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Chapter 1

Construction and properties of
Brownian motion

1.1 Motivation

Why is the Brownian motion the central object of stochastic analysis?

Scaling limit of random walks

(Xk)k≥1 i.i.d. random variables with E[Xk] = 0, σ2 = Var(Xk) < ∞. Put S0 := 0,
Sn :=

∑n
k=1Xk, n ≥ 1. Zooming out (rescale time): Y (N)

n/N := Sn, for n = 0, 1, . . . , N . Then

E[Y
(N)
n/N ] = 0, Var(Y

(N)
1 ) = Var(SN ) = Nσ2. Standardise (rescale space): Z(N)

n/N = 1
σ
√
n
Y

(N)
n/N

for n = 0, 1, . . . , N . Then E[Z
(N)
n/N ] = 0, Var(Z

(N)
1 ) = 1. Use linear interpolation to define

Z
(N)
t , t ∈ [0, 1]. Asymptotics N → ∞: (Z

(N)
t , t ∈ [0, 1])

d−→ (Bt, t ∈ [0, 1]), where d−→ means
convergence in distribution on C([0, 1]). This is Donsker’s invariance principle (functional
CLT).

Anti-derivative of “white noise”

Physicists and engineers often model random perturbations by a white noise process (Γt, t >
0). They postulate: Γ is a Gaussian process (all (Γt1 , . . . ,Γtn) are Gaussian) with E[Γt] = 0,
Cov(Γt,Γs) = δ(t− s) with “δ-function” defined by δ(x) = 0 for x 6= 0 and

´ ε
−ε δ(x) dx = 1

for all ε > 0. The idea of the covariance structure is that for f ∈ L2([0, 1]): the linear
functional

´ 1

0
f(t)Γt dt is Gaussian with mean 0 and

Var

(ˆ 1

0

f (t) Γtdt

)
= E

[ˆ 1

0

f (t) Γt dt ·
ˆ 1

0

f (s) Γs ds

]
?
=

ˆ 1

0

ˆ 1

0

f (t) f (s) E
[
ΓtΓs

]
dt ds =

ˆ 1

0

f2 (s) ds = ‖f‖2L2 .

This will be made mathematically correct via the stochastic integral:
´ 1

0
f(t)Γt dt  ´ 1

0
f(t) dBt (Wiener’s stochastic integral). White noise itself is difficult to define properly,

but the stochastic integration theory is well developed. As we shall see, Brownian motion
can be seen as the anti-derivative of white noise.

2



CHAPTER 1. CONSTRUCTION AND PROPERTIES OF BROWNIAN MOTION 3

Why “white” noise? Fourier coefficients: for k ≥ 1

Ck =
´ 2π

0
Γt

1√
π

cos (kt) dt ∼ N (0, 1) ,

Dk =
´ 2π

0
Γt

1√
π

sin (kt) dt ∼ N (0, 1) ,

and for k = 0

C0 =
1√
2π

ˆ 1

0

Γt dt ∼ N (0, 1) .

By polarisation we obtain:

E [CkDl]
pol.
=

1

4

(
E
[
(Ck +Dl)

2
]
− E

[
(Ck −Dl)

2
])

from above
=

1

4

(∥∥∥ 1√
π

(cos (k·) + sin (l·))
∥∥∥2

L2
−
∥∥∥...− ...∥∥∥2

L2

)
pol.
=

〈
1√
π

cos (k·) , 1√
π

sin (l·)
〉
L2

= 0.

Then Ck, Dl are uncorrelated. Equally, we can show that the entire set {Ck, k ≥ 0}∪{Dl, l ≥
0} consists of independent (!) N(0, 1)-distributed random variables. This gives formally

Γt =

∞∑
k=1

(
Ck

1√
π

cos (kt) +Dk
1√
π

sin (kt)

)
+ C0

1√
2π

for t ∈ [0, 2π]. Hence, Brownian motion should be

Bt =

∞∑
k=1

(
Ck

1√
πk

sin (kt)−Dk
1√
πk

cos (kt)

)
+ C0

t√
2π
.

Continuous martingales

Let (Mt, t ≥ 0) be a continuous martingale on a filtered probability space (Ω,F , (Ft)t≥0,P)
with filtration (Ft)t≥0 (∀ 0 ≤ t ≤ s Ft ⊆ Fs sub-σ-algebras of F), i.e.

(i) Mt ∈ L1,

(ii) Mt is Ft-measurable (“adapted”),

(iii) ∀0 ≤ t ≤ s : E[Ms|Ft] = Mt a.s.,

(iv) t 7→Mt(ω) is continuous for almost all (a.a.) ω ∈ Ω.

They form basic stochastic objects! Fundamental results:

(a) M can be obtained by a (random) time shift of a Brownian motion B

Mt = Bτ(t) +M0, t ≥ 0.

(b) M can be obtained by averaging weighted Brownian increments (as a stochastic inte-
gral):

Mt = M0 +

ˆ t

0

Hs dBs, t ≥ 0,

where B is a Brownian motion and H is a suitable (random) integrand.

Understanding B means understanding continuous martingales!
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Diffusion, Laplace operator, physical Brownian motion

(Bt, t ≥ 0) should be a continuous Markov (“memoryless”) process in Rd. Let f : Rd → R
be some physical quantity f(y) at some point y (e.g. temperature). Consider a diffusion
equation for some “density” ϕ(y, t):

∂

∂t
ϕ (y, t) + div

(
~j (y, t)

)
= 0,

where ~j(y, t) is the flux in y at time t. Usually, ~j(y, t) is proportional to −gradϕ(y, t) =
−∇ϕ(y, t). Then

∂

∂t
ϕ (y, t)− σ24ϕ (y, t) = 0

(here 4 = ∇ · ∇ = ∂2

∂x2
1

+ · · · + ∂2

∂x2
d
). This is a diffusion equation. We suggest as solutions

ϕ(x, t) := Ex[f(Bt)], B0 = x (Brownian motion starting in x), for all “nice” f . Let p(x, y, t)
be the transition density of B such that ϕ(x, t) =

´
Rd f(y)p(x, y, t) dy. This gives a PDE for

p:
∂

∂t
p (x, y, t) = σ24xp (x, y, t) (master/heat equation). (1.1.1)

The solution with p(x, y, t) = δ(x − y) is p(x, y, t) = (2π)−d/2σ−dt−1/2e−|x−y|
2/2tσ2

(this is
the Gaussian density!). This yields the mathematical Brownian motion (up to a factor 2σ2).

1.2 Approaches to construct Brownian motion

Definition 1.1. A stochastic process (Bt, t ≥ 0) is called Brownian motion (or Wiener
process), if

(i) B0 = 0 a.s.,

(ii) B has independent increments: ∀n ≥ 1, 0 ≤ t0 < · · · < tn : (Bti − Bti−1
)1≤i≤n are

independent random variables,

(iii) Bt −Bs ∼ N(0, t− s) for all t > s ≥ 0 (stationary increments),

(iv) t 7→ Bt (ω) is continuous for a.a. ω ∈ Ω (continuous trajectories/paths).

Let T > 0. The Wiener measure PW on (C([0, T ], BC([0,T ])), where BC([0,T ]) is the Borel-
σ-algebra on C([0, T ]) (if T <∞ this is induced by the sup-norm, if T =∞ it is induced by
a special metric inducing the topology of uniform convergence on compact sets) is given by
the image measure induced by a Brownian motion B: PW (A) = P (B ∈ A).
Remark 1.2.

(i) Given PW the coordinate process πt : C([0, T ]) → R, πt(f) = f(t), T < ∞, defines
a Brownian motion (πt, t ∈ [0, T ]) on [0, T ] (check via Stochastic processes I). Here,
(C([0, T ]),BC([0,T ])) is called (canonical) path space.

(ii) (Bt)t≥0 = (Bt, t ≥ 0) is a centred Gaussian process with covariance function c(t, s) :=
Cov(Bt, Bs) = t ∧ s (recall: B is a Gaussian process :⇔ ∀n, 0 ≤ t1 < · · · < tn :
(Bt1 , . . . , Btn) is Gaussian). The Gaussianity of B follows by the independence and
normality of increments. With respect to the covariance function let s ≤ t such that

Cov (Bt, Bs) = E [BtBs] = E
[(
Bs + Bt −Bs︸ ︷︷ ︸

indep. of Bsby (ii)

)
Bs

]

= E
[
B2
s

]
+ E [Bt −Bs]E [Bs] = s.
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Hence, ∀s, t ≥ 0 Cov (Bt, Bs) = s ∧ t. How many Brownian motions are there? Since
the cylinder sets

At1,...,tn;C := {f ∈ C ([0, T ]]) : (f (t1) , . . . , f (tn)) ∈ C}

for 0 ≤ t1 < t2 < . . . , tn ≤ T <∞, C ∈ BRn , form an ∩-stable generator of BC([0,T ]),
the Wiener measure PW is uniquely (!) defined by these Gaussian properties.

(iii) The existence of a Brownian motion is much less evident. The main difficulty is the
continuity of paths (see exercises). Since (t, s) 7→ C(t, s) = t ∧ s is a positive semi-
definite function, a Gaussian process with mean 0 and covariance function C(t, s)
always exists by Kolmogorov’s consistency theorem (as a limit of a projective family
of distributions) on (RR+ ,B

⊗R+

R ). Hence, a process (Bt, t ≥ 0) satisfying properties
(i)-(iii) of a Brownian motion always exists.

Donsker’s invariance principle

Show existence by tightness and Prokhorov’s theorem (see Stochastic processes I).

Kolmogorov/Chentsov: continuous version

Definition 1.3. A process (X̃t, t ∈ T ) is a version of (Xt, t ∈ T ) if ∀t ∈ T : P(X̃t = Xt) = 1.
X̃ and X are called indistinguishable if P(∀t ∈ T : Xt = X̃t) = 1.

Note that a version X̃ of X has the same finite-dimensional distributions, i.e.
(X̃t1 , . . . , X̃tn)

d
= (Xt1 , . . . , Xtn) which means P(X̃t1 ,...,X̃tn ) = P(Xt1 ,...,Xtn ). We shall show

that a process B with properties (i)-(iii) of a Brownian motion has a continuous version B,
which then satisfies (iv) as well (surely!).

Example 1.4. Suppose (Xt, t ∈ [0, 1]) is a continuous process. Then we can define a version
(X̃t, t ∈ [0, 1]) with discontinuous trajectories by

X̃t =

{
Xt, t 6= τ

Xt + 1, t = τ

where τ ∼ U([0, 1]) is independent of X on (Ω,F ,P). This follows from P(Xt = X̃t) =
P(τ 6= t) = 1. Note that P(∀t ∈ [0, 1] : Xt = X̃t) = 0. Hence, (X̃t, t ∈ [0, 1]) is a version of
(Xt, t ∈ [0, 1]) but they are not indistinguishable.

Theorem 1.5 (Kolmogorov-Chentov). Let (Xt, 0 ≤ t ≤ 1) be a stochastic process on
(Ω,F ,P). If there are C > 0, α, β > 0 such that

∀s, t ∈ [0, 1] : E [|Xt −Xs|α] ≤ C |t− s|1+β
,

then X has a continuous version X̃ on (Ω,F ,P). The paths t 7→ X̃t (ω) are even Hölder
continuous of regularity γ ∈ (0, 1] for any γ < β/α, i.e. ∃L (ω)∀t, s ∈ [0, 1] : |X̃t (ω) −
X̃s (ω) | ≤ L(ω)|t− s|γ .

