∫
0

(
ζ̇(t)(εe)(t), ϕ

)
H dt (by [32, pp. 420–421]; (2.11))

=

∫
QT

(
−h · curl Φ + j(e) · Φ

)
dx dt (by (2.9))

= 〈F ,Φ〉L2(0,T ;V0) =

〈 T∫
0

ζ(t) F (t) dt, ϕ

〉
V0

.

Hence,
T∫

0

ζ̇(t)(εe)(t) dt =

T∫
0

ζ(t) F (t) dt in V ∗0 ,

i.e., εe has the distributional derivative

(εe)′ = −F ∈ L2(0, T ;V ∗0 ).
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This equation is equivalent to

(2.19) 〈(εe)′(t), ϕ〉V0 = 〈−F (t), ϕ〉V0
for a.e. t ∈ [0, T ] and all ϕ ∈ V0, where the set of those t for which (2.19) fails, does not

depend on ϕ. Whence, (2.15).

We identify µh ∈ L2(0, T ;H) with an element in L2(0, T ;V ∗) and define G = G (e) ∈
(L2(0, T ;V ))∗ by

〈G ,Ψ〉L2(0,T ;V ) :=

∫
QT

e · curl Ψ dx dt, Ψ ∈ L2(0, T ;V ).

By an analogous reasoning as above we obtain the existence of the distributional derivative

(µh)′ = −G ∈ L2(0, T ;V ∗).

This equation is equivalent to (2.16).

We identify εe, µh ∈ L2(0, T ;H) with elements in L2(0, T ;V ∗0 ) and L2(0, T ;V ∗), re-

spectively. Then (2.14) implies the existence of absolutely continuous representatives from

[0, T ] into V ∗0 and V ∗, respectively (cf. (2.12)).

We prove the first equality in (2.17). To this end, fix α ∈ C1([0, T ]) such that α(0) = 1

and α(T ) = 0. Given any ϕ ∈ V0, we insert Φ = Φ(x, t) = ϕ(x)α(t) ((x, t) ∈ QT ) into (2.9),

multiply (2.15) by α(t) and integrate over [0, T ]. It follows

(εe0, ϕ)H = −
T∫

0

(
(εe)(t), ϕ α̇(t)

)
H dt+

∫
QT

(
−h · curlϕ+ j(e) · ϕ

)
α dx dt

= 〈(ε̃e)(0), ϕ〉V0 (by (2.13)).

Whence, εe0 = (ε̃e)(0) in V ∗0 . An analogous reasoning yields the second statement in (2.17).

Finally, estimates (2.18) are readily deduced from (2.15) and (2.16). The proof of The-

orem 2.1 is complete. �

Corollary 2.1. Let hypotheses (H1)–(H4) hold and let (e, h) ∈ L2(QT )3×L2(QT )3 be any

weak solution of (1.1)–(1.4). Then,

(εe)′ ∈ L2(0, T ;H) ⇐⇒ h ∈ L2(0, T ;V );(a)

(µh)′ ∈ L2(0, T ;H) ⇐⇒ e ∈ L2(0, T ;V0).(b)

Proof of (a). (=⇒) Assume (εe)′(t) ∈ H for some t ∈ [0, T ]. We may further suppose that

j(e(·, t)) ∈ H and (2.15) holds for the value t under consideration. Thus, by (2.11),∫
Ω

h(·, t) · curlϕ dx =

∫
Ω

(
(εe)′(t) + j(e(·, t))

)
· ϕ dx for all ϕ ∈ C∞c (Ω)3.

Whence, h(·, t) ∈ V . A routine argument gives h ∈ L2(0, T ;V ).
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(⇐=) Let h ∈ L2(0, T ;V ). Given any ζ ∈ C∞c (]0, T [), we multiply (2.15) by ζ(t) and

integrate over t ∈ [0, T ] to obtain( T∫
0

ζ̇(t)(εe)(t) dt, ϕ

)
H

=

〈
−

T∫
0

ζ(t)(εe)′(t) dt, ϕ

〉
V0

=

( T∫
0

ζ(t)
(
− curlh(·, t) + j(e(·, t))

)
dt, ϕ

)
H

for any ϕ ∈ V0. Therefore,

T∫
0

ζ̇(t)(εe)(t) dt =

T∫
0

ζ(t)
(
− curlh(·, t) + j(e(·, t))

)
dt,

i.e. (εe)′ ∈ L2(0, T ;H). �

Proof of (b). (=⇒) As above, assume (µh)′(t) ∈ H and (2.16) holds for some t ∈ [0, T ]. It

follows ∫
Ω

e(·, t) · curlψ dx = −
∫
Ω

(µh)′(t) · ψ dx for all ψ ∈ V .

By (2.8), e(·, t) ∈ V0. Again, by a routine argument we obtain e ∈ L2(0, T ;V0).

The implication (⇐=) can be proved by an argument that parallels item (a). �

3. Existence of t-continuous representatives

in the equivalence classes e, h

Besides (H1), throughout the remainder of our paper we formulate two more hypotheses

for the matrices ε(·) and µ(·):

(H5) ε(x) and µ(x) are symmetric for all x ∈ Ω;

(H6)

{
there exist constants ε∗ > 0 and µ∗ > 0 such that

ε(x)ξ · ξ ≥ ε∗|ξ|2, µ(x)ξ · ξ ≥ µ∗|ξ|2 for all x ∈ Ω and all ξ ∈ R3.

The following result is fundamental to our proof of the well-posedness of (1.1)–(1.4) in the

L2-setting.

Theorem 3.1. Assume (H1)–(H6). Then for every weak solution (e, h) ∈ L2(QT )3 ×
L2(QT )3 of (1.1)–(1.4) there exist representatives

(3.1) ê, ĥ ∈ C([0, T ];H)
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in the equivalence classes e, h ∈ L2(0, T ;H) 3) , respectively, that satisfy the initial condi-

tions

(3.2) ê(0) = e0, ĥ(0) = h0 in H.

We will prove this theorem via approximation of (e, h) by time-averages. This method

has been used in [19] for the proof on integral estimates for functions on QT (pp. 85–89)

and for proving an energy equality for weak solutions of parabolic initial-boundary value

problems (pp. 141–143) as well as the continuity of these solutions in t with respect to the

L2(Ω)-norm (pp. 158–159).

