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1. (a) Let I be some general index set. A function C : I × I → R is called
positive (semi)-definite, if

∀n ≥ 1; t1, . . . , tn ∈ I; λ1, . . . , λn ∈ R :

n∑
i,j=1

C (ti, tj)λiλj ≥ 0.

Consider now I = R+. Show that C : I × I → R, (t, s) 7→ t ∧ s is a
positive semi-definite function and sketch how a process

(
Bt, t ∈ I

)
with

the properties (i)-(iii) of a Brownian motion can be constructed.

(b) Let (Xt, t ≥ 0) be a process with independent increments and Xt ∈ L2

for all t ≥ 0. Show that Cov (Xt, Xs) = a (t) ∧ a (s) = a (t ∧ s) holds for
all t, s ≥ 0 and a non-decreasing function a : R+ → R+.

(c) Show that any centered Gaussian process X = (Xt, t ≥ 0) with indepen-
dent increments can be constructed by setting Xt = Ba(t) where a is the
function from part (b) with respect to X and B = (Bt, t ≥ 0) a Brownian
motion.

2. Suppose (Yt, t ∈ [0, 1]) is a Gaussian process on (Ω,F ,P) with

E [Yt] = 0,

Cov (Yt, Ys) =

{
0, t 6= s

1, t = s
.

(a) Why does such a process Y exist?

(b) Show that (ω, t) 7→ Yt (ω) cannot be jointly measurable with respect to
F ⊗B[0,1] (B[0,1] is the Borel-σ-algebra on [0, 1]).

Hint for (b): If the statement is not true, it would follow that
E[(
´ 1

0 Yt dt)
2] = 0, thereby contradicting P

(
∃n ≥ 1 : Y1/n 6= 0

)
= 1.

3. Read in a textbook on real analysis about functions g : R+ → R of bounded or
finite variation and the Stieltjes-integral. Prove for functions f ∈ C1 (R) and
g ∈ C (R) with g of bounded variation that

f(g(t)) = f(g(0)) +

ˆ t

0
f ′(g(s)) dg(s), ∀t ≥ 0.

Give an example of a function that is not of bounded variation.



4. Consider the Haar system H := {ϕ0}∪
{
ψj,k : j ∈ N0, 0 ≤ k ≤ 2j − 1

}
of real

valued functions on the unit interval [0, 1] where

ϕ0 (t) = 1[0,1] (t) ,

ψ0,0 (t) = 1[0,1/2) (t)− 1[1/2,1) (t) ,

ψj,k (t) = 2j/2ψ0,0

(
2jt− k

)
,

for 0 ≤ t ≤ 1, j ∈ N0, 0 ≤ k ≤ 2j − 1.

Our goal is to show that H is a complete orthonormal system in the Hilbert
space L2([0, 1]) with standard scalar product 〈x, y〉 =

´ 1
0 x(t)y(t) dt and norm

||x|| =
√
〈x, x〉 for any x, y ∈ L2([0, 1]), i.e.

i. H ⊆ L2([0, 1]),

ii. ||e|| = 1 for all e ∈H ,

iii. 〈e, f〉 = 0 for all e 6= f, e, f ∈H ,

iv. L2 ([0, 1]) = lin (H ) where lin (H ) is the linear span of H , i.e. the set
of all (finite) linear combinations.

Prove that the properties i., ii. and iii. hold directly by definition of the Haar
system. For property iv. there are many possible proofs. We consider the
following strategy:

(a) Consider the filtration (Fn)n∈N0
with

F0 = σ (ϕ0) ,

Fn = σ
(
ϕ0, ψj,k : j ∈ N0, 0 ≤ k ≤ 2j − 1, 2j + k ≤ n

)
for n ≥ 1. For any g ∈ L2 ([0, 1]) define the process M = (Mn, n ∈ N0) by
Mn := E [g| Fn]. Show that M is an L2 ([0, 1])-bounded martingale that
converges in L2 ([0, 1]). What is the limit?

(b) Remind yourself that the conditional expectation E [X| G] for a square
integrable random variable X on a probability space (Ω,F ,P) and a sub-
σ-algebra G ⊆ F is the L2 (Ω,F ,P)-orthogonal projection of X onto
L2 (Ω,G,P). Deduce M ⊆ lin (H ) from this (here the probability mea-
sure is just the uniform distribution on [0, 1]).

(c) Observe that Dj,k ⊆ σ (H ) for every dyadic interval Dj,k =
[k/2j , (k + 1) /2j), j ∈ N0, 0 ≤ k ≤ 2j − 1 and [0, 1] ⊆ σ (H ) and thus
σ (H ) = B[0,1].