Proof. 1. Stochastic continuity: By Markov’s inequality

P (|Xt −Xs| ≥ ε) ≤ ε−αE [|Xt −Xs| α] ≤ Cε−α |t− s| 1+β .

For sequences sn → t we have Xsn
P−→ Xt (stochastic continuity, necessary for a.s. continu-

ity).
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2. Control of increments along Dn := {k · 2−n : k = 0, . . . , 2n}: Let 0 < γ < β/α. Then

P
(∣∣Xk2−n −X(k−1)2−n

∣∣ ≥ 2−γn
) (∗)
≤ C · 2γnα2−n(1+β) = C · 2−n(1+β−αγ).

By a union bound

P
(

max
k=1,...,2n

∣∣Xk2−n −X(k−1)2−n
∣∣ ≥ 2−γn

)
≤

2n∑
k=1

P
(∣∣Xk2−n −X(k−1)2−n

∣∣ ≥ 2−γn
)

≤ C · 2−n(β−αγ).

By the Borel-Cantelli-Lemma ∃Ω∗ ∈ F ,P(Ω∗) = 1 such that ∀ω ∈ Ω∗∃n∗(ω)∀n ≥
n∗(ω) :maxk=1,...,2n |Xk2−n −X(k−1)2−n | < 2−γn.
3. Beyond neighbours in Dn: Let w ∈ Ω∗, n ≥ n∗(ω). We show ∀m > n ∀s, t ∈ Dm, 0 <
|t − s| < 2−n : |Xt(ω) −Xs(ω)| ≤ 2 ·

∑m
j=n+1 2−γj by induction on m. For m = n + 1 and

s, t ∈ Dm, |t − s| < 2−n we find that |t − s| = 2−m = 2−(n+1). Apply 2. for n + 1. For
the induction step assume that the statement holds for m − 1. With respect to m assume
∃s̃, t̃ ∈ Dm−1 such that |t̃− s̃| ≤ |t−s|, |Xs̃−Xs| ≤ 2−γm, |Xt̃−Xt| ≤ 2−γm. The induction
hypothesis implies then that

|Xt −Xs| ≤ |Xt −Xt̃|+ |Xt̃ −Xs̃|+ |Xs̃ −Xs| ≤ 2 · 2−γm + 2 ·
m−1∑
j=n+1

2−γj = 2 ·
m∑

j=n+1

2−γj .

4. Hölder continuity on D :=
⋃
m≥1Dm: For s, t ∈ D, 0 < |t− s| < 2−n

∗(ω) and n ≥ n∗(ω)

with 2−(n+1) ≤ |t− s| < 2−n we have

|Xt (ω)−Xs (ω)| ≤ 2 ·
∞∑

j=n+1

2−γj =
2

1− 2−γ
· 2−γ(n+1) ≤ C |t− s| γ .

5. Extension from D to [0, 1]: Now define

X̃t (ω) :=


0, ω /∈ Ω∗,

Xt (ω) , ω ∈ Ω∗, t ∈ D
lims→t,s∈DXs (ω) , ω ∈ Ω∗, t /∈ D

Then t 7→ X̃t (ω) is continuous in t (and well defined, topology result) and measurable in ω.
Even more: for u ∈ D, t /∈ D, (sn) ⊆ D, sn → t, ω ∈ Ω∗, 0 < |t− u| < 2−n

∗(ω)

∣∣∣X̃t (ω)− X̃u (ω)
∣∣∣ = lim

sn→t
|Xsn(ω)−Xu(ω)|

4.
≤ lim sup

n→∞
C · |sn − u| γ = C · |t− u| γ

and similarly for u, t /∈ D. For 2−n
∗(ω) ≤ |t − u| we can write |t − u| ≤

∑2n
∗(ω)

k=1 |tk − tk−1|
with t0 = u, t2n∗(ω) = t and |tk − tk−1| ≤ 2−n

∗(ω) such that

∣∣∣X̃t (ω)− X̃u (ω)
∣∣∣ ≤ C ·

2n
∗(ω)∑
k=1

∣∣∣X̃tk(ω)− X̃tk−1
(ω)
∣∣∣

≤ C ·
2n
∗(ω)∑
k=1

|tk − tk−1|γ

≤ C · 2n
∗(ω) |t− u|γ .
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Then ∀ω ∈ Ω∗, t, u ∈ [0, 1] :

∣∣∣X̃t (ω)− X̃u (ω)
∣∣∣ ≤ {

C · |t− u| γ , |t− u| ≤ 2−n
∗(ω),

C · 2n∗(ω) |t− u|γ , |t− u| > 2−n
∗(ω),

≤ C · 2n
∗(ω)︸ ︷︷ ︸

L(ω)

|t− u| γ .

6. X̃ is a version of X: By 1. for sn ∈ D, sn → t : Xsn
P−→ Xt and there exists ∃(nk) such

that Xsnk
P−a.s.−−−−→ Xt. By construction, P(Xt = X̃t) = P(Xt = limk→∞Xsnk

) = 1.

Remark 1.6. Compare this to the very similar moment criterion for tightness (see Stochastic
processes I).

Corollary 1.7. Brownian motion exists and has a.s. γ-Hölder continuous paths for any
γ ∈ (0, 1/2).

Proof. The process B satisfying properties (i)-(iii) of a Brownian motion fulfills Bt −Bs ∼
N(0, t− s) for t ≥ s. Then ∀m ∈ N :

E
[(
B̄t − B̄s

)
2m
]

= E
[(√

t− sZ
)2m]

= (t− s)mE
[
Z2m

]
= (t− s)m (2m− 1) (2m− 3) · · · 1

for Z ∼ N(0, 1). With respect to the conditions in the theorem of Kolmogorov-Chentsov we
observe:

m = 1 : β = 0 (not yet...),
m = 2 : β = 1 (yes,β > 0)⇒ γ < 1/4 (not enough regularity),

m ∈ N : β = m− 1 ⇒ γ <
m− 1

2m
.

Since m is arbitrary, there is for each γ < supm≥1
m−1
2m = 1

2 a version B̃ of B with γ-Hölder
continuous paths on [0, 1]. Having constructed (B̃t, 0 ≤ t ≤ 1), we can take independent
copies (B̃

(n)
t , t ∈ [0, 1])n≥1, i.e. B̃(n) d

= B̃ and all independent, e.g. on a product space.
Define Bt =

∑btc
n=1 B̃

(n)
1 + B̃

(btc+1)
t−btc . It is easy to check that (Bt, t ≥ 0) is then a Brownian

motion.

Approach by Wiener-Lévy, Cisielski, Itô-Nisio

Idea: “white noise” Γt(ω) :=
∑∞
k=1 Yk(ω)ϕk(t) for Yk

iid∼ N(0, 1) and a complete orthonormal
system (“basis”) (ϕk)k≥1 of L2([0, 1]) (see exercises). The anti-derivative should define a
Brownian motion

Bt(ω) :=

∞∑
k=1

Yk(ω)Φk(t) (1.2.1)

with Φk (t) =
´ t

0
ϕk (s) ds.

Theorem 1.8. (1.2.1) defines a Brownian motion on [0, 1] where the sum converges uni-
formly in probability, i.e.

∀ε > 0 : lim
n→∞

P

(
sup
N≥n

sup
t∈[0,1]

∣∣∣∣∣
N∑

k=n+1

YkΦk (t)

∣∣∣∣∣ > ε

)
= 0.
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Proof. 1. Pointwise for t ∈ [0, 1]: Set Mn(ω) :=
∑n
k=1 Yk(ω)Φk(t), Fn = σ(Y1, . . . , Yn).

Then (Mn,Fn) is a martingale, because

E [Mn+1| Fn] = Mn + E [Yn+1| Fn] Φn+1 (t) = Mn + 0 = Mn.

(Mn) is L2-bounded:

E
[
M2
n

]
=

n∑
k=1

E
[
Y 2
k

]
Φ2
k (t)

=

n∑
k=1

〈1[0,t], ϕk〉2L2

≤
∞∑
k=1

< 1[0,t], ϕk >
2

Parseval identity
= ‖1[0,t]‖2L2

= t

< ∞.

By the 2nd martingale convergence theorem (Mn) converges almost surely and in L2 to some
M∞ = Bt ∈ L2. We know that Mn ∼ N(0,

∑n
k=1 Φ2

k(t)). Since
∑n
k=1 Φ2

k(t) n→∞−−−−→ t (the ϕk
form an orthonormal basis, see above), we have Mn

d−→ N(0, t), implying Bt ∼ N(0, t).
2. Independent and stationary increments: For 0 ≤ t0 < t1 < · · · < tm ≤ 1 it holds

n∑
k=1

Yk(Φk (t1)− Φk (t0) , . . . ,Φk (tm)− Φk (tm−1))︸ ︷︷ ︸
Rm

∼ N

(
0,

(
n∑
k=1

(Φk (ti)− Φk (ti−1)) · (Φk (tj)− Φk (tj−1))

)
1≤i,j≤m

)
.

Noting that Φk(ti) − Φk(ti−1) =
´ ti
ti−1

ϕk ds = 〈1[ti−1,ti], ϕk〉L2 and 〈f, g〉L2 =∑∞
k=1〈f, ϕk〉L2〈g, ϕk〉L2 (polarisation of Parseval identity) we see

lim
n→∞

n∑
k=1

(Φk (ti)− Φk (ti−1)) (Φk (tj)− Φk (tj−1)) = 〈1[ti−1,ti],1[tj−1,tj ]〉L2 = δi,j .

As above (Bt1 −Bt0 , . . . , Btm −Btm−1
) ∼ N(0, diag(ti − ti−1)1≤i≤m).

3. Proof of continuity for the case of Haar basis: For the Haar basis consider double indices
(j, k) with j ∈ N0, k = 0, . . . , 2j − 1, and functions

ϕ0 (t) = 1[0,1],

ψ0,0 (t) = 1[0,1/2] − 1(1/2,1],

ψj,k (t) = 2j/2ψ0,0

(
2jt− k

)
.

Then (ψj,k) ∪ {ϕ0} is a complete orthonormal system in L2([0, 1]). The anti-derivatives are

Φ0 (t) = t,

Ψ0,0 (t) = t ∧ (1− t)

(the Ψ are “hat functions” or “linear B-splines”). Then

Ψj,k (t) = 2−j/2Ψ0,0

(
2jt− k

)
.
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Consider

4j (ω) := sup
0≤t≤1

∣∣∣∣∣∣
2j−1∑
k=0

Yj,k (ω) Ψj,k (t)

∣∣∣∣∣∣ ≤ max
k=0,...2j−1

|Yj,k(ω)|︸ ︷︷ ︸
=:Mj(ω)

· 2−(j+1)/2.