The method of approximation of weak solutions of (1.1)–(1.4) by Steklov averages has

been developed in [25]. �

Preliminaries. Let f ∈ Lp(QT ) (1 ≤ p < ∞). We extend f by zero for a.e. (x, t) ∈
Ω × (R \ [0, T ]) and denote the function so defined a.e. on Ω × R by f again. For λ > 0,

define the Steklov averages of f for all t ∈ [0, T ] and a.e. x ∈ Ω by

fλ(x, t) =
1

λ

t+λ∫
t

f(x, s) ds, fλ̄(x, t) =
1

λ

t∫
t−λ

f(x, s) ds,

(cf. [19, p. 85, p. 141] (p = 2)). We have

(3.3)



for a.e. (x, t) ∈ QT there exist the weak derivatives

∂tfλ(x, t) =
1

λ

(
f(x, t+ λ)− f(x, t)

)
,

∂tfλ̄(x, t) =
1

λ

(
f(x, t)− f(x, t− λ)

)
;

(3.4)



for any α ∈ Cc(R),∫
QT

f(x, t)

(
1

λ

t∫
t−λ

α(s) ds

)
dx dt =

∫
QT

fλ(x, t)α(t) dx dt,

∫
QT

f(x, t)

(
1

λ

t+λ∫
t

α(s) ds

)
dx dt =

∫
QT

fλ̄(x, t)α(t) dx dt;

and

(3.5) fλ −→ f and fλ̄ −→ f in Lp(QT ) as λ→ 0

(see, e.g. [25, Appendix I, Prop. I.1] for the proof of (3.3)–(3.5) for the Steklov average fλ;

the same proofs work for fλ̄ with obvious changes).

3) Remember the isometry L2(QT )3 ∼= L2(0, T ;H).
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Proof of Theorem 3.1. Let (e, h) ∈ L2(QT )×L2(QT ) be any weak solution of (1.1)–(1.4).

Define g(x, t) := j(x, t, e(x, t)) for a.e. (x, t) ∈ QT . By (H2), (H3), g ∈ L2(QT ).

Fix real numbers T0, T1 such that

0 < T0 < T1 < T.

We divide the proof into three parts.

Part I. Integral identities for (eλ, hλ) and (eλ̄, hλ̄).

Lemma 3.1 (Integral identities for (eλ, hλ)). For every 0 < λ < T − T1,
∫
Ω

(
∂t(εe)λ(x, t) · ϕ(x)− hλ(x, t) · curlϕ(x) + gλ(x, t) · ϕ(x)

)
dx = 0

for a.e. t ∈ [0, T1] and all ϕ ∈ V0,

(3.6)


∫
Ω

(
∂t(µh)λ(x, t) · ψ(x) + eλ(x, t) · curlψ(x)

)
dx = 0

for a.e. t ∈ [0, T1] and all ψ ∈ V .
(3.7)

Moreover, for a.e. t ∈ [0, T1],

eλ(·, t) ∈ V0, hλ(·, t) ∈ V,(3.8) ∫
Ω

(curl eλ(x, t)) · hλ(x, t) dx =

∫
Ω

eλ(x, t) · curlhλ(x, t) dx.(3.9)

Proof. Let α ∈ Cc(R) be such that supp(α) ⊂ ]0, T1[. Given ϕ ∈ V0, we consider the

function

Φ(x, t) = ϕ(x)

t∫
t−λ

α(s) ds for a.e. (x, t) ∈ QT .

Then

Φ(· , t) ∈ V0 for all t ∈ [0, T ], Φ(x, 0) = Φ(x, T ) = 0 for a.e. x ∈ Ω,

∂tΦ(x, t) = ϕ(x)
(
α(t)− α(t− λ)

)
for a.e. (x, t) ∈ QT ,

i.e., Φ is an admissible test function in (2.9). It follows∫
QT

(
(εe)(x, t+ λ)− (εe)(x, t)

)
· ϕ(x)α(t) dx dt

=

∫
QT

(
h(x, t) · curlϕ(x)− g(x, t) · ϕ(x)

)( t∫
t−λ

α(s) ds

)
dx dt.
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We divide each term of this equation by λ and make use of (3.3) and (3.4) for fλ (f = εe,

resp. f = h · curlϕ, f = g · ϕ) to obtain∫
QT

(
∂t(εe)λ(x, t) · ϕ(x)− hλ(x, t) · curlϕ(x) + gλ(x, t) · ϕ(x)

)
α(t) dx dt = 0.

The claim (3.6) follows from this equation by a routine argument. We note that the set of

measure zero of those t ∈ [0, T1] for which (3.6) fails, may depend on λ but is independent

of ϕ ∈ V0.

Next, given ψ ∈ V , the function

Ψ(x, t) = ψ(x)

t∫
t−λ

α(s) ds for a.e. (x, t) ∈ QT

is an admissible test function in (2.10). Then one obtains (3.7) by analogous arguments as

for the proof of (3.6) (make use of (3.3) and (3.4) for fλ (f = µh, resp. f = e · curlψ)).

We prove eλ(·, t) ∈ V0 for a.e. t ∈ [0, T1] such that (3.7) holds. Indeed, for any of these

values of t, we have∫
Ω

eλ(x, t) · curlψ dx = −
∫
Ω

∂t(µh)λ(x, t) · ψ dx for all ψ ∈ V .

Observing that

∂t(µh)λ(·, t) =
1

λ

(
(µh)(·, t+ λ)− (µh)(·, t)

)
∈ L2(Ω)3,

it follows eλ(·, t) ∈ V0 (see (2.8)).

To see hλ(·, t) ∈ V for a.e. t ∈ [0, T1], it suffices to note that

∂t(εe)λ(·, t) + gλ(·, t) =
1

λ

(
(εe)(·, t+ λ)− (εe)(·, t)

)
+ gλ(·, t) ∈ L2(Ω)3

and that (3.6) evidently holds for all ϕ ∈ C∞c (Ω)3. Whence, the claim (3.8).

Finally, (3.9) is a consequence of (3.8) and our definition of the space V0. �

Lemma 3.2 (Integral identities for (eλ̄, hλ̄)). For every 0 < λ < T0,
∫
Ω

(
∂t(εe)λ̄(x, t) · ϕ(x)− hλ̄(x, t) · curlϕ(x) + gλ̄(x, t) · ϕ(x)

)
dx = 0

for a.e. t ∈ [T0, T ] and all ϕ ∈ V0,

(3.10)


∫
Ω

(
∂t(µh)λ̄(x, t) · ψ(x) + eλ̄(x, t) · curlψ(x)

)
dx = 0

for a.e. t ∈ [T0, T ] and all ψ ∈ V .
(3.11)
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Moreover, for a.e. t ∈ [T0, T ],

eλ̄(·, t) ∈ V0, hλ̄(·, t) ∈ V,(3.12) ∫
Ω

(curl eλ̄(x, t)) · hλ̄(x, t) dx =

∫
Ω

eλ̄(x, t) · curlhλ̄(x, t) dx.(3.13)

Proof. Let α ∈ Cc(R) be such that supp(α) ⊂ ]T0, T [. Given ϕ ∈ V0, we consider the

function

Φ(x, t) = ϕ(x)

t+λ∫
t

α(s) ds for a.e. (x, t) ∈ QT .

Then

Φ(· , t) ∈ V0 for all t ∈ [0, T ], Φ(x, 0) = Φ(x, T ) = 0 for a.e. x ∈ Ω,

∂tΦ(x, t) = ϕ(x)
(
α(t+ λ)− α(t)

)
for a.e. (x, t) ∈ QT ,

i.e. Φ is an admissible test function in (2.9). It follows∫
QT

(
(εe)(x, t)− (εe)(x, t− λ)

)
· ϕ(x)α(t) dx dt

=

∫
QT

(
h(x, t) · curlϕ(x)− g(x, t) · ϕ(x)

)( t+λ∫
t

α(s) ds

)
dx dt.