(d) Show that parts (a), (b) and (c) imply property iv. from above.

We can therefore conclude that H is indeed a complete orthonormal system
in L2 ([0, 1]).

Problems on this sheet give you extra points (four points for each problem). Submit
before the first lecture on Thursday, 24 April 2014.
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1. Let X = (Xt, t ∈ T ), X̃ = (X̃t, t ∈ T ) be two processes on the same probability
space (Ω,F ,P).

(a) Show that if X̃ is a version of X, then both processes have the same finite
dimensional distributions.

(b) Let T = R+. Assume now that X and X̃ are processes with right-
continuous paths. Show that if X̃ is a version of X, then X and X̃ are
indistinguishable.

2. Let X = (Xt, t ≥ 0) be a right-continuous process on a probability space
(Ω,F ,P).

(a) Show that the map (ω, t) 7→ Xt(ω) is measurable with respect to(
Ω× R+,F ⊗BR+

)
(X is progressively measurable).

(b) Let τ : Ω → [0,∞] be a finite stopping time with respect to the natural
filtration (Ft)t≥0 of X, i.e. {τ ≤ t} ∈ Ft for all t ≥ 0. Show that Xτ is a
random variable, i.e. ω 7→ Xτ(ω)(ω) is F-measurable.

3. Prove Blumenthal’s 0-1 law: For a Brownian motion B = (Bt, t ≥ 0) and
its natural filtration (Ft)t≥0 the σ-algebra F0+ =

⋂
t>0Ft is P-trivial (i.e.

P(A) ∈ {0, 1} for all A ∈ F0+). For this prove:

(a) For n ∈ N, define σ-algebras An = σ(B2−n+t − B2−n , t ∈ [0, 2−n]). Show
that (An)n∈N is an independent family of σ-algebras and that σ(Am,m ≥
n) = F2−n+1 .

(b) Review Kolmogorov’s 0-1 law and apply it to deduce that⋂
n∈N σ(Am,m ≥ n) is P-trivial.

(c) Obtain the claim by (a) and (b).

4. Define the zero set Z = {(ω, t) ∈ Ω × [0,∞) : Bt = 0} of a Brownian motion
B = (Bt, t ≥ 0) and define the sections Zω = {t ∈ [0,∞) : (ω, t) ∈ Z} for
ω ∈ Ω.

(a) Infer Z ∈ F⊗BR+ from exercise 2(a). Then show that P(ω ∈ Ω : λ(Zω) =
0) = 1 where λ is the Lebesgue measure on R.



(b) Prove that Zω has for almost all ω ∈ Ω an accumulation point at 0.

Hint:

i. Let A+ = {B1/n > 0 for infinitely many n}, A− = {B1/n <
0 for infinitely many n}. Then P(A+) > 0, P(A−) > 0.

ii. A+, A− ∈ F0+ holds.

iii. Apply Blumenthal’s 0-1 law.

Submit before 13:00, Friday, 2 May 2014, in Room 1.226 (Randolf Altmeyer) or send
by email to altmeyrx@math.hu-berlin.de.
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1. Let (Ω,F ,P, (Ft)t≥0) be a filtered probability space with an (Ft)t≥0-stopping
time τ . Define Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for every t ≥ 0}.

(a) Fτ is a σ-algebra. If τ = t is deterministic, then Fτ = Ft.
(b) There exists a sequence of stopping times (τn)n∈N such that τn ↘ τ almost

surely and such that each τn takes only finitely many values. Moreover,
in this case Fτ =

⋂
nFτn , if (Ft)t≥0 is right-continuous.

(c) Let X = (Xt, t ≥ 0) be a right-continuous process adapted to (Ft)t≥0 and
assume that τ is bounded. Then Xτ ∈ Fτ .

2. Let X = (Xt, t ≥ 0) be a right-continuous process adapted to a filtration
(Ft)t≥0 such that Xt ∈ L1 for all t ≥ 0. Then the following statements are
equivalent:

(a) X is a martingale.

(b) For all bounded stopping times τ we have Xτ ∈ L1 and E[Xτ ] = E[X0].

(c) For all bounded stopping times σ ≤ τ we have E
[
Xτ

∣∣Fσ] = Xσ.

Prove these equivalences using the following steps:

• (a) ⇒ (b): For τ ≤ c, c ≥ 0, find a sequence (τn)n∈N as in 1(b) and show
Xτn = E

[
Xc

∣∣Fτn], in particular, E[Xτn ] = E[Xc]. Argue that (Xτn)n∈N is
uniformly integrable and obtain the statement by right-continuity of X.