Then

P

 sup
J′≥J

∣∣∣∣∣∣
J′∑
j=J

2j−1∑
k=0

Yj,kΨj,k (t)

∣∣∣∣∣∣ > ε

 ≤ P

 ∞∑
j=J

2−(j+1)/2Mj > ε


≤ P

(
∃j ≥ J : 2−(j+1)/2Mj > 2−(j−J)/2

(
1− 1√

2

)
ε

)
≤

∑
j≥J

P
(
Mj > 2J/2

(√
2− 1

)
ε
)
.

where we use that
∑
j≥J 2−(j−J)/2 = 1

1−2−1/2 . Now use for Z ∼ N(0, 1) that P(|Z| > t) ≤
e−t

2/2 for any t ≥ 1 (see Lemma 1.15) we obtain

P

 sup
J′≥J

∣∣∣∣∣∣
J′∑
j=J

2j−1∑
k=0

Yj,kΨj,k (t)

∣∣∣∣∣∣ > ε

 ≤∑
j≥J

2j−1∑
k=0

exp(−2J(
√

2− 1)2ε2/2) J→∞−−−−→ 0.

Hence, along a subsequence Jn →∞ we have a.s. convergence. Therefore, with probability
1 are the continuous functions

BJt (ω) = Y0,0(ω)Φ0(t) +

J∑
j=0

2j−1∑
k=0

Yj,k(ω)Ψj,k(t)

converge uniformly to Bt(ω).

Remark 1.9.

(i) For γ ∈ (0, 1/2) we even have
∑∞
i=J 4j(ω)2γj P−→ 0. This implies (direct calculations

or wavelet theory) also that Bt has γ-Hölder continuous paths.

(ii) This construction offers another way (beyond Donsker) to simulate Brownian motion
by approximations BJt (ω) (dyadic refinements of Brownian motion).

1.3 Properties of Brownian sample paths

We start by considering the quadratic variation of Brownian paths. Let τn, n ≥ 1, be a
sequence of partitions of [0, 1], τn ⊆ τn+1, for all n and maxti∈τn |ti+1 − ti| n→∞−−−−→ 0. An
example is τn = Dn from the previous proof.

Theorem 1.10. For each t ∈ [0, 1] let Snt :=
∑
ti∈τn,ti≤t(Bti+1

−Bti)2. Then we have

lim
n→∞

Snt = t a.s. and in L2.

Remark 1.11. The limit is called quadratic variation in analogy to the variation of a function
f :

V[0,t] (f) = sup
τ

∑
ti∈τ,ti≤t

|f (ti+1)− f (ti)| ,
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where the supremum ranges over all partitions of [0, t]. If V[0,t](f) <∞ for all t ≥ 0, then f
is of finite/bounded variation. If f is continuous, it can be shown that

V[0,t](f) = lim
n→∞

∑
ti∈τn,ti≤t

|f (ti+1)− f (ti)|

holds for any sequence of partitions τn such that maxti∈τn |ti+1 − ti| n→∞−−−−→ 0.

Proof. 1. L2-convergence: We have E[Snt ] =
∑
ti∈τn,ti≤t(ti+1 − ti)→ t and

Var (Snt ) =
∑

ti∈τn,ti≤t

Var
((
Bti+1

−Bti
)2)

= 2
∑

ti∈τn,ti≤t

(ti+1 − ti)2

≤ 2 max
ti∈τn

|ti+1 − ti|
∑
ti∈τn

(ti+1 − ti)︸ ︷︷ ︸
→t

→ 0.

Hence, Snt
L2

→ t.
2. a.s. convergence for τn = Dn: From 1. and ti ∈ τn with ti+1− ti = 2−n we have E[(Snt −
t)2] ≤ 2 · 2−n, if t ∈ Dn. Hence,

∑
n≥1 E[(Snt − t)2] < ∞. By Chebyshev inequality and

Borel-Cantelli we obtain a.s. convergence (quick L2-convergence implies a.s. convergence).
3. a.s. convergence for any (τn): Let Gn := σ((Bti+1

− Bti)
2, ti ∈ τm,m ≥ n). Then

Gn ⊇ Gn+1 holds. We show for t ∈ τn: Snt = E[B2
t

∣∣Gn]. Interpreting “n” as “−n”, this
implies that (Snt ,Gn) is a backwards martingale such that Snt a.s.−−→ E[B2

t

∣∣⋂
n≥1 Gn]. By 1.

we must have have E[B2
t

∣∣⋂
n≥1 Gn] = t. Hence, consider (wlog t1 = 0)

E
[
B2
t

∣∣Gn] = E


 ∑
ti∈τn,ti≤t

(
Bti+1 −Bti

)2
∣∣∣∣∣∣∣Gn


= Snt +

∑
i6=j

E
[(
Bti+1 −Bti

) (
Btj+1 −Btj

)∣∣Gn]
= Snt +

∑
i6=j

∣∣Bti+1 −Bti
∣∣ · ∣∣Btj+1 −Btj

∣∣
·E
[
sgn

(
Bti+1

−Bti
)

sgn
(
Bti+1

−Btj
)∣∣Gn]

= Snt .

A precise argument for the conditional expectation uses that

B̃t =

{
Bt, t ≤ ti,
Bti − (Bt −Bti) t > ti,

is again a Brownian motion with |B̃ti+1 − B̃ti | = |Bti+1 − Bti | but sgn(B̃ti+1 − B̃ti) =
− sgn(Bti+1 −Bti).

Remark 1.12. Even without the nestedness τn ⊆ τn+1 we have L2-convergence, but not
necessarily a.s. convergence.

Corollary 1.13. A typical Brownian path is on no interval of finite variation, i.e. P(∃ 0 ≤
a ≤ b ≤ 1 : V[a,b](B) < ∞) = 0. In particular, Brownian motion is on no interval differen-
tiable with probability one.
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Proof. If V[a,b](B(ω)) <∞, then∑
ti∈τn,ti∈[a,b]

(
Bti+1 (ω)−Bti (ω)

)2 ≤ max
ti∈τn

∣∣Bti+1 (ω)−Bti (ω)
∣∣︸ ︷︷ ︸

n→∞−−−−→0 (uniform continuity)

·
∑

ti∈τn,ti∈[a,b]

∣∣Bti+1
(ω)−Bti (ω)

∣∣
︸ ︷︷ ︸

n→∞−−−−→V[a,b](B·(ω))

,

but the left hand side converges a.s. to b−a > 0. This is a contradiction! Finally, note that
a differentiable function is of finite variation.

Without proof let us state the much stronger result.

Theorem 1.14 (Paley, Wigner, Zygmund (1933)). With probability one a Brownian path
is nowhere differentiable.

Proof. See Karatzas (1991).

Lemma 1.15. For Z ∼ N(0, 1), a > 0, we have

a) P(Z ≥ a) ≤ 1√
2π

1
ae
−a2/2,

b) P(Z ≥ a) ≥ 1√
2π

1
a+ 1

a

e−a
2/2.

Proof. a) use for x ≥ a: e−x2/2 ≤ x
ae
−x2/2, then integrate.

b) use for x ≥ a: e−x2/2 ≥ 1
1+1/a2 (1 + 1

x2 )e−x
2/2 = 1

1+1/a2 (−x−1e−x
2/2) and integration.

Theorem 1.16 (Law of iterated logarithm, Khinchine (1933)). For a Brownian motion B
and almost all ω ∈ Ω we have

a) lim supt→0
B(ω)√

2t log(log(t−1))
= 1,

b) lim inft→0
Bt(ω)√

2t log(log(t−1))
= −1,

c) lim supt→∞
Bt(ω)√

2t log(log(t))
= 1,

d) lim inft→∞
Bt(ω)√

2t log(log(t))
= −1.

Proof. By symmetry −Bt is again a Brownian motion such that (a) ⇒ (b), (c) ⇒ (d).
Moreover, by time inversion Xt = t · B1/t, t > 0, X0 = 0, is also a Brownian motion
(Stochastic processes I). We infer from (a) for X that

lim sup
t→0

tB1/t (ω)√
2t log (log (t))

= 1.

Letting s = t−1 we obtain

lim sup
s→∞

Bs (ω)√
2s log (log (s))

= 1,

which is (c). Hence, it suffices to prove (a).
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Let h(t) =
√

2t log(log t−1). The proof for

lim sup
t→0

Bt
h (t)

≤ 1 a.s. (1.3.1)

will be given after Theorem 1.29. We show now that lim supt→0
Bt
h(t) ≥ 1 a.s. using the 2nd

part of Borel-Cantelli. Fix ϑ ∈ (0, 1) and set An := {Bϑn − Bϑn+1 ≥
√

1− ϑh(ϑn)}. By
Lemma 1.15 we obtain for x =

√
2 log(n) + 2 log(log(ϑ−1))

P (An) = P
(
Bϑn −Bϑn+1√
ϑn − ϑn+1

≥ x
) Lemma

≥ e−x
2/2

√
2π
(
x+ 1

x

) ≥ c · 1

n
√

log n

for some constant c > 0 and n > |1/ log ϑ| . Since
∑
n≥1

1
n
√

logn
= ∞ and (An)n≥1 are

independent, Borel-Cantelli yields P(An infinitely often) = 1. The upper bound in (1.3.1)
applied to (−Bt) shows (with bounding small terms by 2 twice) that

−Bϑn+1(ω) ≤ 2h
(
ϑn+1

)
≤ 4ϑ1/2h (ϑn)

for all n ≥ N(ω) and ω ∈ Ω∗,P(Ω∗) = 1. Hence, we have a.s.

Bϑm

h (ϑm)
=
Bϑm −Bϑm+1

h (ϑm)
+
Bϑm+1

h (ϑm)
≥
√

1− ϑ− 4ϑ1/2

holds for infinitely many m ≥ 1. Therefore

P
(

lim sup
t→0

Bt
h (t)

≥
√

1− ϑ− 4ϑ1/2

)
= 1

for any ϑ ∈ (0, 1). Take ϑk → 0 to conclude

P
(

lim sup
t→0

Bt
h (t)

≥ 1

)
= 1.

Except for the gap in 1.3.1 we are done.

Without proof let us state the main result for the modulus of continuity.

Theorem 1.17 (Lévy, 1937). It holds

P

(
lim sup
δ→0

1√
2δ log δ−1

max
0≤s≤t≤1,t−s≤δ

|Bt −Bs| = 1

)
= 1.

Proof. See Karatzas (1991).

1.4 Brownian motion as martingale and Markov process

Definition 1.18. A process (Xt, t ≥ 0) on (Ω,F ,P) is called

a) adapted to a filtration (Ft)t≥0 if Xt is Ft-measurable for all t ≥ 0,

b) (Ft)t≥0-martingale if X is adapted, Xt ∈ L1(P) and E[Xt|Fs] = Xs for all 0 ≤ s ≤ t.

c) (Ft)t≥0-Brownian martingale if X is continuous, adapted, Xt −Xs ∼ N(0, t− s) and
if Xt −Xs is independent of Fs (written Xt −Xs ⊥ Fs) for all s ≤ t.

Remark 1.19. Any Brownian motion is also a Brownian motion with respect to its own
filtration F0

t = σ(Bs, s ≤ t).
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Proposition 1.20. The following processes, derived from a Brownian motion B with respect
to (Ft)t≥0, are (Ft)t≥0-martingales.

a) Mt = Bt, t ≥ 0,

b) Mt = B2
t − t, t ≥ 0,

c) Mt = exp(λBt − λ2

2 t), t ≥ 0, for all λ ∈ R.

