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1. (a) Let I be some general index set. A function C : I x I — R is called
positive (semi)-definite, if

n
V> 1ty oty €5 A, A €ER Y C (i) M)y > 0.
ij=1
Consider now I = R*. Show that C : I x I — R,(t,s) — tAsis a

positive semi-definite function and sketch how a process (Et, tel ) with
the properties (i)-(i77) of a Brownian motion can be constructed.

(b) Let (Xy,t > 0) be a process with independent increments and X; € L?
for all ¢ > 0. Show that Cov (X, Xs) = a(t) Aa(s) = a(t As) holds for
all t,s > 0 and a non-decreasing function a : RT — R™.

(c) Show that any centered Gaussian process X = (X, ¢t > 0) with indepen-
dent increments can be constructed by setting X; = Bg;) where a is the
function from part (b) with respect to X and B = (B, t > 0) a Brownian
motion.

2. Suppose (Y3, t € [0,1]) is a Gaussian process on (2, F,P) with
E[Y;] =0,

0, t#s

Cov (Y, Ys) = {1 R

(a) Why does such a process Y exist?

(b) Show that (w,t) — Y; (w) cannot be jointly measurable with respect to
F @ PBjo) ($o,1 is the Borel-o-algebra on [0, 1]).
Hint for (b): If the statement is not true, it would follow that
E[(fol Y; dt)?] = 0, thereby contradicting P (In >1: Yy, #0) = 1.

3. Read in a textbook on real analysis about functions g : Rt — R of bounded or

finite variation and the Stieltjes-integral. Prove for functions f € C! (R) and
g € C (R) with g of bounded variation that

F(a(®) = F(a(0)) + /0 £(9(s)) dg(s), ¥t > 0.

Give an example of a function that is not of bounded variation.



4. Consider the Haar system 5 := {po}U {%’,k 17 €N, 0< k<2 — 1} of real
valued functions on the unit interval [0, 1] where

o (1) =1[01]( )
Yo,0 (1) = 1j0,1/2) () — L2,y (1)
Wik (t) = 2 %o (27t — k),

for 0<t<1,jeNy, 0<k<2 —1.

Our goal is to show that J# is a complete orthonormal system in the Hilbert
space L%(]0,1]) with standard scalar product (x,y) fo t) dt and norm

||z|| = \/(z,x) for any z,y € L%([0,1]), i.e
i. 27 C L*([0,1]),
ii. [le]| =1 for all e € 2,
iii. (e,fy=0foralle#f, e, f €A,

iv. L2([0,1]) = lin () where lin () is the linear span of 7, i.e. the set
of all (finite) linear combinations.

Prove that the properties i., ii. and iii. hold directly by definition of the Haar
system. For property ¢v. there are many possible proofs. We consider the
following strategy:

(a) Consider the filtration (F,) with

n€ENg

Fo =0 (o),
Fo=0(po,¥jk: 5 €No,0 <k <2 —1,2 +k <n)

for n > 1. For any g € L? ([0, 1]) define the process M = (M,,,n € Ny) by
M,, := E[g| F,]. Show that M is an L2 ([0, 1])-bounded martingale that
converges in L? ([0, 1]). What is the limit?

(b) Remind yourself that the conditional expectation E[X|G] for a square
integrable random variable X on a probability space (2, F,P) and a sub-
o-algebra G C F is the L2 (9, F,P)-orthogonal projection of X onto
L?(9,G,P). Deduce M C lin () from this (here the probability mea-
sure is just the uniform distribution on [0, 1]).

(c) Observe that D;, C o (s) for every dyadic interval Dj;, =
[k/27,(k+1)/27), j € Ng,0 < k <2/ —1 and [0,1] C ¢ () and thus
g (%) = %[071}.

(d) Show that parts (a), (b) and (c) imply property iv. from above.

We can therefore conclude that 57 is indeed a complete orthonormal system
in L2 ([0, 1]).

Problems on this sheet give you extra points (four points for each problem). Submit
before the first lecture on Thursday, 24 April 2014.
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1. Let X = (X;,t € T), X = (X;,t € T) be two processes on the same probability
space (Q, F,P).

(a) Show that if X is a version of X, then both processes have the same finite
dimensional distributions.