• (b) ⇒ (c): For A ∈ Fσ consider the stopping time (!)

σ̃ (ω) :=

{
σ (ω) , ω ∈ A,
τ (ω) , ω ∈ Ac

and apply (b) to obtain E[Xσ̃] = E[X0] = E[Xτ ].

Submit before the first lecture on Thursday, 8 May 2014.
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1. Let (B1
t , 0 ≤ t ≤ 1) and (B2

t , 0 ≤ t ≤ 1) be two independent Brownian
motions and let (At, 0 ≤ t ≤ 1) be a continuous and bounded process with
V[0,1](A(ω)) ≤ C <∞ for some C > 0 and all ω ∈ Ω.

(a) Show that the quadratic variation of A on [0, 1] vanishes, i.e. we have
Sn1

P−→ 0 as n → ∞ for Snt :=
∑

ti∈τn,ti≤t(Ati+1 − Ati)2, t ∈ [0, 1], and a
sequence of partitions (τn)n∈N of [0, 1], with maxti∈τn |ti+1 − ti| n→∞−−−→ 0.

(b) For σ1, σ2 ∈ R show that the quadratic variation of σ1B
1
t +σ2B

2
t satisfies

Snt
P−→
(
σ2

1 + σ2
2

)
t as n→∞.

2. (a) Let (Xt, t ≥ 0) be a process with independent increments and Xt ∈ L1

for all t ≥ 0. Show that
(
Xt − E

[
Xt

]
, t ≥ 0

)
is a martingale with respect

to its natural filtration.

(b) Let (Nt, t ≥ 0) be a Poisson process of intensity λ > 0 (definition in the
lecture notes of Stochastic processes I). Infer from (a) that Mt = Nt− λt
is a martingale with respect to its natural filtration.

(c) Find a continuous increasing process (At, t ≥ 0) such that Yt = M2
t −At

is a martingale with respect to the natural filtration of M .

3. Consider the process Xt = µt + σBt, t ≥ 0, for a Brownian motion B, drift
µ ∈ R and volatility σ > 0.

(a) For a < 0 < b calculate the probability of X hitting b before a.

Hint: For µ 6= 0 choose α ∈ R such that (exp(αXt), t ≥ 0) is a martingale.

(b) Show for µ < 0 that Y := supt≥0Xt is a.s. finite and exponentially
distributed with parameter λ = −2µ/σ2.



4. Let (Xt, t ≥ 0) be a continuous process with X0 = 0.

(a) Assume that Y α
t = exp(αXt−α2t/2), t ≥ 0, is a martingale with respect

to a filtration (Ft)t≥0 for every α ∈ R. Show that X is a Brownian motion
with respect to (Ft)t≥0.

Hints: If Z is a random variable, then

• Z ∼ N(0, 1) if and only if E
[
eλZ
]

= eλ
2/2 for all λ ∈ R

• if E
[
eλZ
∣∣G] = E

[
eλZ
]
<∞ for λ in a neighborhood of 0, then Z ⊥ G

for a sub-σ-algebra G
(b) For α 6= 0 show that Y α

t converges a.s. to Y α
∞ = 0 as t → ∞. Does

Y α
t

L1

−→ Y α
∞ hold?

Submit before the first lecture on Thursday, 15 May 2014.
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1. Let (Bt, t ≥ 0) be a Brownian motion and consider the process
τb = inf {t > 0 : Bt = b} for b ≥ 0.

(a) Show that τb − τa = inf{t > 0 : Bt+τa −Bτa = b− a} holds for a ≤ b.
(b) Use the strong Markov property of Brownian motion to show that

(τb, b ≥ 0) has stationary and independent increments.

Hint: Use the fact that the Laplace transform of a non-negative random
variable uniquely determines its distribution.

(c) Show that almost all paths b 7→ τb are increasing and left-continuous. Are
they also right-continuous?

(d) 2 extra points: Simulate the process (τb, b ≥ 0).

2. Let (Bt, t ≥ 0) be a Brownian motion. Prove that the zero set
Z = {(ω, t) ∈ Ω× [0,∞) : Bt = 0} of problem 2.4 is for almost all ω a perfect
set, i.e. Zω is closed and contains no isolated points.

Hint : Review the results of problem 2.4 and use the strong Markov property
of Brownian motion for stopping times (!) σq = inf{t > q : Bt = 0}, q ∈ Q+.