We divide each term of this equation by λ and make use of (3.3) and (3.4) for fλ̄ (f = εe,

resp. f = h · curlϕ, f = g · ϕ) to obtain∫
QT

(
∂t(εe)λ̄(x, t) · ϕ(x)− hλ̄(x, t) · curlϕ(x) + gλ̄(x, t) · ϕ(x)

)
α(t) dx dt = 0.

The claim (3.10) follows from this equation by a routine argument. We note that the set of

measure zero of those t ∈ [T0, T ] for which (3.10) fails, may depend on λ but is independent

of ϕ ∈ V0.

Next, given ψ ∈ V , the function

Ψ(x, t) = ψ(x)

t+λ∫
t

α(s) ds for a.e. (x, t) ∈ QT

is an admissible test function in (2.10). Then one obtains (3.11) by analogous arguments

as for the proof of (3.10) (make use of (3.3) and (3.4) for fλ̄ (f = µh, resp. f = e · curlψ)).
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We prove eλ̄(·, t) ∈ V0 for a.e. t ∈ [T0, T ] such that (3.11) holds. Indeed, for any of these

values of t, we have∫
Ω

eλ̄(x, t) · curlψ dx = −
∫
Ω

∂t(µh)λ̄(x, t) · ψ dx for all ψ ∈ V .

Observing that

∂t(µh)λ̄(·, t) =
1

λ

(
(µh)(·, t)− (µh)(·, t− λ)

)
∈ L2(Ω)3,

it follows eλ̄(·, t) ∈ V0 (see (2.8)).

To see hλ̄(·, t) ∈ V for a.e. t ∈ [T0, T ], it suffices to note that

∂t(εe)λ̄(·, t) + gλ̄(·, t) =
1

λ

(
(εe)(·, t)− (εe)(·, t− λ)

)
+ gλ̄(·, t) ∈ L2(Ω)3

and that (3.10) evidently holds for all ϕ ∈ C∞c (Ω)3. Whence, the claim (3.12).

Finally, (3.13) is a consequence of (3.12) and our definition of the space V0. �

Part II. Estimates for the differences of (eλ, hλ) and of (eλ̄, hλ̄). Let (λm)m∈N be any se-

quence of real numbers such that 0 < λm < min{T0, T −T1} for all m ∈ N, and λm → 0 as

m→∞. Following ideas from [19, pp. 158–159], we establish estimates for the differences

eλm − eλn , hλm − hλn and eλ̄m − eλ̄n , hλ̄m − hλ̄n which enable us to prove that (eλm)m∈N,

(hλm)m∈N and (eλ̄m)m∈N, (hλ̄m)m∈N are Cauchy sequences in C([0, T ];H). Here, crucial

points are the identities (3.9) and (3.13) that we may use as well for the differences above.

Moreover, applying the distributional derivatives of eλ, hλ makes our presentation simpler

than the one in [19]. �
To simplify the following discussion, we introduce the weighted scalar products on H

(u, v)Hε :=

∫
Ω

ε(x)u(x) · v(x) dx, (u, v)Hµ :=

∫
Ω

µ(x)u(x) · v(x) dx.

Both scalar products are equivalent to the standard scalar product on H.

We consider (3.6) and (3.7) with λ = λm and λ = λn, form differences eλm − eλn and

hλm − hλn , take then ϕ = eλm(·, t)− eλn(·, t) in (3.6) and ψ = hλm(·, t)− hλn(·, t) in (3.7),

add the identities so obtained (cf. [19, p. 159]) and observe (3.9) with eλm − eλn , hλm −hλn
in place of eλ, hλ. This gives

(3.14)


d

dτ

(
‖eλm(τ)− eλn(τ)‖2

Hε + ‖hλm(τ)− hλn(τ)‖2
Hµ

)
= −2

(
gλm(τ)− gλn(τ), eλm(τ)− eλn(τ)

)
H

for all m,n ∈ N and a.e. τ ∈ [0, T1].
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Lemma 3.3. For all m, n ∈ N and all t ∈ [0, T1],

(3.15)



T1

(
‖eλm(t)− eλn(t)‖2

Hε + ‖hλm(t)− hλn(t)‖2
Hµ

)

=

T1∫
0

(
‖eλm(s)− eλn(s)‖2

Hε + ‖hλm(s)− hλn(s)‖2
Hµ

)
ds

− 2

T1∫
0

( t∫
s

(
gλm(τ)− gλn(τ), eλm(τ)− eλn(τ)

)
H dτ

)
ds. 4)

Proof. Let t ∈ ]0, T1[. Firstly, given any s ∈ [0, t], we integrate (3.14) over the interval [s, t]

to obtain

‖eλm(t)− eλn(t)‖2
Hε + ‖hλm(t)− hλn(t)‖2

Hµ = ‖eλm(s)− eλn(s)‖2
Hε + ‖hλm(s)− hλn(s)‖2

Hµ

− 2

t∫
s

(
gλm(τ)− gλn(τ), eλm(τ)− eλn(τ)

)
H dτ.

We now integrate this equation with respect to the variable s over the interval [0, t]. It

follows

(3.16)



t
(
‖eλm(t)− eλn(t)‖2

Hε + ‖hλm(t)− hλn(t)‖2
Hµ

)

=

t∫
0

(
‖eλm(s)− eλn(s)‖2

Hε + ‖hλm(s)− hλn(s)‖2
Hµ

)
ds

− 2

t∫
0

( t∫
s

(
gλm(τ)− gλn(τ), eλm(τ)− eλn(τ)

)
H dτ

)
ds.

Secondly, given any s ∈ [t, T1], we integrate (3.14) over the interval [t, s] to get

‖eλm(t)− eλn(t)‖2
Hε + ‖hλm(t)− hλn(t)‖2

Hµ = ‖eλm(s)− eλn(s)‖2
Hε + ‖hλm(s)− hλn(s)‖2

Hµ

+ 2

s∫
t

(
gλm(τ)− gλn(τ), eλm(τ)− eλn(τ)

)
H dτ.

4) For s, t ∈ [0, T1], s > t, define
∫ t

s
β(τ) dτ = −

∫ s

t
β(τ) dτ .
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We integrate this equation with respect to the variable s over the interval [t, T1]. This

yields

(3.17)



(T1 − t)
(
‖eλm(t)− eλn(t)‖2

Hε + ‖hλm(t)− hλn(t)‖2
Hµ

)

=

T1∫
t

(
‖eλm(s)− eλn(s)‖2

Hε + ‖hλm(s)− hλn(s)‖2
Hµ

)
ds

+ 2

T1∫
t

( s∫
t

(
gλm(τ)− gλn(τ), eλm(τ)− eλn(τ)

)
H dτ

)
ds.