(b) Let T = Ry. Assume now that X and X are processes with right-
continuous paths. Show that if X is a version of X, then X and X are
indistinguishable.

2. Let X = (X;,t > 0) be a right-continuous process on a probability space
(€, F,P).

(a) Show that the map (w,t) — X;(w) is measurable with respect to
(Q xRy, F® ,%’R+) (X is progressively measurable).

(b) Let 7 : © — [0, 00] be a finite stopping time with respect to the natural
filtration (F)i>0 of X, i.e. {r <t} € F; for all t > 0. Show that X, is a
random variable, i.e. w > X (,)(w) is F-measurable.

3. Prove Blumenthal’s 0-1 law: For a Brownian motion B = (Bt > 0) and
its natural filtration (Ft);>0 the o-algebra Foy = (oo F¢ is P-trivial (i.e.
P(A) € {0,1} for all A € Foyy). For this prove:

(a) For n € N, define o-algebras A,, = 0(Bgy-n y — By-n,t € [0,27"]). Show
that (A, )nen is an independent family of o-algebras and that o(A,,, m >
n) = .7:2—n+1.
(b) Review Kolmogorov’s 0-1 law and apply it to deduce that
Nhen 0 (Am,m > n) is P-trivial.
(c) Obtain the claim by (a) and (b).
4. Define the zero set Z = {(w,t) € 2 x [0,00) : B = 0} of a Brownian motion

B = (B, t > 0) and define the sections Z, = {t € [0,00) : (w,t) € Z} for
w €

(a) Infer Z € F®PBg, from exercise 2(a). Then show that P(w € Q : A\(Z,) =
0) = 1 where A is the Lebesgue measure on R.



(b) Prove that Z, has for almost all w € Q an accumulation point at 0.
Hint:
i. Let Ay = {By, > O forinfinitely many n}, A~ = {By,, <
0 for infinitely many n}. Then P(Ay) > 0, P(A_) > 0.
ii. Ay, A_ € Fo, holds.
iii. Apply Blumenthal’s 0-1 law.

Submit before 13:00, Friday, 2 May 2014, in Room 1.226 (Randolf Altmeyer) or send
by email to altmeyrx@math.hu-berlin.de.
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1. Let (2, F,P, (Fi)i>0) be a filtered probability space with an (F;);>o-stopping
time 7. Define Fr = {A € F: An{r <t} € F; for every t > 0}.

(a) Fris a o-algebra. If 7 =t is deterministic, then F, = F;.

(b) There exists a sequence of stopping times (7, )nen such that 7, \, 7 almost
surely and such that each 7, takes only finitely many values. Moreover,
in this case Fr =), Fr,, if (Ft)e>0 is right-continuous.

(c¢) Let X = (X¢,t > 0) be a right-continuous process adapted to (F¢)¢>0 and
assume that 7 is bounded. Then X, € F..

2. Let X = (X¢,t > 0) be a right-continuous process adapted to a filtration
(Ft)e>0 such that X; € L' for all t > 0. Then the following statements are
equivalent:

(a) X is a martingale.
(b) For all bounded stopping times 7 we have X, € L' and E[X,] = E[X{].
(c) For all bounded stopping times o < 7 we have IE[XT‘]:U] = X,.

Prove these equivalences using the following steps:

e (a) = (b): For 7 < ¢, ¢ >0, find a sequence (7, )nen as in 1(b) and show
X, = E[Xc‘]-}n], in particular, E[X,, | = E[X.]. Argue that (X, )nen is

n

uniformly integrable and obtain the statement by right-continuity of X.
e (b) = (c): For A € F, consider the stopping time (!)

{cr(w), we A,

(w), weA°

and apply (b) to obtain E[X5] = E[X] = E[X].

Submit before the first lecture on Thursday, 8 May 2014.
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1. Let (B},0 <t < 1) and (BtZ,O < t < 1) be two independent Brownian
motions and let (44,0 < t < 1) be a continuous and bounded process with
Vioa(A(w)) < € < oo for some €' > 0 and all w € Q.

(a) Show that the quadratic variation of A on [0,1] vanishes, i.e. we have
St B 0asn — oo for SP =3, cr (A, — A)? t € 0,1, and a

sequence of partitions (7, )nen of [0, 1], with maxy,er, |tit1 — ti] 2222 0.