3. Let (Mt, t ≥ 0) be a continuous local martingale. Show that (Mt, t ≥ 0) is a
martingale if and only if for every a > 0 the family

{Mτ : τ ≤ a is a bounded stopping time}

is uniformly integrable.

4. Let Xt =
∑∞

k=0 αk1(τk,τk+1](t), t > 0, with X0 = 0 be a simple process, where
(τk)k∈N∪{τ0}, τ0 = 0, is a sequence of (Ft)t≥0-stopping times such that τk →∞
a.s. as k →∞ and where the αk are Fτk -measurable random variables.

(a) Let (Mt, t ≥ 0) be a continuous and L2-integrable (Ft)t≥0-martingale and
let (Xt, t ≥ 0) be bounded. Show that the stochastic integral

(X ◦M)t =
∞∑
k=0

αk(Mτk+1∧t −Mτk∧t), t ≥ 0,

is again a continuous L2-integrable (Ft)t≥0-martingale.



(b) If (Mt, t ≥ 0) is only a continuous (Ft)t≥0-local martingale and if (Xt, t ≥
0) is not necessarily bounded, then ((X ◦M)t, t ≥ 0) is again a continuous
(Ft)t≥0-local martingale.

Submit before the first lecture on Thursday, 22 May 2014.
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1. Let (Ft)0≤t≤T , T > 0, be a complete filtration and let M2
c,T be the set of all

continuous (Ft)0≤t≤T -martingales (Mt, 0 ≤ t ≤ T ) with M0 = 0, Mt ∈ L2 for
all 0 ≤ t ≤ T .

(a) Show that M2
c,T with scalar product 〈M,N〉M2

c,T
= E[MTNT ] for

M,N ∈M2
c,T is a Hilbert space. In particular, it holds that ‖M‖M2

c,T
=

(E [〈M〉T ])1/2 for M ∈M2
c,T , where 〈M〉 is the quadratic variation of M .

(b) Prove for M,N ∈M2
c,T that the following properties are equivalent:

i. E[MtNs] = 0 for all 0 ≤ s, t ≤ T (M and N are weakly orthogonal),

ii. E[MsNs] = 0 for all 0 ≤ s ≤ T ,

iii. E[MτNs] = 0 for all 0 ≤ s ≤ T and all stopping times s ≤ τ ≤ T .

2. Prove: For every continuous local martingale M with M0 = 0 there exists a
unique (up to indistinguishability) increasing continuous process (〈M〉t , t ≥ 0)
such that 〈M〉0 = 0 and (M2

t − 〈M〉t , t ≥ 0) is a local martingale.

3. Let X : [0, 1] → R be a function. For any partition π = {0 = t0 < t1 < · · · <
tm = 1} of [0, 1] and any h ∈ C([0, 1]) define

Sπ(h) =
m∑
k=1

h (tk)
(
Xtk −Xtk−1

)
.

(a) Prove that the map h 7→ Sπ(h) is a continuous linear form on C([0, 1])
with norm ‖Sπ‖ =

∑m
k=1 |Xtk −Xtk−1

|.
(b) Prove: If (Sπn(h))n ∈ N converges to a finite limit for every h ∈ C([0, 1])

and any sequence of partitions (πn)n∈N with maxtk∈πn |tk−tk−1| n→∞−−−→ 0,
then X is of bounded variation. This shows why the stochastic integral
with respect to a continuous local martingale cannot be defined in the
ordinary way.

Hint : Apply the Banach-Steinhaus theorem (see e.g. Werner, Funktionalanal-
ysis).

http://link.springer.com/book/10.1007%2F978-3-642-21017-4
http://link.springer.com/book/10.1007%2F978-3-642-21017-4


4. Let (Bt, t ≥ 0) be a Brownian motion. Prove the following identities for any
t ≥ 0:

(a)
´ t

0 Bs dBs = 1
2B

2
t − t

2 ,

(b)
´ t

0 B
2
s dBs = 1

3B
3
t −
´ t

0 Bs ds.

Moreover, it holds that
´ t

0 B
3
s dBs = 1

4B
4
t − 3

2

´ t
0 B

2
s ds. Can you guess a formula

for
´ t

0 B
n
s dBs, n ∈ N?

Submit before 13:00, Friday, 30 May 2014, in Room 1.226 (Randolf Altmeyer) or
send by email to altmeyrx@math.hu-berlin.de.
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1. Show the following properties of the stochastic integral for M ∈ M2
c , X ∈

L (M), by approximation with simple processes:

(a) (linearity) ∀α, β ∈ R, Y ∈ L (M):
´ ·

0(αX + βY )s dMs = α
´ ·

0 Xs dMs +
β
´ ·

0 Ys dMs,

(b) (Itô-isometry) E
[( ´ t

0 Xs dMs

)2]
= E

[ ´ t
0 X

2
s d 〈M〉s

]
= ‖X‖2M,t and

‖
´ ·

0 Xs dMs‖M2
c

= ‖X‖M ,

(c) (quadratic variation)
〈´ ·

0 Xs dMs

〉
t

=
´ t

0 X
2
s d 〈M〉s, t ≥ 0.

2. Let (Bt, t ≥ 0) be a Brownian motion. Define for h ∈ C1(R) the process

It (h) = h (t)Bt −
ˆ t

0
Bsh

′(s) ds, t ≥ 0.

(a) Show for each t ≥ 0: ‖It(h)‖L2(P) = ‖h1[0,t]‖L2(R) = ‖h‖L2([0,t]).

(b) How can we define It for h ∈ L2(R)?

Does P(
´ t

0 h (s) dBs = It (h) , ∀t ≥ 0) = 1 hold for all h ∈ L2(R), where´ t
0 h(s) dBs is the stochastic integral from the lecture?

Submit before the first lecture on Thursday, 5 June 2014.



Prof. Markus Reiß
Randolf Altmeyer

Course Stochastic Analysis
Summer 2014
Humboldt-Universität zu Berlin

Problem sheet 8

1. For λ ∈ R, an (Ft)t≥0-Brownian motion (Bt, t ≥ 0) and an F0-measurable
random variable X0 define the Ornstein-Uhlenbeck process

Xt = X0e
−λt +

ˆ t

0
e−λ(t−s) dBs, t ≥ 0.

(a) Show that (Xt, t ≥ 0) satisfies the stochastic differential equation dXt =
−λXtdt+ dBt, i.e. it satisfies the equation

Xt = X0 − λ
ˆ t

0
Xs ds+Bt, t ≥ 0, a.s.

(b) For λ > 0, X0 ∼ N(0, 1
2λ) and X0 independent of (Bt, t ≥ 0) show that

(Xt, t ≥ 0) is a stationary Gaussian process.

(c) 2 extra points: Simulate 100 trajectories of (Xt, t ≥ 0) for λ ∈
{−1; 0.01; 1}.

2. Let (Bt, t ≥ 0) be a Brownian motion. Assume there exists a sequence of

processes (B
(n)
t , t ≥ 0) such that t 7→ B

(n)
t is a C1-function and such that

limn→∞ sup0≤t≤T |B
(n)
t −Bt| = 0 for all T ≥ 0.

(a) Show for a continuous function f and all n ∈ N, t ≥ 0 that

ˆ t

0
f(B(n)

s ) dB(n)
s = F (B

(n)
t )− F (B

(n)
0 ),

where F (x) =
´ x

0 f(y) dy. Conclude that there exists a continuous process´ t
0 f(Bs)◦dBs := limn→∞

´ t
0 f(B

(n)
s ) dB

(n)
s , t ≥ 0, which does not depend

on the approximating sequence (B(n), t ≥ 0), n ∈ N.

(b) Show that if f ∈ C1, then

ˆ t

0
f (Bs) ◦ dBs =

ˆ t

0
f(Bs) dBs +

1

2

ˆ t

0
f ′(Bs) ds.

3. For two continuous semimartingales X and Y define the quadratic covariation
as

〈X,Y 〉t :=
1

4
(〈X + Y 〉t − 〈X − Y 〉t) , t ≥ 0.

Show the following properties:



(a) 〈X,X〉t = 〈X〉t, t ≥ 0.

(b) For all sequences of partitions (πn)n∈N of [0, T ] with |πn| → 0 we have for
all 0 ≤ t ≤ T :

〈X,Y 〉t = lim
n→∞

∑
tk∈πn

(
Xtk∧t −Xtk−1∧t

) (
Ytk∧t − Ytk−1∧t

)
(in probability).

(c) | 〈X,Y 〉t | ≤ 〈X〉
1/2
t 〈Y 〉

1/2
t . In particular, if A is continuous and of

bounded variation, then 〈X,A〉t = 0, t ≥ 0.

4. Let (Bt, t ≥ 0) be a Brownian motion. For ε0 > ε > 0 let ϕε : R → R be a
continuous approximation of x 7→ ε−11[−ε,ε](x) such that 0 ≤ ϕε(x) ≤ ε−1 for
all x ∈ R, ϕε|[−ε,ε] = ε−1 and supp(ϕε) ⊆ [−ε0, ε0], where ε0 − ε = o(ε). We
further define fε : R→ R by fε(0) = f ′ε(0) = 0 and f ′′ε = ϕε.