Proof. Adaptedness is clear in all cases. Just check the martingale property for t > s.

a) E[Bt|Fs] = E[Bs + (Bt −Bs)|Fs] = Bs + E[Bt −Bs] = Bs.

b) E[B2
t −B2

s |Fs] = E[(Bt−Bs)2 + 2(Bt−Bs)Bs|Fs] = E[(Bt−Bs)2] + 2BsE[Bt−Bs] =
t− s. Rearranging the terms proves the claim.

c) We have

E

 exp
(
λBt − λ2

2 t
)

exp
(
λBs − λ2

2 s
)
∣∣∣∣∣∣Fs

 = E
[

exp

(
λ (Bt −Bs)−

λ2

2
(t− s)

)∣∣∣∣Fs]
= E

[
eλ(Bt−Bs)

]
e−

λ2(t−s)
2

Z∼N(0,1)
= E

[
eλ
√
t−sZ

]
e−

λ2(t−s)
2

= 1,

where we used that the moment generating function of a Gaussian satisfies E[eλZ ] =

e
λ2

2 .

Theorem 1.21. If (Bt, t ≥ 0) is a Brownian motion with respect to any filtration (F0
t )t≥0,

then also with respect to its right-continuous extension Ft := F0
t+ =

⋂
s>t F0

s .

Proof. We show a little more general statement, i.e. we show

E [f (Bt+h −Bt)ϕt] = E [f (Bt+h −Bt)]E [ϕt]

for h > 0, any bounded Ft-measurable ϕt and any bounded Borel-measurable f (the state-
ment follows then from choosing f = 1A, ϕt = 1B for any A ∈ BR, B ∈ Ft). It suffices
to consider f ∈ Cb(R) (approximate the open intervals in R by such functions and use the
monotone class theorem). For εn → 0

E [f (Bt+h −Bt)ϕt] = E
[

lim
n→∞

f (Bt+h −Bt+εn)ϕt

]
Dom. conv.

= lim
n→∞

E
[
f (Bt+h −Bt+εn)︸ ︷︷ ︸
⊥F0

t+εn
⊇Ft

ϕt︸︷︷︸
∈Ft

]

= lim
n→∞

E [f (Bt+h −Bt+εn)]E [ϕt]

Dom. conv.
= E [f (Bt+h −Bt)]E [ϕt] .

Remark 1.22.
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a) (Ft)t≥0 is usually larger than (F0
t )t≥0, admitting infinitesimal looks into the future.

This allows larger classes of stopping times.

b) (Ft)t≥0 is itself right-continuous: Ft ⊆
⋂
ε>0 Ft+ε ⊆

⋂
ε>0 F0

t+2ε = Ft.

Definition 1.23. For a filtration (Ft)t≥0 a random variable τ : Ω→ [0,∞] is called (Ft)t≥0-
stopping time if {τ ≤ t} ∈ Ft for all t ≥ 0. We set Fτ := {A ∈ F|A∩{τ ≤ t} ∈ Ft for all t ≥
0}.

Example 1.24. Let (Xt, t ≥ 0) be adapted to a right-continuous filtration (Ft)t≥0. Is
τA := inf{t ≥ 0 : Xt ∈ A} a stopping time for a Borel set A?

a) A open, (Xt) is right-continuous: {τA < t} =
⋃
r∈Q,r<t {Xr ∈ A}︸ ︷︷ ︸

∈Fr⊆Ft

∈ Ft. Since (Ft)t≥0

is right-continuous, we have also {τA ≤ t} ∈ Ft+ = Ft.

b) F closed, (Xt) continuous. Any open set O can be written as O =
⋃
n≥1 Fn with Fn

closed (e.g. Fn = B(xn, rn)). Hence, any closed set F can be written as F =
⋂
n≥1 Un,

Un open. Thus,
{τF ≤ t} =

⋂
n≥1

{τUn≤t} ∈ Ft.

c) Any Borel set A? That’s very complicated...

The following facts are proved in the exercises.(the following is adapted from the lecture)

Theorem 1.25. We have for a filtration (Ft)t≥0.

a) Fτ is a σ-algebra. If τ = t is deterministic, then Fτ = Ft.

b) If τ is a bounded (Ft)t≥0-stopping time and (Xt, t ≥ 0) is a right-continuous process,
then Xτ is well defined and Fτ -measurable. In particular, Xτ is F-measurable.

c) If τ, σ are (Ft)t≥0-stopping times, then τ ∧ σ and τ ∨ σ are stopping times, as well.

d) If τ, σ are (Ft)t≥0-stopping times and X is a Fτ -measurable random variable, then
{τ ≤ σ} ∈ Fτ∧σ and X1{τ≤σ} is Fτ∧σ-measurable.

Proof. See exercises.

Theorem 1.26. Let (Ft)t≥0 be a filtration and (Mt, t ≥ 0) a right-continuous (Ft)t≥0-
adapted and integrable process. Then the following statements are equivalent:

a) (Mt, t ≥ 0) is a (Ft)t≥0-martingale.

b) For all bounded (Ft)t≥0-stopping times τ holds E[Mτ ] = E[M0].

c) (Optional sampling) For all bounded (Ft)t≥0-stopping times σ ≤ τ holds E [Mτ | Fσ] =
Mσ.

d) (Optional stopping) For all (Ft)t≥0-stopping times τ the stopped process Mτ
t := Mτ∧t,

t ≥ 0, is an (Ft)t≥0-martingale.

Proof. See exercises.
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Proposition 1.27. Let (Mt, t ≥ 0) be a right-continuous martingale or a right-continuous
non-negative submartingale and λ > 0 . Then

P
(

sup
0≤t≤T

|Mt| ≥ λ
)
≤ 1

λ
E [|MT |] (Maximal inequality)

for all T > 0. Moreover, for p > 1 and MT ∈ Lp we have

E
[

sup
0≤t≤T

|Mt|p
]
≤
(

p

p− 1

)p
E [|MT |p] (Doob’s inequality).

Proof. (based on Stochastic processes I. Set Sn = {k2−nT : k = 0, . . . , 2n} and consider the
discrete-time martingale (Mk, k ∈ Sn). Then by the discrete-time Doob’s inequality

P
(

sup
k∈Sn

|Mk| > λ

)
≤ E [|MT |]

λ
.

Since 1{supk∈Sn |Mk|>λ} → 1{sup0≤k≤T |Mk|>λ} as n → ∞ by right-continuity, dominated
convergence yields

P
(

sup
0≤t≤T

|Mt| > λ

)
= lim
n→∞

P
(

sup
k∈Sn

|Mk| > λ

)
≤ E [|MT |]

λ
.

(adapted from the lecture) From this we deduce

lim
n→∞

P
(

sup
0≤t≤T

|Mt| ≥ λ+
1

n

)
≤ lim sup

n→∞

E [|MT |]
λ+ 1

n

=
E [|MT |]

λ

Doob’s inequality follows in the same way from Stochastic processes I.

1.4.1 Ruin problems

Let τa,b = min{t > 0 : Bt /∈ (a, b)} for (a < 0 < b). τa,b is a stopping time (see above).

Theorem 1.28. It holds

a) P(Bτa,b = b) = |a|
|a|+b ,

b) P(Bτa,b = a) = b
|a|+b ,

c) E [τa,b] = |a| · b.

Proof. Mt = B2
t − t is a martingale. Hence, by the stopping theorem

E
[
B2
τa,b∧m︸ ︷︷ ︸

≤(|a|+b)2

]
= E

[
τa,b ∧m︸ ︷︷ ︸
→τa,b

]

for any m > 0. The left hand side is bounded and the right hand side is monotone in m
such that (adapted from the lecture)

∞ > lim sup
m

E
[
B2
τa,b∧m

]
= lim sup

m
E [τa,b ∧m] = lim

m
E [τa,b ∧m] = E [τa,b] .

Hence, τa,b <∞ P-a.s. Using dominated convergence on the left and monotone convergence
on the right as m→∞, we conclude

E
[
B2
τa,b

]
= E [τa,b] .
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In particular, P(τa,b < ∞) = 1. Now use that (Bt∧τa,b)t≥0 is a martingale such that
E
[
Bt∧τa,b

]
= 0. We obtain E

[
Bτa,b

]
= 0 by proving that (Bm∧τa,b)m∈N is uniformly inte-

grable. This is done as in Stochastic processes I and is also called Wald identity. (or use
dominated convergence, right?)Then

0 = E
[
Bτa,b

]
= P

(
Bτa,b = a

)
· a+

(
1− P

(
Bτa,b = a

))
· b

and thus
P
(
Bτa,b = a

)
=

b

|a|+ b
.

Finally,
E
[
B2
τa,b

]
= a2P

(
Bτa,b = a

)
+ b2

(
1− P

(
Bτa,b = a

))
= |a| · b.

Now consider τb = inf{t ≥ 0 : Bt ≥ b} for b > 0. We have P(τb < ∞) = 1, but E[τb] = ∞,
because

a) P (τb <∞) ≥ P (τb = τa,b) = |a|
|a|+b → 1, as a→ −∞,

b) E[τb] ≥ E[τa,b] = |a| · b→∞, as a→ −∞.

What about the exact law of τb?

Theorem 1.29 (Laplace transform of Pτb). We have for any λ > 0:

E
[
e−λτb

]
= e−b

√
2λ.

This means that τb has the Lebesgue density

fb (t) =
|b|√
2πt3

e−b
2/2t1R+ (t) (

1

2
-stable distribution).

Proof. Mt = eαBt−
α2

2 t is a martingale and we have 0 ≤ Mt∧τb 6 eαb, τb <∞ a.s. Thus we
have for any t and by dominated convergence, as well as setting finally λ = α2

2 , that

1 = E [M0] = E [Mt∧τb ] = E [Mτb ] = E
[
eαb−

α2

2 τb
]

= E
[
e−λτb

]
eb
√

2λ.

Calculating the Laplace transform of fb yields the density.

Proof of the law of the iterated logarithm completed. It remains to show

P
(

lim sup
t→0

Bt
h (t)

≤ 1

)
= 1

for h(t) =
√

2t log log t−1. Consider Mt = exp(λBt − λ2

2 t) and the maximal inequality for
M for any β > 0:

P
(

max
0≤s≤t

(
Bs −

λ

2
s

)
≥ β

)
= P

(
max

0≤s≤t
Ms ≥ eλβ

)
≤ E [Mt]

eλβ

= e−λβ .
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Take ϑ, δ ∈ (0, 1), λ = (1 + δ)ϑ−nh(ϑn), β = 1
2h(ϑn):

P
(

max
0≤s≤ϑn

(
Bs −

λ

2
s

)
≥ β

)
≤ exp

(
− (1 + δ)ϑ−nh (ϑn)

2
/2
)

=
(
n log

(
ϑ−1

))−(1+δ)
,

which is summable in n. By Borel-Cantelli there exists Ωϑ,δ with P (Ωϑ,δ) = 1, Nϑ,δ(ω) such
that for all ω ∈ Ωϑ,δ and all n ≥ Nϑ,δ(ω):

max
0≤s≤ϑn

(
Bs (ω)− 1 + δ

2
sϑ−nh (ϑn)

)
<

1

2
h (ϑn) .