Finally, if t = 0 or t = T1, then (3.16) resp. (3.17) are trivial. Adding (3.16) and (3.17) we

obtain (3.15) for all t ∈ [0, T1]. �

We finish Part II with an analogue of Lemma 3.3. For this we consider integral identi-

tities (3.10) and (3.11), and repeat the arguments which led to (3.14). Using (3.13) with

eλ̄m − eλ̄n , hλ̄m − hλ̄n instead of eλ̄, hλ̄, one obtains

(3.18)


d

dτ

(
‖eλ̄m(τ)− eλ̄n(τ)‖2

Hε + ‖hλ̄m(τ)− hλ̄n(τ)‖2
Hµ

)
= −2

(
gλ̄m(τ)− gλ̄n(τ), eλ̄m(τ)− eλ̄n(τ)

)
H

for all m,n ∈ N and a.e. τ ∈ [T0, T ].

Lemma 3.4. For all m, n ∈ N and all t ∈ [T0, T ],

(3.19)



(T − T0)
(
‖eλ̄m(t)− eλ̄n(t)‖2

Hε + ‖hλ̄m(t)− hλ̄n(t)‖2
Hµ

)

=

T∫
T0

(
‖eλ̄m(s)− eλ̄n(s)‖2

Hε + ‖hλ̄m(s)− hλ̄n(s)‖2
Hµ

)
ds

− 2

T∫
T0

( t∫
s

(
gλ̄m(τ)− gλ̄n(τ), eλ̄m(τ)− eλ̄n(τ)

)
H dτ

)
ds.

Proof. Let t ∈ ]T0, T [. Firstly, given any s ∈ [T0, t], we integrate (3.18) over the interval

[s, t] and integrate then the equation so obtained with respect to the variable s over the
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interval [T0, t]. This gives

(3.20)



(t− T0)
(
‖eλ̄m(t)− eλ̄n(t)‖2

Hε + ‖hλ̄m(t)− hλ̄n(t)‖2
Hµ

)

=

t∫
T0

(
‖eλ̄m(s)− eλ̄n(s)‖2

Hε + ‖hλ̄m(s)− hλ̄n(s)‖2
Hµ

)
ds

− 2

t∫
T0

( t∫
s

(
gλ̄m(τ)− gλ̄n(τ), eλ̄m(τ)− eλ̄n(τ)

)
H dτ

)
ds.

Secondly, given any s ∈ [t, T ], we integrate (3.18) over the interval [t, s] and integrate

then the equation obtained in this way with respect to the variable s over the interval [t, T ]

to find

(3.21)



(T − t)
(
‖eλ̄m(t)− eλ̄n(t)‖2

Hε + ‖hλ̄m(t)− hλ̄n(t)‖2
Hµ

)

=

T∫
t

(
‖eλ̄m(s)− eλ̄n(s)‖2

Hε + ‖hλ̄m(s)− hλ̄n(s)‖2
Hµ

)
ds

+ 2

T∫
t

( s∫
t

(
gλ̄m(τ)− gλ̄n(τ), eλ̄m(τ)− eλ̄n(τ)

)
H dτ

)
ds.

Finally, if t = T0 or t = T , then (3.20) resp. (3.21) are trivial. Adding (3.20) and (3.21)

we obtain (3.19) for all t ∈ [T0, T ]. �

Part III. Proof of Theorem 3.1 completed. Let (λm)m∈N be any sequence of real numbers

as at the beginning of Part II. From (3.15) we infer

max
t∈[0,T1]

‖eλm(t)− eλn(t)‖2
Hε + max

t∈[0,T1]
‖hλm(t)− hλn(t)‖2

Hµ

=
1

T1

T1∫
0

(
‖eλm(s)− eλn(s)‖2

Hε + ‖hλm(s)− hλn(s)‖2
Hµ

)
ds

+ 2

T1∫
0

‖gλm(τ)− gλn(τ)‖H ‖eλm(τ)− eλn(τ)‖H dτ

for all m, n ∈ N. Observing (H6) and (3.5) we see that (eλm)m∈N, (hλm)m∈N are Cauchy

sequences in C([0, T1];H). Analogously, (3.19) implies that (eλ̄m)m∈N, (hλ̄m)m∈N are Cauchy

sequences in C([T0, T ];H). Thus, there exist

e, h ∈ C([0, T1];H) and e, h ∈ C([T0, T ];H)
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such that

eλm −→ e and hλm −→ h in C([0, T1];H),(3.22)

eλ̄m −→ e and hλ̄m −→ h in C([T0, T ];H)(3.23)

as m→∞. A routine argument gives

e(t) = e(t), h(t) = h(t) in H for a.e. t ∈ [0, T1],

e(t) = e(t), h(t) = h(t) in H for a.e. t ∈ [T0, T ].

Put T∗ = 1
2
(T0 + T1) and define

ê(t) :=

{
e(t) if t ∈ [0, T∗],

e(t) if t ∈ [T∗, T ];
ĥ(t) :=

{
h(t) if t ∈ [0, T∗],

h(t) if t ∈ [T∗, T ].

We obtain

(3.24) ê, ĥ ∈ C([0, T ];H), ê(t) = e(t), ĥ(t) = h(t) in H for a.e. t ∈ [0, T ],

i.e. (3.1) holds.

It remains to prove ê(0) = e0 in H (cf. (3.2)). The proof of ĥ(0) = h0 follows the

same lines with minor modifications. Identifying εê ∈ C([0, T ];H) with an element in

C([0, T ];V ∗0 ) it follows

(εê)(t) = (ε̃e)(t) in V ∗0 for all t ∈ [0, T ],

where ε̃e : [0, T ] −→ V ∗0 denotes the absolutely continuous representative in the equivalence

class εe ∈ L2(0, T ;V ∗0 ) (cf. Thm. 2.1). Thus, for all ϕ ∈ V0,

(εê(0), ϕ)H = 〈(εê)(0), ϕ〉V0 = 〈(ε̃e)(0), ϕ〉V0 = 〈εe0, ϕ〉V0 = (εe0, ϕ)H .

The proof of Theorem 3.1 is complete.

4. Energy equality. Well-posedness of (1.1)–(1.4)

In this section, we prove that under the hypotheses (H1)–(H6) any weak solution of (1.1)–

(1.4) obeys an energy equality. If, in addition, ξ 7−→ j(·, ·, ξ) is monotone, then the

well-posedness of (1.1)–(1.4) in the framework of L2 is easily derived from the energy

equality.

Besides its independent interest, this equality is fundamental to our proof of the existence

of a weak solution of (1.1)–(1.4) via the Faedo-Galerkin method (see Section 5).

The following theorem is the main result of our paper.

Theorem 4.1 (Energy equality). Assume (H1)–(H6). Let (e, h) ∈ L2(QT )3 × L2(QT )3 be

any weak solution of (1.1)–(1.4) and denote by

ê, ĥ ∈ C([0, T ];H)
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the continuous representatives in the equivalence classes e, h (cf. Theorem 3.1 ). Then,

(4.1)
1

2

(∥∥ê(t)∥∥2
Hε+

∥∥ĥ(t)
∥∥2
Hµ

)
+

t∫
0

(j(e), e)H ds =
1

2

(
‖e0‖2

Hε+‖h0‖2
Hµ

)
for all t ∈ [0, T ].