(b) For o1,09 € R show that the quadratic variation of o1 B} + 09 B? satisfies
Sp 2 (02 +03)tas n — oo

2. (a) Let (Xy,t > 0) be a process with independent increments and X; € L!
for all £ > 0. Show that (Xt — E[Xt] ,t > 0) is a martingale with respect
to its natural filtration.

(b) Let (N¢,t > 0) be a Poisson process of intensity A > 0 (definition in the
lecture notes of Stochastic processes I). Infer from (a) that M; = Ny — A\t
is a martingale with respect to its natural filtration.

(c) Find a continuous increasing process (Ay,t > 0) such that Y; = M? — A,
is a martingale with respect to the natural filtration of M.

3. Consider the process Xy = ut + 0B, t > 0, for a Brownian motion B, drift
u € R and volatility o > 0.

(a) For a < 0 < b calculate the probability of X hitting b before a.
Hint: For p1 # 0 choose a € R such that (exp(aX;),t > 0) is a martingale.

(b) Show for u < 0 that Y := sup;>qX; is a.s. finite and exponentially
distributed with parameter A\ = —2u/02.



4. Let (X, t > 0) be a continuous process with Xy = 0.

(a) Assume that V;* = exp(aX; —a?t/2), t > 0, is a martingale with respect
to a filtration (F;)>0 for every a € R. Show that X is a Brownian motion
with respect to (Ft)t>o0.

Hints: It Z is a random variable, then
e Z ~ N(0,1) if and only if E [e*] = e?/2 for all A € R
o ifE [eAZ‘ g] =E [e)‘Z] < oo for A in a neighborhood of 0, then Z | G
for a sub-o-algebra G

(b) For a # 0 show that Y,* converges a.s. to Y2 = 0 as t — oco. Does

Y L ye hold?

Submit before the first lecture on Thursday, 15 May 2014.
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1. Let (Bt > 0) be a Brownian motion and consider the process
7, = inf {t > 0: B; = b} for b > 0.

(a) Show that 7, — 75 = inf{t > 0: Byy,, — By, = b — a} holds for a < b.

(b) Use the strong Markov property of Brownian motion to show that
(75, b > 0) has stationary and independent increments.

Hint: Use the fact that the Laplace transform of a non-negative random
variable uniquely determines its distribution.

(c) Show that almost all paths b — 7, are increasing and left-continuous. Are
they also right-continuous?

(d) 2 extra points: Simulate the process (73,0 > 0).

2. Let (B;,t > 0) be a Brownian motion.  Prove that the zero set
Z ={(w,t) € 2 x[0,00) : By =0} of problem 2.4 is for almost all w a perfect
set, i.e. Z,, is closed and contains no isolated points.

Hint: Review the results of problem 2.4 and use the strong Markov property
of Brownian motion for stopping times (!) o, = inf{t > ¢: B; = 0}, ¢ € Q..

3. Let (M, t > 0) be a continuous local martingale. Show that (Mt > 0) is a
martingale if and only if for every a > 0 the family

{M: : 7 <a is abounded stopping time}
is uniformly integrable.

4. Let Xy = > 120 iz, r0)(t), t >0, with Xo = 0 be a simple process, where
(Tk)kenU{70}, 70 = 0, is a sequence of (F;)¢>o-stopping times such that 7, — oo
a.s. as k — oo and where the aj, are F;, -measurable random variables.

(a) Let (My,t > 0) be a continuous and L2-integrable (F;)>o-martingale and
let (Xt,t > 0) be bounded. Show that the stochastic integral

oo
(X o M)y =Y ap(My,pe — Mrnt), £2>0,
k=0

is again a continuous L2-integrable (F;):>o-martingale.



(b) If (M, t > 0) is only a continuous (F¢)¢>o-local martingale and if (X, ¢ >
0) is not necessarily bounded, then ((XoM);,t > 0) is again a continuous
(Ft)t>o0-local martingale.

Submit before the first lecture on Thursday, 22 May 2014.
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1. Let (Ft)o<t<r, T > 0, be a complete filtration and let M2T be the set of all

c7
continuous (F¢)o<t<r-martingales (M, 0 <t < T') with My =0, M; € L? for
all0 <t <T.