(a) Show fε(x)→ |x| and f ′ε(x)→ sgn(x) as ε→ 0 for x ∈ R for an appropri-
ate choice of ε0, where sgn(x) = −1 if x < 0, sgn(0) = 0 and sgn(x) = 1
if x > 0.

(b) Conclude for all t ≥ 0 that |Bt| = |B0| +
´ t

0 sgn(Bs) dBs + Lt a.s. with

Lt = limε→0
1
2

´ t
0 f
′′
ε (Bs) ds in L2(P).

(c) Find conditions on ε0 such that Lt = limε→0
1
2ελ({s ∈ [0, t] : Bs ∈

(−ε, ε)}) in L2(P).

Submit before the first lecture on Thursday, 12 June 2014.
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1. Let (Mt, t ≥ 0) be a non-negative continuous local martingale.

(a) Prove that M is a supermartingale.

Hint : Use Fatou’s lemma.

(b) Show that M is a martingale, if and only if E [Mt] = E [M0] for all t ≥ 0.

2. Let (Bt, t ≥ 0) be a Brownian motion and let X ∈ Lloc(B). Consider the
stochastic exponential

Zt = exp

(ˆ t

0
Xs dBs −

1

2

ˆ t

0
X2
s ds

)
, t ≥ 0.

(a) Apply Itô’s formula to Mt =
´ t

0 Xs dBs and show that

eMt = 1 +

ˆ t

0
eMsXs dBs +

1

2

ˆ t

0
eMsX2

s ds, t ≥ 0, a.s.

(b) Argue that Zte
−Mt = 1 − 1

2

´ t
0 X

2
sZse

−Msds, t ≥ 0, a.s. and show by
partial integration that

Zt = 1 +

ˆ t

0
ZsXs dBs, t ≥ 0.

Conclude that Z is a local martingale and by problem 1 a supermartin-
gale.

(c) Is there a (non-trivial) process X ∈ Lloc(B) such that Z is even a mar-
tingale?

3. Let (Bt, t ≥ 0) be a Brownian motion in R3, 0 6= x ∈ R3 and define the process
Mt = 1

|x+Bt| , t ≥ 0. Mt is a.s. well defined because the Brownian motion in

R3 does not hit points a.s. (see lecture).

(a) Show that M is a continuous local martingale.

Hint : Apply Itô’s formula.

(b) Prove that M is L2-bounded, i.e. supt≥0 E[|M2
t |] <∞.

Hint : For t ≥ 0 show

E
[
|Mt|2 1{|Mt|≥ 2

|x|

}] ≤ (2πt)−
3
2

ˆ
|y|≤ |x|

2

1

|y|2
exp

(
−(|y| − |x|)2

2t

)
dy.



(c) Show that M is not a martingale.

Hint : Prove that E [Mt]→ 0 as t→∞.

4. Let M ∈ M2
c , X ∈ L (M) and Y ∈ L (X ◦M) with respect to a filtration

(Ft)t≥0.

(a) Show Y X ∈ L (M).

(b) Let τ1 ≤ τ2 be (Ft)t≥0-stopping times and let ξ be a bounded Fτ1-
measurable random variable. Show for Yt = ξ1(τ1,τ2](t), t ≥ 0, that

ˆ t

0
YsXs dMs = ξ

ˆ t

0
Xs1(τ1,τ2](s) dMs, a.s.

Conclude in this case that

(Y ◦ (X ◦M)) = ((Y X) ◦M), a.s. (*)

Hint : Show (*) first forX simple and bounded and then by approximation
for general X ∈ L (M).

(c) Prove (*) for general Y ∈ L (X ◦M).

Submit before the first lecture on Thursday, 19 June 2014.
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1. Prove that the 2D-Brownian motion a.s. does not hit a fixed point x ∈ R2\ {0},
i.e. P(τx < ∞) = 0 for τx = inf {t > 0 : Bt = x} where (Bt, t ≥ 0) is a
Brownian motion in R2.

2. Let G ⊆ Rd be a bounded and open set and let f : ∂G → R be continuous.
Let h : Ḡ → R be a solution to the Dirichlet problem on G with boundary
value f , i.e. h ∈ C2(G) ∩ C(Ḡ), 4h = 0 on G and h = f on ∂G.

(a) Let (Bt, t ≥ 0) be a d-dimensional Brownian motion and let
τ=inf {t > 0 : x+Bt ∈ Gc} be a stopping time for any x ∈ G. Why
does P(τ <∞) = 1 hold?