Then

sup
t∈(ϑn−1,ϑn]

Bt (ω)

h (t)
≤ sup

t∈(ϑn−1,ϑn]

maxϑn−1≤s≤ϑn Bs (ω)

h (t)

≤
(

1 +
δ

2

)
sup

t∈(ϑn−1,ϑn]

h (ϑn)

h (t)

≤
(

1 +
δ

2

)
ϑ−1/2.

As n→∞ we therefore obtain

lim sup
t→0

Bt (ω)

h (t)
≤
(

1 +
δ

2

)
ϑ−1/2

for all ω ∈ Ωδ,ϑ. Taking δn → 0, ϑn → 1 rational we conclude

P
(

lim sup
t→0

Bt
h (t)

≤ 1

)
= 1.

1.4.2 Strong Markov property and the reflection principle

We shall now study the Markov property of Brownian motion. It is even a strong Markov
process (see below) which is not true in general for continuous time processes.

Theorem 1.30. Let B be a Brownian motion with respect to (Ft)t≥0 and τ an a.s. fi-
nite (Ft)t≥0-stopping time. Then B̃t := Bτ+t − Bτ , t ≥ 0, is again a Brownian motion
independent of Fτ , i.e. a Brownian motion has the strong Markov property.

Proof. We show for ϕ : Ω → R Fτ -measurable, bounded and F : C([0,∞)) → R Borel-
measurable bounded

E
[
ϕF

((
B̃t, t ≥ 0

))]
= E [ϕ]

ˆ
F dP∗,

where P∗ is the Wiener measure on C([0,∞)). It suffices again to consider F ∈ Cb(C([0,∞)))
(approximation argument in Polish spaces). Let τn be the nth dyadic approximation of τ ,
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i.e. τn(ω) ∈ {k2−n : k ∈ N0}, τn(ω)→ τ(ω). Set B̃nt (ω) = Bτn(ω)+t(ω)−Bτn(ω)(ω). Then

E
[
ϕF

(
B̃n
)]

=
∑
k≥0

E

ϕF
 B̃n︸︷︷︸
Bk2−n+t−Bk2−n again BM, indep. of Fk2−n

1{τn=k2−n}



=
∑
k≥0

E

ϕ1{τn=k2−n}︸ ︷︷ ︸
Fk2−n -mb.

ˆ F dP∗

= E [ϕ]

ˆ
F dP∗.

Since F (B̃n)→ F (B̃), D ⊆ T yields

E
[
ϕF

(
B̃
)]

= lim
n→∞

E
[
ϕF

(
B̃n
)]

= E [ϕ]

ˆ
F dP∗.

We apply this to obtain the reflection principle (Bachelier 1900).

Theorem 1.31. It holds P(τb ≤ t) = 2P(Bt ≥ b) = P(|Bt| ≥ b) for b > 0.

Proof. We have P(Bt ≥ b) = P(Bt ≥ b, τb ≤ t). Writing Bt − b = Bt − Bτb = B̃t−τb this
yields

P (Bt ≥ b) = E
[
E
[
1[0,∞)

(
B̃t−τb

)∣∣∣Fτb]1{τb≤t}]
and by symmetrie (the probability for B̃t−τb being positive is the same as being negative we
have

P (Bt ≥ b) =
1

2
P (τb ≤ t) .

Corollary 1.32. The random variables Mt = max0≤s≤tBs, |Bt|, Mt−Bt all have the same
law.

Proof. For the first two random variables observe that P(Mt ≥ b) = P(τb ≤ t)
see above

=
P(|Bt| ≥ b) for all b ≥ 0. With respect to the third random variable we use time inversion:
B̃s = Bt−s −Bt, 0 ≤ s ≤ t, is again a Brownian motion. Then

Mt −Bt = max
0≤s≤t

(Bs −Bt) = max
0≤u≤t

(Bt−u −Bt) = max
0≤u≤t

B̃u =: M̃t.

Since M̃t
d
= Mt (same law), we also have Mt −Bt

d
= Mt.

Remark 1.33 (Lévy). (Mt −Bt, t ≥ 0) and (|Bt|, t ≥ 0) have the same law on C[0,∞).

Theorem 1.34 (First Arcsine law). For Brownian motion the random time τM =
argmaxt∈[0,1]Bt is a.s. unique and satisfies

P (τM ≤ t) =
2

π
arcsin

(√
t
)
, t ∈ [0, 1] ,

i.e. it has density fτM (t) = 1

π
√
t(1−t)

.
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Proof. Let M := max0≤t≤1Bt. Then

P (∃t ≤ s : Bt = M) = P
(

max
0≤u≤s

Bu ≥ max
s≤v≤1

Bv

)
= P

(
max

0≤ũ≤s
(Bs−ũ −Bs) ≥ max

s≤v≤1
(Bv −Bs)

)
.

The processes (Bs−ũ − Bs, 0 ≤ ũ ≤ s) and (Bv − Bs, s ≤ v ≤ 1) are independent Brownian
motions. Thus

P (∃t ≤ s : Bt = M) = P

√s |Z1|︸ ︷︷ ︸
d
=|Bs|

≥
√

1− s |Z2|︸ ︷︷ ︸
d
=|B1−s|


for Z1, Z2

iid∼ N(0, 1) such that rearranging the terms yields

= P

(
|Z2|√
Z2

1 + Z2
2

≤
√
s

)
polar coordinates

= P
(
|sinϑ| ≤

√
s
)
,

where we use that (R cosϑ,R sinϑ) ∼ N(0, E2) with R2 ∼ exp( 1
2 ), ϑ ∼ U [0, 2π], where E2

is two dimensional identity matrix. By symmetrie considerations we have

P
(
|sinϑ| ≤

√
s
)

= P
(
|sinϑ| ≤

√
s, 0 ≤ ϑ ≤ π

2

)
+ P

(
|sinϑ| ≤

√
s,
π

2
≤ ϑ ≤ π

)
+P
(
|sinϑ| ≤

√
s, π ≤ ϑ ≤ 3

2
π

)
+ P

(
|sinϑ| ≤

√
s,

3

2
π ≤ ϑ ≤ 2π

)
= 4P

(
sinϑ ≤

√
s
)

=
2

π
arcsin

√
s.

The calculation also shows

P
(

max
0≤u≤s

Bu = max
s≤v≤1

Bv

)
= P

(√
s |Z1| =

√
1− s |Z2|

)
= 0.

Hence,

P
(
∃s ∈ Q ∩ [0, 1] : max

0≤u≤s
Bu = max

s≤v≤1
Bv

)
= 0

and therefore
P (there are t1 6= t2such that Bt1 = Bt2 = M) = 0.

With probability one the argmax is unique and well-defined.



Chapter 2

Continuous martingales and
stochastic integration

2.1 Continuous (local) martingales

Definition 2.1. (Mt, t ≥ 0) is called (Ft)t≥0-local martingale if

• (adapted from the lecture)M is (Ft)t≥0-adapted,

• there are (Ft)t≥0-stopping times (τn)n≥1 such that τn(ω)→∞ a.s.,

• the stopped processes Mτn
t (ω) := Mτn(ω)∧t(ω), t ≥ 0, are (added this) uniformly

integrable (Ft)t≥0-martingales for all n ≥ 1.

(τn)n≥1 is called localising sequence of stopping times for M .

Example 2.2.

a) Each right-continuous martingale is a local martingale by optional stopping.

b) Let A be a non-negative random variable with E[A] =∞, independent of a Brownian
motion B. Then Mt(ω) := A(ω)Bt(ω), t ≥ 0, is NOT a martingale, because for
all t > 0 E[|Mt|] = ∞, i.e. Mt /∈ L1. Put τn := inf{t ≥ 0 : |Mt| ≥ n}. Then
τn, n ≥ 1, are stopping times with respect to Ft = σ(A,Bs, s ≤ t), increasing in n and
limn→∞ τ(ω) =∞ a.s. (because M is continuous and thus locally bounded). We have

• (adapted from the lecture) E[|Mτn
t |] = E[|M0|1{τn=0}︸ ︷︷ ︸

=0

+ |Mτn
t |1{τn>0}︸ ︷︷ ︸
≤n

] ≤ n <∞,

• Mτn is (Ft)t≥0-adapted (by definition of (Ft)t>0),

• s < t:(adapted from the lecture!)|AE [Bt∧τn | Fs]| = |ABs∧τn | ≤ n is integrable
such that

E [Mτn
t | Fs] = AE [Bt∧τn | Fs]

opt. stopp.
= ABs∧τn

= Mτn
s .

20
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Recall the martingale transform or discrete stochastic integral from Stochastic processes I:
If (Xn)n∈N is predictable, bounded, (Mn)n∈N a martingale, then

(X ◦M)n =

n∑
k=1

Xk︸︷︷︸
Fk−1-mb.

(Mk −Mk−1)

is again a martingale. Interpretation in finance as value of a portfolio (Xk number of stocks
in period k, Mk price of stock in period k).

Definition 2.3. A process (Xt, t ≥ 0) of the form

Xt (ω) =

∞∑
k=0

ξk (ω)1(τk(ω),τk+1(ω)] (t)

with 0 = τ0 < τ1 < · · · → ∞ a sequence of (Ft)t≥0-stopping times and ξk are Fτk -measurable
random variables is called simple. For another (Ft)t≥0-adapted process Y then define

(X ◦ Y )t (ω) :=

∞∑
k=0

ξk (ω)
(
Yt∧τk+1(ω) (ω)− Yt∧τk(ω) (ω)

)
.

This is called the stochastic integral and is sometimes denoted as
´ t

0
Xs dYs. We set E :=

{(Xt, t ≥ 0) : X simple and bounded} .

Proposition 2.4. (adapted: added linearity, stopping)Let X and Y be simple processes.
We have the following properties of (X ◦M):

a) If M is a continuous L2-martingale and X is bounded, then (X ◦ M) is again an
L2-martingale.

b) If M is a local continuous martingale, then (X ◦M) is again a local martingale.

c) (Linearity) IfM is a local continuous martingale, then ∀α, β ∈ R: ((αX + βY ) ◦M) =
α (X ◦M) + β (Y ◦M).

Proof. See exercises.

Lemma 2.5. If X is a simple, bounded process and M is a continuous L2-martingale, then

E
[
(X ◦M)

2
t

]
= E

∑
k≥0

ξ2
k

(
E
[
M2
τk+1∧t

∣∣∣Fτk∧t]−M2
τk∧t

) ≤ C2E
[
M2
t

]
holds, where ||X(ω)||∞ ≤ C a.s. for a deterministic constant C > 0.