(a) Show that ME,T with scalar product (M, N>M3,T = E[MpNp] for
M,N e M?:’T is a Hilbert space. In particular, it holds that ||M||M3,T =
(E [(M)T])1/2 for M € ME,T, where (M) is the quadratic variation of M.
(b) Prove for M, N € ./\/liT that the following properties are equivalent:
i. E[M¢Ns] =0forall 0 <s,t <T (M and N are weakly orthogonal),
ii. EfMsNg]=0forall0<s<T,
iii. E[M;N,] =0 for all 0 < s <T and all stopping times s <7 < T.

2. Prove: For every continuous local martingale M with My = 0 there exists a
unique (up to indistinguishability) increasing continuous process ((M),,t > 0)
such that (M), =0 and (M7 — (M), ,t > 0) is a local martingale.

3. Let X : [0,1] — R be a function. For any partition 7 = {0 =ty < t; < --- <
tm = 1} of [0,1] and any h € C([0,1]) define

Zh(tk) (th - th—l) :

k=1

Sr(h)

(a) Prove that the map h +— Sz(h) is a continuous linear form on C([0, 1])
with norm ||Sx|| = >0 [ Xy, — Xty o |-

(b) Prove: If (Sx, (h))n € N converges to a finite limit for every h € C([0,1])
and any sequence of partitions (my)pen With maxy, e, [tg —tp—1| 22% 0,
then X is of bounded variation. This shows why the stochastic integral
with respect to a continuous local martingale cannot be defined in the

ordinary way.

Hint: Apply the Banach-Steinhaus theorem (see e.g. Werner, Funktionalanal-
Ys1s).


http://link.springer.com/book/10.1007%2F978-3-642-21017-4
http://link.springer.com/book/10.1007%2F978-3-642-21017-4

4. Let (B, t > 0) be a Brownian motion. Prove the following identities for any
t>0:

(a) Jy BsdBy=1B? -1,

(b) [y B2dBs = 1B} — [ B, ds.

Moreover, it holds that fot B3 dBs = %Bf—% Ot B2 ds. Can you guess a formula
for [ B dBy, n € N?

Submit before 13:00, Friday, 30 May 2014, in Room 1.226 (Randolf Altmeyer) or
send by email to altmeyrx@math.hu-berlin.de.
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1. Show the following properties of the stochastic integral for M € M2 X €
Z (M), by approximation with simple processes:

(a) (linearity) Vo, 3 € R,Y € Z(M): [,(aX + Y ) dMs = o [, XsdM, +
B [y Ys dMs,

(b) (Ité-isometry) E[(ngSdMS)Z] = E[f(fXEd<M>S] = ”X”%\/lt and
Ifo Xs M| a2 = 1X]|as,

(c) (quadratic variation) { [y XsdM,), = fg X2d (M), t>0.

S

2. Let (B, t > 0) be a Brownian motion. Define for h € C'(R) the process
t
I; (h) = h(t) By —/ Bl (s)ds, t>0.
0

(a) Show for each ¢ > 0: |[I(h)]|z2e) = [h1jo gl L2(r) = 2]l 22(0,1))-
(b) How can we define I; for h € L?(R)?

Does }P’(foth(s) dBs = I;(h),Vt > 0) = 1 hold for all h € L*(R), where
fot h(s)dBs is the stochastic integral from the lecture?

Submit before the first lecture on Thursday, 5 June 2014.
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1. For A € R, an (F;)s>o-Brownian motion (B, ¢ > 0) and an Fp-measurable
random variable Xy define the Ornstein-Uhlenbeck process

t
X, = Xoe M+ / e M=) B, > 0.
0

(a) Show that (X,t > 0) satisfies the stochastic differential equation dX; =
—AXdt + dBy, i.e. it satisfies the equation

t
Xt:XO—)\/ Xsds+ By, t>0, a.s.
0

(b) For A > 0, Xo ~ N(0, ;) and X, independent of (B;,t > 0) show that
(Xt,t > 0) is a stationary Gaussian process.

(c) 2 extra points: Simulate 100 trajectories of (Xt > 0) for A €
{-1;0.01; 1}.