Proof. For notational simplicity, we write

Ê (t) =
1

2

(∥∥ê(t)∥∥2
Hε +

∥∥ĥ(t)
∥∥2
Hµ

)
, t ∈ [0, T ]

(cf. (1.7); remember ê(0) = e0, ĥ(0) = h0).

As in Section 3, let T0, T1 be two real numbers such that 0 < T0 < T1 < T , and let

0 < λ < min{T0, T − T1}. From Lemma 3.1 it follows that

(4.2)
1

2

(
‖eλ(t)‖2

Hε + ‖hλ(t)‖2
Hµ

)
+

t∫
0

(gλ, eλ)H ds =
1

2

(
‖eλ(0)‖2

Hε + ‖hλ(0)‖2
Hµ

)
for all t ∈ [0, T1] (g = j(·, ·, e); cf. the proof of Theorem 3.1).

Let (λm)m∈N be any sequence of real numbers such that 0 < λm < min{T0, T − T1} for

all m ∈ N, and λm → 0 as m→∞ (cf. the proof of Theorem 3.1, Part II). Taking λ = λm
in (4.2) and observing (3.22) and (3.24) we obtain upon letting tend m→∞ in (4.2) the

equality

(4.3) Ê (t) +

t∫
0

(j(e), e)H ds = Ê (0) for all t ∈ [0, T1].

Next, using Lemma 3.2 we find by an analogous reasoning (this time by the aid of (3.23)

and (3.24))

Ê (t) +

t∫
T0

(j(e), e)H ds = Ê (T0) for all t ∈ [T0, T ].

It follows that, for all t ∈ [T0, T ],

Ê (t) +

t∫
0

(j(e), e)H ds = Ê (T0) +

T0∫
0

(j(e), e)H ds

= Ê (0) (by (4.3)).

Whence, (4.1). �

Remark 4.1. In his seminal paper [13], K. O. Friedrichs developed a theory of weak

solutions for a large class of initial-boundary value problems for symmetric linear hyperbolic

systems where he made use of energy integral identities. In this paper, the notion of weak
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solutions is introduced in terms of a limit of classical (resp. strong) solutions of the initial-

value problem under consideration.

For linear Ohm laws j1 = σ(x, t) e (see Section 1 above), problem (1.1)–(1.4) is included

in the work [13].

Remark 4.2. Suppose that hypotheses (H1)–(H6) hold true. In addition, assume

j(x, t, ξ) · ξ ≥ 0 for all (x, t, ξ) ∈ QT × R3

(cf. Examples 1 and 2 in Section 1). Then any weak solution (e, h) ∈ L2(QT )3 × L2(QT )3

of (1.1)–(1.4) satisfies the energy inequality

(4.4)
1

2

(∥∥ê(t)∥∥2
Hε +

∥∥ĥ(t)
∥∥2
Hµ

)
≤ 1

2

(
‖e0‖2

Hε + ‖h0‖2
Hµ

)
for all t ∈ [0, T ]

(cf. also [12, Corollary 7.6, p. 329]). Thus, for current density fields j = j1 = σ(x, t) e

(σ(x, t) being a symmetric non-negative 3 × 3 matrix with bounded measurable entries),

the uniqueness of weak solutions of (1.1)–(1.4) follows from (4.4). We note that this

uniqueness result is a special case of Theorem 4.2 (well-posedness of (1.1)–(1.4)) provided

the mapping ξ 7−→ j(·, ·, e) is monotone (cf. condition (b) in Section 1).

Remark 4.3. Assume (H2), (H3) and let j = j1 = σ(x) e, where σ(x) = (σkl(x))k,l=1,2,3

(x ∈ Ω) is any matrix with bounded measurable entries.

Let (e, h) ∈ L2(QT )3 × L2(QT )3 be a weak solution of (1.1)–(1.4) with initial data

e0 = h0 = 0 a.e. in Ω.

Then

e = h = 0 a.e. in QT .

This result has been proved in [25] by deriving an energy equality for the primitives∫ t
0
e(·, s) ds,

∫ t
0
h(·, s) ds (t ∈ [0, T ]) and then applying the Gronwall lemma (cf. also [12,

pp. 330–331], [21, Ch. 3, § 8.2]).

An analogous uniqueness result has been presented in [10, Ch. VII, § 4.3] the proof of

which makes use of an approximation technique for weak solutions of (1.1)–(1.4) that is

similar to ours in Section 3.

From Theorem 4.1 we deduce

Theorem 4.2 (Well-posedness of (1.1)–(1.4)). Assume (H1)–(H3) and (H5), (H6). In

addition, suppose that

(H7)
(
j(x, t, ξ)− j(x, t, η)

)
·
(
ξ − η

)
≥ 0 for all (x, t) ∈ QT and all ξ, η ∈ R3

(cf. condition (b) in Section 1 ).

Let
(
e(k), h(k)

)
∈ L2(QT )3 × L2(QT )3 (k = 1, 2) be weak solutions of (1.1)–(1.4) that

correspond to initial data
(
e0

(k), h0
(k)
)
∈ L2(Ω)3 × L2(Ω)3 (k = 1, 2), respectively.
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Then, for all t ∈ [0, T ],

(4.5)
∥∥e(1)(t)− e(2)(t)

∥∥2
Hε +

∥∥h(1)(t)− h(2)(t)
∥∥2
Hµ ≤

∥∥e0
(1) − e0

(2)
∥∥2
Hε +

∥∥h0
(1) − h0

(2)
∥∥2
Hµ .

(On the left side of (4.5) the continuous representatives of e(k), h(k) according to Theo-

rem 3.1 are understood, where the symbol ˆ is omitted for notational simplicity.)

Proof. We consider integral identities (2.9), (2.10) with
(
e(1), h(1)

)
as well as

(
e(2), h(2)

)
in

place of (e, h), and form the differences of the integral identities so obtained. Writing

e∗0 = e0
(1) − e0

(2), h∗0 = h0
(1) − h0

(2)

and

e∗ = e(1) − e(2), h∗ = h(1) − h(2), g∗ = j
(
e(1)
)
− j
(
e(2)
)
,

we obtain
−
∫
QT

(εe∗) · ∂tΦ dx dt+

∫
QT

(
−h∗ · curl Φ + g∗ · Φ

)
dx dt =

∫
Ω

(εe∗0)(x) · Φ(x, 0) dx

for all Φ ∈ L2(0, T ;V0) such that ∂tΦ ∈ L2(QT )3 and Φ(·, T ) = 0 a.e. in Ω,

(4.6)


−
∫
QT

(µh∗) · ∂tΨ dx dt+

∫
QT

e∗ · curl Ψ dx dt =

∫
Ω

(µh∗0)(x) ·Ψ(x, 0) dx

for all Ψ ∈ L2(0, T ;V ) such that ∂tΨ ∈ L2(QT )3 and Ψ(·, T ) = 0 a.e. in Ω,

(4.7)

i.e. (e∗, h∗) ∈ L2(QT )3×L2(QT )3 is a weak solution of (1.1)–(1.4) with j = j0 + j1, j0 = g∗

and j1 = 0 (cf. (H2), (H3)). Hence, Theorem 4.1 applies to (4.6), (4.7). Then, the energy

equality (4.1) reads

1

2

(
‖e∗(t)‖2

Hε + ‖h∗(t)‖2
Hµ

)
+

t∫
0

(g∗, e∗)H ds =
1

2

(
‖e∗0‖2

Hε + ‖h∗0‖2
Hµ

)
for all t ∈ [0, T ].