Proof. (adapted from the lecture!)Observe from Theorem 1.25 that ξk1{τk≤t} is Fτk∧t-
measurable. For n ≤ m we have(

m∑
k=n

ξk
(
Mτk+1∧t −Mτk∧t

))2

=

(
m∑
k=n

ξk1{τk≤t}
(
Mτk+1∧t −Mτk∧t

))2

= 2

m∑
n≤k<j

ξkξj1{τk≤t}1{τj≤t}
(
Mτk+1∧t −Mτk∧t

) (
Mτj+1∧t −Mτj∧t

)
+

m∑
k=n

ξ2
k1{τk≤t}

(
Mτk+1∧t −Mτk∧t

)2
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such that

E

( m∑
k=n

ξk
(
Mτk+1∧t −Mτk∧t

))2


=

(
2

m∑
n≤k<j

E
[
ξk1{τk≤t}

(
Mτk+1∧t −Mτk∧t

)
E
[
ξj1{τj≤t}

(
Mτj+1∧t −Mτj∧t

)∣∣∣∣Fτj∧t]︸ ︷︷ ︸
=0

]

+ E
[ m∑
k=n

ξ2
k1{τk≤t}

(
E
[
M2
τk+1∧t

∣∣∣Fτk∧t]−M2
τk∧t

)])

= E
[ m∑
k=n

ξ2
k1{τk≤t}

(
E
[
M2
τk+1∧t

∣∣∣Fτk∧t]−M2
τk∧t

)
︸ ︷︷ ︸

≥0 because of Jensen

])

≤ C2
m∑
k=n

E
[
M2
τk+1∧t −M

2
τk∧t

]
= C2

(
E
[
M2
τm+1∧t −M

2
τn∧t

])
≤ C2

(
E
[
M2
t

]
− E

[
M2
τn∧t

])
,

where the last inequality follows from Jensen’s inequality and optional stopping (Theo-
rem 1.26). Because M is uniformly integrable on [0, t] and continuous, the last term
converges to 0 as n → ∞. In particular, (

∑n
k=1 ξk(Mτk+1∧t − Mτk∧t))n≥1 is an L2(P)-

Cauchy sequence. Observing that (X ◦M)t(ω) is a finite sum for all ω, i.e. (X ◦M)t(ω) =
limn→∞(

∑n
k=1 ξk(ω)(Mτk+1∧t(ω)−Mτk∧t(ω)), this implies

E
[
(X ◦M)

2
t

]
= lim

n→∞
E

( n∑
k=1

ξk
(
Mτk+1∧t −Mτk∧t

))2


= E

∑
k≥0

ξ2
k1{τk≤t}

(
E
[
M2
τk+1∧t

∣∣∣Fτk∧t]−M2
τk∧t

)
≤ C2

(
E
[
M2
t

]
− E

[
M2

0

])
= C2E

[
M2
t

]
.

In the sequel we fix a filtered probability space (Ω,F ,P, (Ft)) where (Ft)t≥0 is complete,
i.e. each N ∈ F with P(N) = 0 is already in F0 ⊆ Ft ∀t ≥ 0. (added remark)This implies
that a process which is indistinguishable of an adapted process is again adapted.

Definition 2.6. ByM2
c we denote the set of all (Ft)t≥0-martingales (Mt, t ≥ 0) withM0 =

0, Mt ∈ L2 for all t ≥ 0 and with continuous paths. We put ‖M‖M2
c

=
∑∞
n=1 2−n(‖Mn‖L2 ∧

1) for M = (Mt, t ≥ 0) ∈M2
c .

Lemma 2.7. M2
c is a vector space and d(M,N) = ‖M −N‖M2

c
is a metric on M2

c when
identifying indistinguishable martingales.

Proof. Vector space properties are easily checked. d is well-defined (i.e. d(M,N) < ∞ for
all M,N ∈ M2

c), clearly symmetric, non-negative and satisfies the triangle inequality (cf.
the metric on C(R+)). Moreover,

d(M,N) = 0⇔ ∀n ≥ 1 : ‖Mn −Nn‖L2 = 0. (2.1.1)
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Furthermore, if M,N are indistinguishable, then Mt −Nt = 0 for all t P-a.s. and therefore
d(M,N) = 0. If, on the other hand, M −N ∈ M2

c and d(M,N) = 0, then (Mt −Nt)2 is a
submartingale and for all t > 0

E
[
(Mt −Nt)2

]
≤ E

[(
Mbtc+1 −Nbtc+1

)2]
= ‖(M −N)btc+1‖

2
L2 = 0

by (2.1.1). Hence, P(Mt = Nt) = 1 for all t ≥ 0 and therefore M,N indistinguishable, as
they are also continuous (cf. exercises).

Proposition 2.8. (M2
c , d) is a complete space.

Proof. Let (M (n))n∈N ⊆M2
c be a Cauchy sequence, i.e. limm,n→∞‖M (m) −M (n)‖M2

c
= 0.

(suggestion: (suggestion: Then Then for all t ≥ 0 (M
(n)
t )n≥1 is a Cauchy sequence in L2(Ft)

(see the submartingale argument from above). Because L2(Ft) is complete, there exist
Mt ∈ L2(Ft) such that M (n)

t
L2

−−→ Mt. We claim that (Mt, t ≥ 0) is a martingale. Indeed,
Mt ∈ L2 and adaptedness are clear.Then for all t ≥ 0 (M

(n)
t )n≥1 is a Cauchy sequence in L2

(see the submartingale argument from above). Because L2 is complete, there exist Mt ∈ L2

such that M (n)
t

L2

−−→Mt. We claim that (Mt, t ≥ 0) is an L2-martingale. Indeed, Mt ∈ L2 is
clear. Moreover, for all t > 0 there exists a subsequence M (nk)

t
a.s.−−→ Mt and all M (nk)

t are
Ft-measurable. Because all nullsets are already in Ft, Mt is Ft-measurable. For s < t and
A ∈ Fs we have then∣∣∣E [Mt1A]− E

[
M

(n)
t 1A

]∣∣∣ =
∣∣∣〈Mt −M (n)

t ,1A〉L2

∣∣∣ n→∞−−−−→ 〈0,1A〉L2 = 0.

Hence,

E [Mt1A] = lim
n→∞

E
[
M

(n)
t 1A

]
Mn mart.

= lim
n→∞

E
[
M (n)
s 1A

]
= E [Ms1A]

such that E[Mt|Fs] = Ms. We still have to show that M is continuous. By Proposition 1.27
(Doob’s inequality) (adapted from the lecture)

E
[

sup
0≤t≤T

∣∣∣M (m)
t −M (n)

t

∣∣∣2] ≤ 4E
[∣∣∣M (m)

T −M (n)
T

∣∣∣2]→ 0

as m,n→∞ for all T > 0. We can then select a subsequence M (nk) such that

E
[

sup
0≤t≤T

∣∣∣M (nk+1)
t −M (nk)

t

∣∣∣2] ≤ 2−k

for all k ∈ N. Hence, Borel-Cantelli implies for almost all ω that (M (nk)(ω))k∈N is a
(C([0, T ]), ‖·‖∞)-Cauchy sequence. By completeness of this space and becauseM (nk)

t
L2

−−→Mt

we see that M is a.s. continuous on [0, T ]. We obtain that M is a.s. continuous on⋃
T∈N[0, T ] = R+. Because the filtration is complete, we can find a process M̃ ∈M2

c which
is indistinguishable of M . In particular, ‖M (n) − M̃‖M2

c
= ‖M (n) −M‖M2

c
→ 0.

Remark 2.9. If we restrict the martingales inM2
c to the time interval [0, T ] for some T > 0,

thenM2
c |[0,T ] with ‖M‖ := ‖MT ‖2L2 is even a Hilbert space (cf. exercises).

Theorem 2.10. If M ∈ M2
c has finite variation on [0, T ], i.e. VT (M(ω)) < ∞ a.s., then

M is a.s. constant on [0, T ] (i.e. equal to 0).
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Proof. Let π = {0 = t0 < t1 < · · · < tm = T} be a partition of [0, T ]. Then

E
[
M2
T

]
= E

[
m−1∑
k=0

(
M2
tk+1
−M2

tk

)]
Mmartingale

= E

[
m−1∑
k=0

(
Mtk+1

−Mtk

)2]
.

Assume first ∃K > 0∀ω ∈ Ω such that VT (M(ω)) ≤ K <∞. Then

E
[
M2
T

]
≤ E

[
max

0≤k≤m

∣∣Mtk+1
−Mtk

∣∣ · m−1∑
k=0

∣∣Mtk+1
−Mtk

∣∣
︸ ︷︷ ︸

≤VT (M)≤K

]
≤ K · E

[
max

0≤k≤m

∣∣Mtk+1
−Mtk

∣∣] .

For partitions π(n) such that maxk |t(n)
k+1− t

(n)
k | → 0, uniform continuity ofM on [0, T ] yields

max0≤k≤m |Mt
(n)
k+1

−M
t
(n)
k

| a.s.−−→ 0. Since

|Mt (ω)| ≤ |M0 (ω)|︸ ︷︷ ︸
=0

+ VT (M (ω)) ≤ K,

we have |Mtk+1
−Mtk | ≤ 2K and dominated convergence implies

E
[

max
0≤k≤m

∣∣∣Mt
(n)
k+1

−M
t
(n)
k

∣∣∣] n→∞−−−−→ 0

(independent of the sequence of partitions). Hence, E
[
M2
T

]
= 0 and because M2 is a

submartingale, we also have E[M2
t ] = 0 for all t ∈ [0, T ]. This implies Mt = 0 for all

t ∈ [0, T ] a.s. by continuity.
Let now M ∈ M2

c and put τn = inf{t > 0 : Vt(M) ≥ n} (observe that Vt(M) is continuous,
increasing in t and (Ft)t≥0-adapted). Then τn is a stopping time and the stopped martingale
Mτn
t = Mt∧τn satisfies by the first part above (note: VT (Mτn) ≤ n) for all 0 ≤ t ≤ T that

Mt∧τn = 0 a.s. More precisely, it holds P(∀0 ≤ t ≤ T : Mt∧τn = 0) = 1. Since VT (M) <∞
a.s., we have τn → ∞ a.s. and thus P(∀n ≥ 1, 0 ≤ t ≤ T : Mt∧τn = 0) = 1 and thus
P(∀0 ≤ t ≤ T : Mt = 0) = 1.

Corollary 2.11. Any non-trivial (non-constant) continuous L2-martingale has indefinite
variation on every interval [s, t], in particular, is non-differentiable there.

Proof. Immediate consequence of the previous theorem.

Remark 2.12.

a) This holds more generally for any continuous local martingale.

b) There are of course many discontinuous martingales of finite variation, e.g. Mt =
Nt − λt, t ≥ 0, with Nt Poisson process of intensity λt (on [0, T ]).

Theorem 2.13. (adapted from lecture: we don’t need M0 = 0 here)Every continuous
bounded martingale M posesses a unique (up to indistuinguishability) continuous (added
adapted)adapted increasing process (〈M〉t , t ≥ 0) with 〈M〉0 = 0 such that (M2

t − 〈M〉t , t ≥
0) is a martingale.

Proof. We first show existence of 〈M〉. For all n ≥ 1 introduce the stopping times τn0 (ω) = 0,
τnk+1(ω) = inf{t > 0 : |Mt+τnk (ω)(ω)−Mτnk (ω)(ω)| ≥ 2−n}. Let us write tnk = t∧ τnk and note
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limk→∞ τnk (ω) = ∞, because M is uniformly continuous on each compact [0, T ]. The main
point is

M2
t =

∞∑
k=1

(
M2
tnk
−M2

tnk−1

)
=

∞∑
k=1

(
Mtnk

−Mtnk−1

)2

︸ ︷︷ ︸
=:Ant

+ 2

∞∑
k=1

Mtnk−1

(
Mtnk

−Mtnk−1

)
︸ ︷︷ ︸

=2·(Hn·M)t

with Hn
t =

∑∞
k=1Mτnk−1

1(τnk−1,τ
n
k ] (t) simple and bounded. The following properties are

easily checked:

i. Jn(ω) := {τnk (ω) : k ≥ 0} ⊆ Jn+1(ω),

ii. supt≥0 |Hn
t −Hn−1

t | ≤ 2−(n+1), supt≥0 |Hn
t −Mt| ≤ 2−n,

iii. Anτnk ≤ A
n
τnk+1

.