2. Let (B, t > 0) be a Brownian motion. Assume there exists a sequence of
Mt > 0) such that t — Bgn) is a C'-function and such that
limy, o0 supg<y<r | B — By| = 0 for all T > 0.

processes (Blg

(a) Show for a continuous function f and all n € N, ¢t > 0 that
/ F(BE) B = P(B{™) — P(B{"),

where F(x fo y) dy. Conclude that there exists a continuous process

fo ost = hmTHOO fo )) dB( ) ,t > 0, which does not depend
on the approx1mat1ng sequence (B("),t > 0), n €N,

(b) Show that if f € C!, then

/f odB—/f dB+/f

3. For two continuous semimartingales X and Y define the quadratic covariation

as 1
X, Y), =-
< ’ >t 4

Show the following properties:

(X+Y),— (X -Y),), t>0.



(a) (X, X), =(X),, t =0

(b) For all sequences of partitions (7, )nen of [0,T] with |m,| — 0 we have for
al 0 <t <T:

<X, Y>t = nh_?gotz (th/\t — thfl/\t) (Kﬁk/\t — }/%k—l/\t) (11'1 probablhty)
LETn

(c) (X, Y),| < <X>i/2 <Y>;/2. In particular, if A is continuous and of
bounded variation, then (X, A), =0, t > 0.

4. Let (B¢, t > 0) be a Brownian motion. For g > ¢ > 01let p. : R — R be a
continuous approximation of z +— 5711[75,5] (x) such that 0 < @ (x) < e~ for
all z € R, e|_ce) = e~1 and supp(p:) C [0, 0], where eg — ¢ = o(). We
further define f. : R — R by f-(0) = f.(0) = 0 and f! = ¢..

(a) Show fz(x) — |z| and fl(z) — sgn(z) as e — 0 for 2 € R for an appropri-
ate choice of g, where sgn(z) = —1 if x < 0, sgn(0) = 0 and sgn(z) =1
if z > 0.

(b) Conclude for all ¢ > 0 that |B;| = |Bo| + f(f sgn(B,) dBs + Ly a.s. with
Ly =lime_yo & [J f/(Bs)ds in L*(P).

(c) Find conditions on &g such that L; = lim.,0 =A({s € [0,t] : By €
(—¢e,€)}) in L3(P).

Submit before the first lecture on Thursday, 12 June 2014.
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1. Let (Mg, t > 0) be a non-negative continuous local martingale.

(a) Prove that M is a supermartingale.
Hint: Use Fatou’s lemma.
(b) Show that M is a martingale, if and only if E [M,] = E [M)] for all £ > 0.

2. Let (B¢, t > 0) be a Brownian motion and let X € Z,.(B). Consider the
stochastic exponential

t 1 t
Zt:exp</ XSdBS2/X§ds>, t>0.
0 0

(a) Apply Ito’s formula to M; = fg X, dBs and show that
t 1 t
M — 1 +/ eMs X, dB, + 2/ eMSst ds, t>0, a.s.
0 0

(b) Argue that Ze Mt = 1 — %fg X2Z,e Msds, t > 0, a.s. and show by
partial integration that

t
Zt—1+/ZSXSdBS, t>0.
0

Conclude that Z is a local martingale and by problem 1 a supermartin-
gale.

(c) Is there a (non-trivial) process X € Z,.(B) such that Z is even a mar-
tingale?

3. Let (By,t > 0) be a Brownian motion in R?, 0 # 2 € R3 and define the process

M, = WIB”, t > 0. M; is a.s. well defined because the Brownian motion in

R? does not hit points a.s. (see lecture).

(a) Show that M is a continuous local martingale.
Hint: Apply 1t6’s formula.

(b) Prove that M is L%-bounded, i.e. sup;sqE[|M?|] < co.
Hint: For t > 0 show -

~3 1 (Ily| — |=])*
E ||M,*1 < (2nt)"? — W) ay.
[ ! {lMtlzé}] = ) /|y<§ lyl? eXp( 2t @



(c) Show that M is not a martingale.
Hint: Prove that E [M;] — 0 as t — oc.

4. Let M € M2, X € (M) and Y € Z(X o M) with respect to a filtration
(Ft)e=0-

(a) Show YX € Z(M).

(b) Let 1 < 7 be (Fi)i>o-stopping times and let £ be a bounded F -
measurable random variable. Show for Y; = 17, -,(¢), t > 0, that

t t
/ Y. X, dM, = 5/ Xsl(nm](s) dMyg, a.s.
0 0
Conclude in this case that
Yo(XoM))=(YX)oM), a.s. (*)

Hint: Show (*) first for X simple and bounded and then by approximation
for general X € £ (M).