Observing (H7) we obtain (4.5). The proof is complete. �

Remark 4.4. Theorem 4.2 represents a special case of the notion of well-posedness of

evolution problems discussed in [27, p. 404, p. 413].

5. Existence of weak solutions of (1.1)–(1.4)

via the Faedo-Galerkin method

The Faedo-Galerkin method is widely used for solving evolution problems. From the wealth

of literature we only refer to [21, Ch. 3, §§ 8.1–8.2], [22, Ch. 2, § 1.2] and [33, Ch. 30, §§ 1–3].

In [10, Ch. VII, §§ 4.1–4.3] the authors used this method for the proof of the existence

of weak solutions of (1.1)–(1.4) with linear Ohm laws j = j1 = σ0(x) e. The following

theorem extends this result to the class of nonlinear Ohm laws we have introduced by

hypotheses (H2), (H3) (cf. Section 2).
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Theorem 5.1. Assume (H1)–(H3) and (H5)–(H7). Then for every (e0, h0) ∈ H×H there

exists a weak solution

(e, h) ∈ L∞(0, T ;H)× L∞(0, T ;H)

of (1.1)–(1.4) which satisfies the estimate

(5.1) ‖e(t)‖2
Hε + ‖h(t)‖2

Hµ ≤ c
(
‖e0‖2

Hε + ‖h0‖2
Hµ + ‖j0‖2

L2(QT )3

)
for a.e. t ∈ [0, T ],

where c = const > 0 depends on c1 and ε∗ from (H3) and (H7), respectively, and on T .

For what follows we introduce more notations.

The separability of V0 and V implies the existence of sequences (ϕk)k∈N ⊂ V0 and

(ψk)k∈N ⊂ V such that

{ϕ1, . . . , ϕm} and {ψ1, . . . , ψm} are linearly independent for every m ∈ N;

(5.2)
∞⋃
m=1

Xm = V0,
∞⋃
m=1

Ym = V,

where

Xm := span{ϕ1, . . . , ϕm}, Ym := span{ψ1, . . . , ψm}.
Without any loss of generality, we may assume that

(5.3) (ϕk, ϕl)Hε = δkl, (ψk, ψl)Hµ = δkl for all k, l ∈ N (δkl Kronecker’s delta).

Proof of Theorem 5.1. We proceed in five steps.

Step 1. Defining Faedo-Galerkin approximations for (1.1)–(1.4). For m ∈ N we define

approximations by

em(t) :=
m∑
k=1

am,k(t)ϕk, hm(t) :=
m∑
k=1

bm,k(t)ψk, t ∈ [0, T ],

where the real-valued functions am,k = am,k(t), bm,k = bm,k(t) will be determined by the

following system of ordinary differential equations

ȧm,k(t) =
(
curlhm(t)− j(em(t)), ϕk

)
H(5.4)

ḃm,k(t) = −
(
curl em(t), ψk

)
H(5.5)

(t ∈ [0, T ], k = 1, . . . ,m).

To formulate initial conditions for (am,k, bm,k), we combine (5.2) and the density of V0

and V in H to obtain real numbers (αm,k, βm,k) (k = 1, . . . ,m) such that

m∑
k=1

αm,k ϕk −→ e0,

m∑
k=1

βm,k ψk −→ h0 in H as m→∞.
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We now complement system (5.4), (5.5) by the initial conditions

(5.6) am,k(0) = αm,k, bm,k(0) = βm,k (k = 1, . . . ,m).

It follows

(5.7) em(0) −→ e0, hm(0) −→ h0 in H as m→∞.

We establish the existence of real-valued, absolutely continuous functions(
am,1, . . . , am,m, bm,1, . . . , bm,m

)
on the interval [0, T ] that satisfies equation (5.4), (5.5) for a.e. t ∈ [0, T ] and attain initial

values (5.6).

To this end, we introduce a mapping

fm : [0, T ]× (Rm × Rm) −→ Rm × Rm

as follows. For (t, ξ, η) ∈ [0, T ]× (Rm × Rm) let

fm(t, ξ, η) :=



∑m
l=1(curlψl, ϕ1)H ηl −

(
j
(
·, t,
∑m

k=1 ξkϕk
)
, ϕ1

)
H

...∑m
l=1(curlψl, ϕm)H ηl −

(
j
(
·, t,
∑m

k=1 ξkϕk
)
, ϕm

)
H

−
∑m

l=1(curlϕl, ψ1)H ξl
...

−
∑m

l=1(curlϕl, ψm)H ξl


.

Defining

ym := (am, bm),

we may write (5.4)–(5.6) in the form

ẏm(t) = fm(t, ym(t)) for t ∈ [0, T ],(5.8)

ym(0) = (αm, βm)(5.9)

(αm, βm as in (5.6)).

The following properties of fm are readily seen:

(i) t 7−→ fm(t, ξ, η) is measurable on [0, T ] for all (ξ, η) ∈ Rm × Rm;

(ii) (ξ, η) 7−→ fm(t, ξ, η) is continuous on Rm × Rm for a.e. t ∈ [0, T ];

(iii) there exists km = const > 0 such that

|fm(t, ξ, η)| ≤ km
(
‖j0(·, t)‖H + |ξ|+ |η|

)
for a.e. t ∈ [0, T ] and all (ξ, η) ∈ Rm × Rm
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(cf. Appendix A below). Indeed, to verify (i), (ii) it is evidently sufficient to note that the

functions

(t, ξ) 7−→
(
j
(
·, t,
∑m

k=1 ξkϕk
)
, ϕl
)
H , (t, ξ) ∈ [0, T ]× Rm, l = 1, . . . ,m

satisfy (i), (ii). This can be easily derived from (H2), (H3) be the aid of the Fubini

theorem and the Lebesgue dominated convergence theorem. Appealing once more to these

hypotheses on obtains the bounds on |fm| in (iii).

We are now in a position to apply an existence result for solutions to the Cauchy problem

for ordinary differential equations (cf. Appendix A, Theorem A.2). From this result it

follows that there exists an absolutely continuous function ym : [0, T ] −→ Rm × Rm that

satisfies system (5.8) for a.e. t ∈ [0, T ] and attains initial value (5.9). Thus, defining

functions (am, bm) by

am,k := ym,k, bm,l := ym,m+l for k, l = 1, . . . ,m,

we obtain a solution of (5.4)–(5.6).