For all t > 0 we have by linearity of the stochastic integral for simple processes (Proposition
2.4) and Lemma 2.5

E
[(

(Hn ◦M)t −
(
Hn+1 ◦M

)
t

)2]
= E

[((
Hn −Hn+1

)
◦M

)2
t

]
≤ 4−(n+1)E

[
M2
t

]
M bounded

≤ C · 4−(n+1)︸ ︷︷ ︸
summable!

.

Hence, ((Hn ◦M))n≥1 converges inM2
c to some continuous martingale N ∈ M2

c (by com-
pleteness ofM2

c and by completeness of the underlying filtration). Therefore (M2
t −Ant , t ≥

0)n converges inM2
c to 2 ·N and thus, Ant converges in L2 better: in L2(Ft) to some At for

each t , i.e. A is adapted.. Moreover, convergence inM2
c ensures even uniform convergence

on compacts such that for a subsequence (nk) we have

P (Ankt → At uniformly on [0, T ]) = 1

for all T ∈ N (cf. proof of Proposition 2.8), i.e. A is a.s. continuous. (ii) and (iii) yield
that (At) is increasing on J∞(ω) =

⋃
n≥1 Jn(ω). Suppose I ⊆ J∞(ω)c is an open interval.

Then ∀n, k τnk (ω) /∈ I implies Mt(ω) is constant on I, i.e. At(ω) is constant on I (since
each Ant is so). In all, we obtain that At(ω) is increasing on [0,∞) globally, i.e. A is an
increasing, adapted, a.s. continuous process with A0 = 0, M2

t − At = 2Nt, which is a
continuous martingale. So, existence is proven if we choose 〈M〉t = At.suggestion: if we
choose a continuous indistinguishable version Â of A which still satisfies these properties
and set 〈M〉t = Ât.

With respect to uniqueness, suppose that Ã is another such process with M2
t − Ãt = Ñt,

where Ñ is a continuous martingale. Then At−Ãt = Ñt−2Nt is also a continuous martingale
with A0 − Ã0 = 0 and is of finite variation as difference of two increasing functions for each
ω. By Theorem 2.10 we have At − Ãt = 0 for all t ≥ 0 a.s. and therefore A, Ã are
indistinguishable.

Remark 2.14.
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a) This is the analogue of the Doob composition of (M2
n) in discrete time. There the

compensator An of the submartingale M2
n satisfied

An =

m∑
k=1

E
[

(Mk −Mk−1)
2
∣∣∣Fk−1

]
=: 〈M〉n ,

where An is predictible (i.e. Fn−1-measurable). In continuous time the predictability
is replaced by the continuity requirement of A.

b) One can prove for partitions π(n) with |π(n)| = max |t(n)
k+1 − t

(n)
k | → 0 that

At = lim
n→∞

∑
k

(
M
t
(n)
k+1∧t

−M
t
(n)
k ∧t

)2

in probability, i.e. M has finite quadratic variation (cf. the Brownian motion case and
Corollary 2.38 below).

Corollary 2.15. (adapted from the lecture: added 0 in 0)For every continuous local mar-
tingale M there exists a unique (up to indistinguishability) increasing, continuous process
〈M〉 such that 〈M〉0 = 0 and M2

t − 〈M〉t is a local martingale.

Proof. Use stopping times and apply the previous theorem. See exercises.

Example 2.16. For Brownian motion B we have 〈B〉t = t (deterministic!), because (B2
t −

t, t ≥ 0) is a martingale and f(t) = t is increasing, continuous and f(0) = 0.

2.2 Stochastic integration

Recall

A simple process X has the form Xt(ω) =
∑∞
k=1 ξk(ω)1(τk−1(ω),τk(ω)](t), ξk is Fτk−1

-
measurable. For simple, bounded X, M ∈M2

c we defined the stochastic integral

ˆ t

0

Xs dMs := (X ◦M)t =

∞∑
k=1

ξk
(
Mτk∧t −Mτk−1∧t

)
∈M2

c .

Can we extend this to more general integrands X? To put it differently: Which processes X
can we approximate by simple, bounded processes X(n) such that (X(n) ·M)n≥1 converges
inM2

c (which is complete)?

Lemma 2.17. Let τ be a bounded stopping time. For simple, bounded X and M ∈M2
c we

have
〈X ◦M〉τ =

ˆ τ

0

X2
s d 〈M〉s .

In particular,

E
[
(X ◦M)

2
τ

]
= E

[ˆ τ

0

X2
s d 〈M〉s

]
.

Proof. (adapted from the lecture!)The martingale property according to Lemma 2.5 ensures
E [(X ◦M)τ ] = 0 and

E
[
(X ◦M)

2
τ

] Lemma2.5
=

∑
k

E
[
ξ2
k1{τk≤τ}

(
M2
τk∧τ −M

2
τk−1∧τ

)]
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(check that the proof still works if we use τ instead of t using Theorem 1.25). Observe now
that Nt := M2

t − 〈M〉t is a martingale such that

E
[
ξ2
k1{τk−1≤τ}

(
M2
τk∧τ −M

2
τk−1∧τ

)]
= E

[
ξ2
k1{τk−1≤τ}

(
〈M〉τk∧τ − 〈M〉τk−1∧τ +Nτk−1∧τ −Nτk∧τ

)]
= E

[
ξ2
k1{τk−1≤τ}

(
〈M〉τk∧τ − 〈M〉τk−1∧τ

)]
+ E

[
ξ2
k1{τk−1≤τ}︸ ︷︷ ︸
∈Fτk−1∧τ

E
[
Nτk−1∧τ −Nτk∧τ

∣∣Fτk−1∧τ
]︸ ︷︷ ︸

=0

]

opt. stopp.
= E

[
ξ2
k1{τk−1≤τ}

(
〈M〉τk∧τ − 〈M〉τk−1∧τ

)]
= E

[
ξ2
k

(
〈M〉τk∧τ − 〈M〉τk−1∧τ

)]
.

Thus,

E
[
(X ◦M)

2
τ

]
= E

[ˆ τ

0

X2
u d 〈M〉u

]
,

where the integral in the last line is just a usual Lebesgue-Stieltjes integral. In particular,

E
[
(X ◦M)

2
τ −
ˆ τ

0

X2
u d 〈M〉u

]
= 0 = E

[
(X ◦M)

2
0 −
ˆ 0

0

X2
u d 〈M〉u

]
.

Theorem 1.26 (part (b)) yields the claim.

Remark 2.18. The last identity will be seen as a major tool in the construction of the
stochastic integral and is called Itô isometry (for simple integrands).

Definition 2.19. A process (Xt, t ≥ 0) is called progressively measurable with respect to
(Ft)t≥0 if X is (Ft)-adapted and (ω, s) 7→ Xs(ω) on Ω × [0, t] is Ft ⊗B[0,t]-measurable for
all t ≥ 0.

Lemma 2.20. Every adapted and left- or right-continuous process is progressively measur-
able.

Proof. We consider only the left-continuous case. Write Xn
s := X(k−1)t/n for s ∈ [ (k−1)t

n , ktn )
and Xn

t := Xt. By left-continuity, Xn
s

a.s.−−→ Xs for each s ∈ [0, t]. For all A ∈ BR we have

{(w, s) ∈ Ω× [0, t] : Xn
s (ω) ∈ A}

= {Xt ∈ A} × {t} ∪
n⋃
k=1

{
X (k−1)t

n
∈ A

}
× [

(k − 1)

n
t,
k

n
t) ∈ Ft ⊗B[0,t].

Therefore (ω, s) 7→ Xn
s (ω) is Ft ⊗B[0,t]-measurable and thus also (ω, s) 7→ Xs(ω).

Remark 2.21. The white noise process (cf. exercises) is NOT jointly measurable in Ω× [0, t]
for any t ≥ 0 and thus not progressively measurable.

Definition 2.22. For M ∈M2
c introduce the space of “integrands”

L (M) :=

{
(Xt, t ≥ 0) progressively measurable process : ∀t ≥ 0 : E

[ˆ t

0

X2
s d 〈M〉s

]
<∞

}
and endow it with the (semi-)metric

dM (X,Y ) =

∞∑
n=1

2−n (‖X − Y ‖M,n ∧ 1) ,
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where
‖X‖2M,n = E

[ˆ n

0

X2
t d 〈M〉t

]
.

(adapted: moved out the definition of E to the definition of simple processes above)

Lemma 2.23. (L (M), dM ) is a complete metric space, if we identify any two elements
with distance 0 with respect to dM (quotient space with respect to the kernel of the metric).

Proof. Use completeness of the restrictions in L (M) to [0, n] under the semi-norm ‖·‖M,n

(which is a norm after identificiation of elements in the kernel of dM ) and proceed as for the
completeness proof ofM2

c .

Theorem 2.24. E is dense in L (M).

Proof. The proof relies on the fact that a subspace L of a Hilbert space H is dense if its
orthogonal complement L⊥ = {h ∈ H : ∀l ∈ L 〈l, h〉 = 0} is trivial, i.e. L⊥ = {0}. Note
that dM (X,Y ) ≤ ε if N ∈ N such that

∑∞
n=N+1 2−n · 1 = 2−N < ε/2 and (changed ε/2 to

ε/4) ‖X−Y ‖M,N ≤ ε/4. Therefore it suffices to show that E is dense with respect to ‖·‖M,T

for all T > 0 (restricting to [0, T ]). Then we have a Hilbert space (L (M)|[0,T ], ‖·‖M,T ), cf.
exercises, i.e.

〈X,Y 〉M,T = E

[ˆ T

0

XsYs d 〈M〉s

]
.

Now suppose Z ∈ L (M)|[0,T ] satisfies E[
´ T

0
XtZt d 〈M〉t] = 0 for all X ∈ E . For Xt =

ξ · 1(s,u](t), ξ Fs-measurable, bounded, 0 ≤ s ≤ u ≤ T , this means

E
[ˆ u

s

ξ · Zt d 〈M〉t

]
= 0.

Therefore,

E
[
ξ · E

[ˆ u

s

Zt d 〈M〉t

∣∣∣∣Fs]] = 0

for all bounded Fs-measurable ξ such that

E
[ˆ u

s

Zt d 〈M〉t

∣∣∣∣Fs] = 0 a.s.

Hence, (
´ u

0
Zt d 〈M〉t , u ≥ 0) is a martingale. Since t 7→ 〈M〉t is continuous, so is u 7→´ u

0
Zt d 〈M〉t. Moreover, u 7→

´ u
0
Zt d 〈M〉t has finite variation. Indeed, for a partition

π = {tk} of [0, T ] we have

∑
k

∣∣∣∣∣
ˆ tk

tk−1

Zt d 〈M〉t

∣∣∣∣∣ ≤∑
k

ˆ tk

tk−1

|Zt| d 〈M〉t =

ˆ T

0

|Zt| d 〈M〉t <∞ a.s.