(c) Prove (*) for general Y € £ (X o M).

Submit before the first lecture on Thursday, 19 June 2014.
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1. Prove that the 2D-Brownian motion a.s. does not hit a fixed point 2 € R?\ {0},
ie. P(rp < o0) = 0 for 7, = inf{¢t>0:B; =z} where (B;,t > 0) is a
Brownian motion in R?.

2. Let G C R? be a bounded and open set and let f : 9G — R be continuous.
Let h : G — R be a solution to the Dirichlet problem on G with boundary
value f, i.e. h € C?(G)NC(G), Ah=00n G and h = f on 9G.

(a) Let (Bgt > 0) be a d-dimensional Brownian motion and let
r=inf{t > 0:x + B, € G°} be a stopping time for any z € G. Why
does P(1 < 0o) =1 hold?

(b) Show for every z € G that h satisfies h(x) = E[f (x + B;)]. In particular,
the solution of the Dirichlet problem with boundary value f is unique.
Hint: Consider open sets Gy, = {y € G : inf,coqlly — 2|| > 1/n} C G and
corresponding stopping times 7, = inf {t > 0: 2z + B, € G%}. Use Itd’s
formula for the stopped processes (z+ Biar,,t > 0) and take expectations.

(c¢) Describe a stochastic algorithm to determine h(z) numerically.

(d) 2 extra points: Check if your algorithm works by approximating the so-
lution of the Dirichlet problem on D, p = {z € R*:r < |z| < R} with
boundary value f, where f[g ) = 1 and f|g, ) = 0 for closed balls
B,.(0), Br(0) and any r, R > 0. Compare your approximation to the
exact solution from the lecture (cf. example 3.15).

3. Prove the lower bound of the Burkholder-Davis-Gundy-inequality (BDG): For
any continuous local martingale (My,t > 0) with My = 0 and any p > 4 there
exists a universal constant ¢, > 0 (depending only on p) such that for all ¢ > 0

S [(M)}?] SEI(M)),
where M;" = supg<<; |[M|s. Use the following steps:

(a) Assume first that M and (M) are bounded. Use the equality M? =

2 [ M, dM, + (M), to show
¢ p/2
/ M, dM, ])
0

for some constant ¢, > 0 and apply the upper bound of the BDG-
inequality to the local martingale [j M dM;.

ERMWﬂS%<EMﬁW+E




(b) Conclude the general result by localisation.

4. Let (B, t > 0) be a Brownian motion and let (FP);>0 be its natural filtration.

2
For each of the three processes (i) My = B? —t, (ii) M; = Bt _ 1, A eR,
and (iii) M; = Byn, where 7 is any (F?)¢>o-stopping time, t > 0,

(a) find a process Y € Z,.(B) adapted to (F?)i>o such that M, = fg Y, dBs
a.s., t > 0, and

(b) determine the Dambis-Dubins-Schwarz (DDS) Brownian motion of M,
i.e. determine (F;)¢>o-stopping times 7; = inf {s > 0: (M), > t}, t > 0,
and construct an (Fy);>0 = (Fr,)i>0-Brownian motion (B, ¢t > 0) such
that M; = B<M>t' Do we have P(B; = BVt > 0) =17

Submit before the first lecture on Thursday, 26 June 2014.
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1. Let P and Q be equivalent probability measures (i.e. Q < P and P < Q) on
a measurable space (€, F) with filtration (F)o<¢<r, T > 0, and denote by Py
and Q; the probability measures restricted to ;.

(a) Show that P, and Q;, 0 < ¢t < T, are also equivalent and that the
Radon-Nikodym-derivatives satisfy Ep [%’ ]-'t] = % Pi-a.s. In par-

ticular, (%) 0<t<T

(b) (Bayes rule) For any Fr-measurable random variable X with Eq[|X]|] <
oo prove that

dQ:\ ! d
E@[nyt}:(d@%) EP[XC%

is a P-martingale.

ft] , P-a.s. and Qp-a.s.

(c) Show that a process (M;,0 < t < T') is a Q-martingale if and only if
(Mt%%a 0 <t <T)is aP-martingale.