Step 2. A-priori estimates. First, observing (5.3) we may write (5.4), (5.5) in the form(
ėm(s), ϕk

)
Hε +

(
− curlhm(s) + j(em(s)), ϕk

)
H = 0,(5.10) (

ḣm(s), ψl
)
Hµ +

(
curl em(s), ψl

)
H = 0(5.11)

for a.e. s ∈ [0, T ] (m ∈ N; k, l = 1, . . . ,m). We multiply (5.10) by am,k(s), (5.11) by bm,l(s),

sum for k, l = 1, . . . ,m, make then use of the identity∫
Ω

(curl em(s)) · hm(s) ds =

∫
Ω

em(s) · curlhm(s) ds, s ∈ [0, T ],

integrate the equations obtained in this way over the interval [0, t] (t ∈ [0, T ]) and integrate

by parts with respect to s the terms involving ėm(s) and ḣm(s). To estimate the integral∫ t
0
(j(em), em)H ds, we use hypotheses (H2), (H3) and (H6). It follows

‖em(t)‖2
Hε + ‖hm(t)‖2

Hµ = ‖em(0)‖2
Hε + ‖hm(0)‖2

Hµ − 2

t∫
0

(j(em), em)H ds

≤ ‖em(0)‖2
Hε + ‖hm(0)‖2

Hµ + c2

(
‖j0‖2

L2(QT )3 +

t∫
0

‖em‖2
Hε ds

)

for all t ∈ [0, T ] (c2 = const > 0 depending only on the constants c1 and ε∗ from (H3)

and (H6), respectively). Thus, by the Gronwall lemma (cf. Appendix A below),

(5.12) ‖em(t)‖2
Hε + ‖hm(t)‖2

Hµ ≤ c3

(
‖em(0)‖2

Hε + ‖hm(0)‖2
Hµ + ‖j0‖2

L2(QT )3

)
for all t ∈ [0, T ] and all m ∈ N (c3 = const > 0 depending on c2 as well as on T ).
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Step 3. Passing to the limits as m → ∞. In view of (5.7) the right-hand side of (5.12)

is uniformly bounded with respect to m ∈ N. Thus, from (5.12) we conclude that there

exists a subsequence of (em, hm) (not relabelled) and elements

e, h ∈ L∞(0, T ;H), v, w ∈ H, χ ∈ L2(QT )3

such that

em −→ e, hm −→ h weakly* in L∞(0, T ;H),(5.13)

em(T ) −→ v, hm(T ) −→ w weakly in H,(5.14)

j(em) −→ χ weakly in L2(QT )3(5.15)

as m→∞. Moreover, passing to the limits in (5.12) as m→∞ we find (5.1) (with c = c3).

Let N ∈ N. Given m > N , in (5.10), (5.11) we only consider equations with indices

k = 1, . . . , N . By the definition of XN , YN , for a.e. t ∈ [0, T ],(
ėm(t), ϕ

)
Hε +

(
− curlhm(t) + j(em(t)), ϕ

)
H = 0 for any ϕ ∈ XN ,(5.16) (

ḣm(t), ψ
)
Hµ +

(
curl em(t), ψ

)
H = 0 for any ψ ∈ YN .(5.17)

Next, let ζ, θ ∈ C1([0, T ]). We multiply (5.16) by ζ(t), (5.17) by θ(t), integrate over the

interval [0, T ] and integrate by parts with respect to t the terms involving ėm(t) and ḣm(t).

Using (5.7) and (5.13)–(5.15) we obtain upon letting tend m→∞

(v, ϕ)Hε ζ(T )− (e0, ϕ)Hε ζ(0)−
T∫

0

(e(t), ϕ)Hε ζ̇(t) dt

+

T∫
0

(
−(h(t), curlϕ)H + (χ(t), ϕ)H

)
ζ(t) dt = 0 for any ϕ ∈ XN ,

(5.18)



(w,ψ)Hµ θ(T )− (h0, ψ)Hµ ζ(0)−
T∫

0

(h(t), ψ)Hµ θ̇(t) dt

+

T∫
0

(e(t), curlψ)H θ(t) dt = 0 for any ψ ∈ YN .

(5.19)

From (5.2) it follows that (5.18), (5.19) continue to hold true for any ϕ ∈ V0 resp. ψ ∈ V .

To proceed, let ζ, θ ∈ C1([0, T ]) be such that ζ(T ) = θ(T ) = 0. Then (5.18), (5.19)

can be viewed as a variant of (2.9), (2.10) with j0 = χ, j1 = 0 (take Φ(x, t) = ϕ(x) ζ(t),

Ψ(x, t) = ψ(x) θ(t), (x, t) ∈ QT ). From Theorem 2.1 and its proof it follows that there

exist the distributional derivatives

(εe)′ ∈ L2(0, T ;V ∗0 ), (µh)′ ∈ L2(0, T ;V ∗),
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where, for a.e. t ∈ [0, T ],

〈(εe)′(t), ϕ〉V0 − (h(t), curlϕ)H + (χ(t), ϕ)H = 0 for all ϕ ∈ V0,(5.20)

〈(µh)′(t), ψ〉V + (e(t), curlψ)H = 0 for all ψ ∈ V .(5.21)

In addition, the continuous representatives ê, ĥ ∈ C([0, T ];H) in the equivalence classes

e, h ∈ L∞(0, T ;H) attain the initial values ê(0) = e0, ĥ(0) = h0 in H and satisfy the energy

equality

(5.22)
1

2

(
‖ê(t)‖2

Hε + ‖ĥ(t)‖2
Hµ

)
+

t∫
0

(χ, e)H ds =
1

2

(
‖e0‖2

Hε + ‖h0‖2
Hµ

)
for all t ∈ [0, T ]

(see Theorem 3.1 and Theorem 4.1).

Step 4. Proof of v = ê(T ), w = ĥ(T ). We consider (5.18), (5.19) with ζ, θ ∈ C1([0, T ])

satisfying ζ(0) = θ(0) = 0 and ζ(T ) = θ(T ) = 1. It follows
(v, ϕ)Hε −

T∫
0

(e(t), ϕ)Hε ζ̇(t) dt+

T∫
0

(
−(h(t), curlϕ)H + (χ(t), ϕ)H

)
ζ(t) dt = 0

for any ϕ ∈ V0,

(5.23)


(w,ψ)Hµ −

T∫
0

(h(t), ψ)Hµ θ̇(t) dt+

T∫
0

(e(t), curlψ)H θ(t) dt = 0

for any ψ ∈ V .