(b) Show for every x ∈ G that h satisfies h(x) = E [f (x+Bτ )]. In particular,
the solution of the Dirichlet problem with boundary value f is unique.

Hint : Consider open sets Gn = {y ∈ G : infz∈∂G‖y − z‖ > 1/n} ⊆ G and
corresponding stopping times τn = inf {t > 0 : x+Bt ∈ Gcn}. Use Itô’s
formula for the stopped processes (x+Bt∧τn , t ≥ 0) and take expectations.

(c) Describe a stochastic algorithm to determine h(x) numerically.

(d) 2 extra points: Check if your algorithm works by approximating the so-
lution of the Dirichlet problem on Dr,R =

{
x ∈ R2 : r < |x| < R

}
with

boundary value f , where f |B̄r(0) = 1 and f |B̄R(0) = 0 for closed balls

B̄r(0), B̄R(0) and any r,R > 0. Compare your approximation to the
exact solution from the lecture (cf. example 3.15).

3. Prove the lower bound of the Burkholder-Davis-Gundy-inequality (BDG): For
any continuous local martingale (Mt, t ≥ 0) with M0 = 0 and any p ≥ 4 there
exists a universal constant cp > 0 (depending only on p) such that for all t ≥ 0

cpE
[
〈M〉p/2t

]
≤ E [(M∗t )p] ,

where M∗t = sup0≤s≤t |M |s. Use the following steps:

(a) Assume first that M and 〈M〉 are bounded. Use the equality M2
t =

2
´ t

0 Ms dMs + 〈M〉t to show

E
[
〈M〉p/2t

]
≤ c̃p

(
E [(M∗t )p] + E

[∣∣∣∣ˆ t

0
Ms dMs

∣∣∣∣p/2
])

for some constant c̃p > 0 and apply the upper bound of the BDG-
inequality to the local martingale

´ ·
0 Ms dMs.



(b) Conclude the general result by localisation.

4. Let (Bt, t ≥ 0) be a Brownian motion and let (F0
t )t≥0 be its natural filtration.

For each of the three processes (i) Mt = B2
t − t, (ii) Mt = eλBt−

λ2

2
t− 1, λ ∈ R,

and (iii) Mt = Bt∧τ where τ is any (F0
t )t≥0-stopping time, t ≥ 0,

(a) find a process Y ∈ Lloc(B) adapted to (F0
t )t≥0 such that Mt =

´ t
0 Ys dBs

a.s., t ≥ 0, and

(b) determine the Dambis-Dubins-Schwarz (DDS) Brownian motion of M,
i.e. determine (Ft)t≥0-stopping times τt = inf {s ≥ 0 : 〈M〉s > t}, t ≥ 0,
and construct an (F̃t)t≥0 = (Fτt)t≥0-Brownian motion (B̃t, t ≥ 0) such
that Mt = B̃〈M〉t . Do we have P(Bt = B̃t ∀t ≥ 0) = 1?

Submit before the first lecture on Thursday, 26 June 2014.
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1. Let P and Q be equivalent probability measures (i.e. Q � P and P � Q) on
a measurable space (Ω,F) with filtration (Ft)0≤t≤T , T > 0, and denote by Pt
and Qt the probability measures restricted to Ft.

(a) Show that Pt and Qt, 0 ≤ t ≤ T , are also equivalent and that the

Radon-Nikodym-derivatives satisfy EP

[
dQ
dP

∣∣∣Ft] = dQt
dPt Pt-a.s. In par-

ticular,
(
dQt
dPt

)
0≤t≤T

is a P-martingale.

(b) (Bayes rule) For any FT -measurable random variable X with EQ[|X|] <
∞ prove that

EQ [X| Ft] =

(
dQt

dPt

)−1

EP

[
X
dQT

dPT

∣∣∣∣Ft] , P-a.s. and QT -a.s.

(c) Show that a process (Mt, 0 ≤ t ≤ T ) is a Q-martingale if and only if
(Mt

dQt
dPt , 0 ≤ t ≤ T ) is a P-martingale.

2. Let (Bt, t ≥ 0) be a Brownian motion and let (F0
t )t≥0 be its natural filtration

completed by events of probability zero in σ(Bt, t ≥ 0). Let further ξ be an
L2(Ω,F0

T ,P)-random variable for T > 0 and let (Xt, 0 ≤ t ≤ T ) be a progres-

sively measurable process adapted to (F0
t )t≥0 such that E[

´ T
0 |Xs|2 ds] <∞.