2. Let (By,t > 0) be a Brownian motion and let (F_);>o be its natural filtration
completed by events of probability zero in o(By,t > 0). Let further £ be an
L%(Q, F2, P)-random variable for 7' > 0 and let (X;,0 <t < T) be a progres-

sively measurable process adapted to (F7);>o such that E| fOT | X 5|2 ds] < oo.

(a) Find (F?)o<t<r-adapted processes (V3,0 < t < T) and (Z;,0 <t < T)
with Z € Z(B) satisfying the backward stochastic differential equation
(BSDE)

Yr 257

with terminal value ¢ such that E [supg<;<p |V:|*] < oo.

{dYt = —X,dt + Z,dB,,

Hint: Apply the martingale representation theorem to £+ fOT X, ds to find
Z. Apply the Doob inequality for proving the bound on supy<;<7 [Y|.

(b) Is the solution unique?



3. Let (By,t > 0) and (F{)i>0 be as in problem 2 and let u € R\{0}. Let
further Q7 be the unique probability measure such that By = By — ut, t > 0,
is a Brownian motion under Qp for 7' > 0. Show for the stopping time

Tb:inf{tEO:Bt—i—,ut:b},beR:

| (-ut)?

(a) 7p has Lebesgue-density fj,(t) = gt 1[0,00)(t) under Qr,
(b) Qr(m < 00) = exp (ub — |ub]),
(c) Egy [e7] = erb=IIVIZ+2A for X > 0.

4. Let (By,t > 0) and (F)¢>0 be as in problem 2. Construct a measurable and
(F?)i>0-adapted process (Xy,¢ > 0) such that for some 0 < & < 3

o ((1-2) [ xt)] <

and such that the stochastic exponential Z; = exp (fg X,dBs — % f(f XS2 ds) is

not a closed martingale. Use the following steps:

(a) Show using problem 3 that the stopping time 7, =
inf{t >0:B;— (1 —¢)t = —a} for a > 0 satisfies E[e(%_e)“]:e(lﬁg)“.
Hint: Use that 7, % o, = inf{t>0:B,+(1—¢)t=a}.

(b) Establish the inequality E[eBmi%T‘l] < 1.

(c) Construct X.

2 extra points: Construct a process (X, 0 < t < 1) satisfying for some 0 <

<3
1 1
E[exp((z—es)/ ngs>] < 00,
0

such that the corresponding stochastic exponential is not a martingale on [0, 1].

Submit before the first lecture on Thursday, 03 July 2014.
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1. Consider the process Xy = By + ut, t € [0,T], T > 0, for a a Brownian motion
(B, t>0) and p € R.

(a) For unknown p show that the mazimum likelihood estimator satisfies

~ X
fir = =+

(b) Discuss expectation and variance of the estimator fir (i) for growing sam-
ple size but fixed time horizon 7" > 0 and (ii) for fixed sample size but
with T' — oo.

2. Let T'> 0 and let u,a,b: [0,7] — Ry be measurable functions such that w is
bounded and b is integrable.

(a) Prove Gronwall’s lemma: If

u(t) < alt) —i—/o u(s)b(s)ds, te0,T], (1)

then
t t
u(t) < alt) —I—/ a(s)b(s) exp (/ b(r) dr) ds, te€[0,T].
0 s
(b) Show for constant a(t) = ¢ > 0 under condition (1) that

u(t) < cexp ( /0 t b(s) ds> .

3. Let a,zp € R and let b,0 : Ry — R be deterministic and (Borel-)measurable.

¢ ¢
X, = e <:1:0 + / e “bgds + / e oy st)
0 0

is the unique strong solution of the SDE dX; = (aX; + by) dt + o, dBy,
t> 0, with X() = Zo-

(a) Show that

(b) 2 extra points: How can we extend the solution if a depends on time?



4. Consider the SDE dX; = (1 —t)"!X;dt +dB;, 0 <t < 1, X9 = 0. Show that
the unique strong solution on [0, 7], T' < 1, is given by a Brownian Bridge. Do
we have lim;_,; Xy = 0 in any mode of convergence?

Hint: Consider X; = (1 —t) fot(l —s)~ldB;.

Submit before the first lecture on Thursday, 10 July 2014.