(5.24)

Thus, by (5.23), for any ϕ ∈ V0,

(v, ϕ)Hε −
T∫

0

(e(t), ϕ)Hε ζ̇(t) dt =

T∫
0

〈(εe)′(t), ϕ〉V0 (by (5.20))

= (ê(T ), ϕ)Hε −
T∫

0

(e(t), ϕ)Hε ζ̇(t) dt

(by integration by parts (2.13), and (2.11)). Whence, v = ê(T ) in H. The claim w = ĥ(T )

in H follows from (5.24) and (5.21) by an analogous argument.
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Step 5. Proof of χ = j(e). To begin with, we note that

lim sup
m→∞

T∫
0

(j(em), em)H ds ≤ 1

2

(
‖e0‖2

Hε + ‖h0‖2
Hµ

)
− 1

2
lim inf
m→∞

(
‖em(T )‖2

Hε + ‖hm(T )‖2
Hµ

)
≤ 1

2

(
‖e0‖2

Hε + ‖h0‖2
Hµ

)
− 1

2

(
‖ê(T )‖2

Hε + ‖ĥ(T )‖2
Hµ

)
(by (5.14) and v = ê(T ), w = ĥ(T ) (see Step 4)). Hence, using energy equality (5.22) for

t = T , we get

(5.25) lim sup
m→∞

T∫
0

(j(em), em)H ds ≤
T∫

0

(χ, e)H ds

Finally, let z ∈ L2(QT )3 and λ > 0. The monontonicity of ξ 7−→ j(·, ·, ξ) (cf. (H7))

implies
T∫

0

(
j(em)− j(e− λz), em − (e− λz)

)
H ds ≥ 0.

Using (5.13), (5.15) and (5.25) we find upon letting tend m→∞ and then dividing by λ

(5.26)

T∫
0

(χ− j(e− λz), z)H ds ≥ 0.

Now, hypotheses (H2), (H3) allow us to make use of the Lebesgue dominated convergence

theorem for the passage to limit as λ→ 0 in (5.26). It follows

χ = j(e) a.e. in QT .

The proof of Theorem 5.1 is complete.

Remark 5.1. The uniqueness of weak solutions (e, h) of (1.1)–(1.4) (cf. Section 4) implies

the convergence of the whole sequence of Faedo-Galerkin approximations (em, hm) to (e, h).

Remark 5.2. We note that the mapping j : L2(QT )3 −→ L2(QT )3 is a special case of

an operator of type (M). Our above reasoning for proving χ = j(e) is a variant of the

well-known “Minty trick” (see [22, p. 173], [33, p. 474]).

Appendix A. On the solvability of the Cauchy problem

for an ordinary differential equation

In this appendix, we prove the existence of a solution of the Cauchy problem

(A.1) ẏ(t) = f(t, y(t)) for t ∈ [0, T ], y(0) = y0
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of C. Carathéodory [6, §§ 576–592] (0 < T < +∞, y0 ∈ Rn). For this, we impose on

the function f : [0, T ]× Rn −→ Rn the conditions

t 7−→ f(t, ξ) is measurable on [0, T ] for all ξ ∈ Rn,(a)

ξ 7−→ f(t, ξ) is continuous on Rn for a.e. t ∈ [0, T ].(b)

From (a), (b) it follows that for any measurable function y : [0, T ] −→ Rn the function

t 7−→ f(t, y(t)), t ∈ [0, T ]

is measurable on [0, T ] (see [6, p. 665], [18, p. 195]). Functions that satisfy conditions (a),

(b) are usually called Carathéodory functions.

Theorem A.1. Let f : [0, T ]×Rn → Rn satisfy conditions (a), (b) and suppose that there

exists a non-negative integrable function A defined on [0, T ] such that

|f(t, ξ)| ≤ A(t) for all (t, ξ) ∈ [0, T ]× Rn.

Then, for every y0 ∈ Rn there exists an absolutely continuous function y : [0, T ] −→ Rn

that fulfills the equation in (A.1) for a.e. t ∈ [0, T ] and attains the initial value y(0) = y0.

For proofs see [6, pp. 668–672, Satz 2] as well as [18, pp. 193–197, Satz 1]. We note that

these proofs yield in one step the existence of a solution of (A.1) on the whole interval

[0, T ]. In [7, pp. 43–44, Thm. 1.1], the authors prove an existence result for (A.1) on some

subinterval [0, T0] (0 < T0 ≤ T ).

We now present an extension of Theorem A.1 for functions f with a more general growth

with respect to (t, ξ). This result implies straightforwardly the existence of Faedo-Galerkin

approximations we used in the proof of Theorem 5.1.

Theorem A.2. Let f : [0, T ] × Rn −→ Rn satisfy conditions (a), (b) and suppose that

there are a non-negative integrable function A defined on [0, T ], and C0 = const > 0 such

that

(c) |f(t, ξ)| ≤ A(t) + C0|ξ| for all (t, ξ) ∈ [0, T ]× Rn.

Then the conclusion of Theorem A.1 holds true.

For proving this result we will make use of the following

Lemma (Gronwall). Let c1, c2 be non-negative constants. Let u be a non-negative integrable

function on [0, T ] such that

u(t) ≤ c1 + c2

t∫
0

u(s) ds for all t ∈ [0, T ].

Then,

u(t) ≤ c1

(
1 + c2t exp(c2t)

)
for all t ∈ [0, T ].
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Proof of Theorem A.2. Fix any real number

r >
(
1 + C0T exp(C0T )

) T∫
0

(A(t) + C0|y0|) dt

and, for any (t, ξ) ∈ [0, T ]× Rn, define

fr(t, ξ) :=

f(t, ξ) if |ξ − y0| ≤ r,

f

(
t, y0 + r

ξ − y0

|ξ − y0|

)
if |ξ − y0| > r

(cf. [18, p. 198]). The function fr satisfies conditions (a), (b). From (c) it follows

|fr(t, ξ)| ≤ A(t) + C0(|y0|+ r),(A.2)

|fr(t, ξ)| ≤ A(t) + C0(|y0|+ |ξ − y0|)(A.3)

for all (t, ξ) ∈ [0, T ]× Rn.

Observing (A.2), from Theorem A.1 we infer the existence of an absolutely continuous

function yr : [0, T ] −→ Rn such that

(A.4) yr(t) = y0 +

t∫
0

fr(s, yr(s)) ds for all t ∈ [0, T ].

By (A.3),

|yr(t)− y0| ≤
t∫

0

(A(s) + C0|y0|) ds+ C0

t∫
0

|yr(s)− y0| ds for all t ∈ [0, T ].

Thus, by the Gronwall lemma,

|yr(t)− y0| ≤
T∫

0

(A(s) + C0|y0|) ds
(
1 + C0T exp(C0T )

)
≤ r

and therefore

fr(t, yr(t)) = f(t, yr(t)) for all t ∈ [0, T ].

Hence, the function y := yr satisfies (A.1) for a.e. t ∈ [0, T ], and y(0) = y0. The proof of

the theorem is complete. �

Finally, under significantly more general growth conditions on f than (c) above, the

existence of a solution of (A.1) on a subinterval [0, T ∗] (0 < T ∗ < T ) has been proved

in [6, pp. 681–682, Satz 6] and [18, pp. 197–199, Satz 2]. For continuous functions f :

[0, T ] × Rn −→ Rn which satisfy slightly more general growth conditions than (c) above,

the proof of the existence of a solution of (A.1) on the whole interval [0, T ] has been

formulated as Problem 5 in [7, p. 61].
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