(a) Find (F0
t )0≤t≤T -adapted processes (Yt, 0 ≤ t ≤ T ) and (Zt, 0 ≤ t ≤ T )

with Z ∈ L (B) satisfying the backward stochastic differential equation
(BSDE) {

dYt = −Xtdt+ ZtdBt,

YT = ξ,

with terminal value ξ such that E
[
sup0≤t≤T |Yt|2

]
<∞.

Hint : Apply the martingale representation theorem to ξ+
´ T

0 Xs ds to find
Z. Apply the Doob inequality for proving the bound on sup0≤t≤T |Yt|.

(b) Is the solution unique?



3. Let (Bt, t ≥ 0) and (F0
t )t≥0 be as in problem 2 and let µ ∈ R\ {0}. Let

further QT be the unique probability measure such that B̃t = Bt − µt, t ≥ 0,
is a Brownian motion under QT for T > 0. Show for the stopping time

τb = inf
{
t ≥ 0 : B̃t + µt = b

}
, b ∈ R:

(a) τb has Lebesgue-density fb(t) = |b|√
2πt3

e−
(b−µt)2

2t 1[0,∞)(t) under QT ,

(b) QT (τb <∞) = exp (µb− |µb|),

(c) EQT
[
e−λτb

]
= eµb−|b|

√
µ2+2λ for λ > 0.

4. Let (Bt, t ≥ 0) and (F0
t )t≥0 be as in problem 2. Construct a measurable and

(F0
t )t≥0-adapted process (Xt, t ≥ 0) such that for some 0 < ε < 1

2

E
[
exp

((
1

2
− ε
)ˆ ∞

0
X2
s ds

)]
<∞,

and such that the stochastic exponential Zt = exp
(´ t

0 Xs dBs − 1
2

´ t
0 X

2
s ds

)
is

not a closed martingale. Use the following steps:

(a) Show using problem 3 that the stopping time τa =

inf {t ≥ 0 : Bt − (1− ε)t = −a} for a > 0 satisfies E
[
e(

1
2
−ε)τa]=e(1−2ε)a.

Hint: Use that τa
d
= σa := inf{t ≥ 0 : Bt + (1− ε) t = a}.

(b) Establish the inequality E
[
eBτa−

1
2
τa
]
< 1.

(c) Construct X.

2 extra points: Construct a process (Xt, 0 ≤ t ≤ 1) satisfying for some 0 <
ε < 1

2

E
[
exp

((
1

2
− ε
)ˆ 1

0
X2
s ds

)]
<∞,

such that the corresponding stochastic exponential is not a martingale on [0, 1].

Submit before the first lecture on Thursday, 03 July 2014.
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1. Consider the process Xt = Bt + µt, t ∈ [0, T ], T > 0, for a a Brownian motion
(Bt, t ≥ 0) and µ ∈ R.

(a) For unknown µ show that the maximum likelihood estimator satisfies
µ̂T = XT

T .

(b) Discuss expectation and variance of the estimator µ̂T (i) for growing sam-
ple size but fixed time horizon T > 0 and (ii) for fixed sample size but
with T →∞.

2. Let T > 0 and let u, a, b : [0, T ]→ R+ be measurable functions such that u is
bounded and b is integrable.

(a) Prove Gronwall’s lemma: If

u(t) ≤ a(t) +

ˆ t

0
u(s)b(s) ds, t ∈ [0, T ], (1)

then

u(t) ≤ a(t) +

ˆ t

0
a(s)b(s) exp

(ˆ t

s
b(r) dr

)
ds, t ∈ [0, T ].

(b) Show for constant a(t) = c ≥ 0 under condition (1) that

u(t) ≤ c exp

(ˆ t

0
b(s) ds

)
.

3. Let a, x0 ∈ R and let b, σ : R+ → R be deterministic and (Borel-)measurable.

(a) Show that

Xt = eat
(
x0 +

ˆ t

0
e−asbs ds+

ˆ t

0
e−asσs dBs

)
is the unique strong solution of the SDE dXt = (aXt + bt) dt + σt dBt,
t ≥ 0, with X0 = x0.

(b) 2 extra points: How can we extend the solution if a depends on time?



4. Consider the SDE dXt = (1− t)−1Xt dt+ dBt, 0 ≤ t < 1, X0 = 0. Show that
the unique strong solution on [0, T ], T < 1, is given by a Brownian Bridge. Do
we have limt→1Xt = 0 in any mode of convergence?

Hint: Consider Xt = (1− t)
´ t

0 (1− s)−1 dBs.

Submit before the first lecture on Thursday, 10 July 2014.