(as a proof for the last step consider e.g. E[
´ T

0
1 · |Zt| d 〈M〉t]2 ≤ E[

´ T
0
Z2
t d 〈M〉t] ·E[〈M〉T ] <

∞ by Cauchy-Schwarz). Theorem 2.10 then yields
´ u

0
Zt d 〈M〉t is a.s. constant in u, i.e.

Zt(ω) = 0 for almost all ω ∈ Ω and d 〈M(ω)〉-almost all t ≥ 0. This in turn implies that´ T
0
Z2
t d 〈M〉t = 0 a.s. for all T > 0 and thus ‖Z‖M,T = 0. This shows that the orthogonal

complement is trivial (on the quotient space as ‖·‖M,T is only a semi-norm).

Remark 2.25.
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a) E ⊆ L (M) holds because each X ∈ E is (Ft)-adapted and left-continuous, thus by the
lemma progressively measurable. Moreover,

E

ˆ t

0

X2
s︸︷︷︸

≤C2

d 〈M〉s

 ≤ E
[ˆ t

0

C2 d 〈M〉s

]
= C2E [〈M〉t] = C2

[
M2
t

]
<∞.

b) The proof above is “algebraic”. A more constructive approximation argument can also
be used, but is challenging if t 7→ 〈M〉t is not absolutely continuous (cf. Karatzas
(1991)).

Now we are able to define the stochastic integral
´ t

0
Xs dMs for all X ∈ L (M) by approx-

imation. Choose X(n) ∈ E such that dM (X(n), X) → 0 (by density always possible) and
infer that (ˆ t

0

X(n)
s dMs, t ≥ 0

)
n≥1

⊆M2
c

converges inM2
c . By completeness, the limit is what we want:

ˆ t

0

Xs dMs = lim
n→∞

ˆ t

0

Xn
s dMs.

The convergence of (
´ ·

0
X(n) dM)n≥1 inM2

c follows easily by isometry (Lemma 2.17):

dM2
c

(ˆ ·
0

X(n)
s dMs,

ˆ ·
0

X(m)
s dMs

)

=

∞∑
k=1

2−k

E

(ˆ k

0

(
X(n)
s −X(m)

s

)
dMs

)2
1/2

∧ 1


=

∞∑
k=1

2−k

E

[ˆ k

0

(
X(n)
s −X(m)

s

)2

d 〈M〉s

]1/2

∧ 1


= dM

(
X(n), X(m)

)
.

This means that X 7→
´ ·

0
Xs dMs is an isometry from (E , dM ) to (M2

c , dM2
c
). This extends

to its closure E = L (M) by continuity.

Definition 2.26. For X ∈ L (M) define (
´ t

0
Xs dMs, t ≥ 0) as the element ofM2

c obtained
by extending the isometry X 7→

´ ·
0
Xs dMs from E to its closure L (M).

Example 2.27. Let M be a bounded continuous martingale, M0 = 0 (i.e. M ∈ M2
c). We

want to study
´ t

0
Ms dMs. First note

E
[ˆ t

0

M2
s d 〈M〉s

]
≤ C2E [〈M〉t] ≤ C

4 <∞

and M ∈ L (M). For a partition π = {0 = t0 < t1 < · · · < tm = T}, Mπ
t :=∑m

k=1Mtk−1
1(tk−1,tk](t) ∈ E . As M is continuous, this implies Mπ

t
a.s.−−→ Mt when

|π| = supk |tk − tk−1| → 0. Dominated convergence (M is bounded!) yields

E

ˆ T

0

Mπ
t −Mt︸ ︷︷ ︸
→0

2

d 〈M〉t

→ 0
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as |π| → 0. Thus,
´ T

0
Mt dMt = lim|π|→0

´ T
0
Mπ
t dMt (inM2

c). Now note that

ˆ t

0

Mπ
s dMs =

m∑
k=1

Mtk−1∧t
(
Mtk∧t −Mtk−1∧t

)
=

1

2

M2
t − M2

0︸︷︷︸
=0

− 1

2

m∑
k=1

(
Mtk∧t −Mtk−1∧t

)2
︸ ︷︷ ︸

converges in L2,limit is increasing, continuous process

.

This means that
∑m
k=1

(
Mtk∧t −Mtk−1∧t

)2 L2

−−→ 〈M〉t (whenever |π| → 0), cf. Brownian
motion case. Furthermore, we have

´ t
0
Ms dMs = 1

2 (M2
t − 〈M〉t).

Remark 2.28. For f ∈ C1:
´ t

0
f(s) df(s) =

´ t
0
f(s)f ′(s) ds = 1

2 (f(t)2 − f(0)2) = 1
2f(t)2 if

f(0) = 0.

Theorem 2.29. (added properties from tutorial)For M ∈ M2
c and X,Y ∈ L (M) the

stochastic integral has the following properties:

a) (linearity) ∀α, β ∈ R:
´ ·

0
(αX + βY )s dMs = α

´ ·
0
Xs dMs + β

´ ·
0
Ys dMs,

b) (Itô-isometry) E
[( ´ t

0
Xs dMs

)2]
= E

[ ´ t
0
X2
s d 〈M〉s

]
= ‖X‖2M,t and

‖
´ ·

0
Xs dMs‖M2

c
= ‖X‖M ,

c) (quadratic variation)
〈´ ·

0
Xs dMs

〉
t

=
´ t

0
X2
s d 〈M〉s, t ≥ 0.

Proof. Show by approximation with simple and bounded processes (cf. exercises).

Lemma 2.30. ForM ∈M2
c, X ∈ L (M), τ stopping time (all with respect to some filtration

(Ft)t≥0) we have
(X ◦M)t∧τ = (X ◦Mτ )t =

((
X1[0,τ ]

)
◦M

)
t

Proof. 1. for Xt =
∑∞
k=1 ξk1(τk−1,τk](t) simple and bounded. (adapted from the lecture)

The first equality follows directly from

(X ◦M)τ∧t =

∞∑
k=1

ξk
(
Mτk∧τ∧t −Mτk−1∧τ∧t

)
=

∞∑
k=1

ξk

(
Mτ
τk∧t −M

τ
τk−1∧t

)
.

For the second equality note that X1[0,τ ] ∈ L (M), because 1[0,τ ] adapted and left-
continuous. Therefore the second equality is clear for X(n)

t =
∑n
k=1 ξk1(τk−1,τk](t), because

X
(n)
t 1[0,τ ](t) =

n∑
k=1

ξk1[0,τ ](t)1(τk−1,τk](t)

=

n∑
k=1

ξk1{τk−1≤τ}︸ ︷︷ ︸
Fτk−1∧τ−mb.

1(τk−1∧τ,τk∧τ ](t)
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is simple and bounded by Thoerem 1.25 such that((
X(n)1[0,τ ]

)
◦M

)
τ∧t

=

n∑
k=1

ξk1{τk−1≤τ}
(
Mτk∧τ∧t −Mτk−1∧τ∧t

)
=

n∑
k=1

ξk
(
Mτk∧τ∧t −Mτk−1∧τ∧t

)
=

(
X(n) ◦M

)
τ∧t

.

Because X(n) dM−−→ X and X(n)1[0,τ ]
dM−−→ X1[0,τ ], we obtain therefore

(X ◦M)t∧τ = lim
n→∞

(
X(n) ◦M

)
t∧τ

= lim
n→∞

((
X(n)1[0,τ ]

)
◦M

)
=
((
X1[0,τ ]

)
◦M

)
in L2(P).

2. for general X ∈ L (M): For T > 0 we have
´ T

0
X2
t 1[0,τ ](t)d 〈M〉t ≤

´ T
0
X2
t d 〈M〉t.

Moreover, we also have X ∈ L (Mτ ) because
ˆ T

0

X2
t d 〈Mτ 〉t =

ˆ T

0

X2
t d 〈M〉τ∧t

=

ˆ T∧τ

0

X2
t d 〈M〉t

≤
ˆ T

0

X2
t d 〈M〉t .

(adapted from the lecture: have to argue why 〈Mτ 〉 = 〈M〉τ∧· and why the second equality
holds) For the first equality we use that M2

τ∧t−〈M〉τ∧t and (Mτ
t )

2−〈Mτ 〉t are martingales
by optional stopping (Theorem 1.26) such that uniqueness of the quadratic variation shows
〈Mτ 〉t = 〈M〉τ∧t a.s. for all t ≥ 0. For the second equality we use that the measure d 〈M〉τ∧·,
which is induced by the map t 7→ 〈M〉τ∧t, is supported on [0, τ ]. Now take simple processes
X(n) dM−−→ X and use X(n)1[0,τ ]

dM−−→ X1[0,τ ] as well as X(n) dMτ−−−→ X. Then the result is
obtained by identifying the limits as n→∞.

Remark 2.31. From now on we can just write
´ τ∧t

0
Xs dMs to mean one of the three stochas-

tic integrals. If the limit t → ∞ exists, we just write
´ τ

0
Xs dMs. Similarly we write´ b

a
Xs dMs =

´ b
0
Xs dMs −

´ a
0
Xs dMs for 0 ≤ a < b, i.e.

´ b
a
XsdMs =

´∞
0
Xs1[a,b](s) dMs.

Definition 2.32. For a continuous local martingale M with M0 = 0 we set

Lloc(M) =

{
(Xt, t ≥ 0) : X progr. mb,∀T > 0 : P

(ˆ T

0

X2
t d 〈M〉t <∞

)
= 1

}
.

Let σn be the localizing sequence ofM such thatMσn is a bounded martingale and let ρn :=
inf{t > 0 :

´ t
0
(X2

s + 1) d 〈M〉s ≥ n}, n ≥ 1, for X ∈ Lloc(M) be stopping times. Set τn =
σn∧ρn such that τn →∞ a.s. andMτn is still a bounded continuous martingale by Theorem
1.26. Then we define (X ◦M)t (ω) :=

( ´ t
0
Xs dMs

)
(ω) = limn→∞

( ´ t
0
Xs dM

τn
s

)
(ω).

Remark 2.33.

a) Even for M ∈ M2
c the space Lloc(M) is much larger than L (M). For Brownian

motion, for instance, we have

Lloc(B) =

{
(Xt, t ≥ 0) : X prog. mb. and

ˆ T

0

X2
t dt <∞ a.s. for all T > 0

}
and any continuous, adapted process lies in Lloc(B) (no moment assumptions like
E[X2

T ] <∞ for T > 0).
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b) If M ∈ M2
c and X ∈ L (M), then by the lemma

´ t
0
Xs dM

τn
s =

´ t∧τn
0

Xs dMs which
tends a.s. to

´ t
0
Xs dMs as n→∞, since τn →∞ a.s.

Theorem 2.34. Let M be a continuous local martingale with M0 = 0 and let X ∈ Lloc(M).
Then:

a) The stochastic integral
´ t

0
Xs dMs is well-defined as an a.s. limit.

b)
( ´ t

0
Xs dMs, t ≥ 0

)
is itself a continuous local martingale with quadratic variation〈´ ·

0
Xs dMs

〉
t

=
´ t

0
X2
s d 〈M〉s.

c) (adapted from the lecture: added stopping from the lemma) For any stopping time τ
which is a.s. finite we have (X ◦M)

τ
t = (X1[0,τ ] ◦M)t = (X ◦Mτ )t.

Proof. a) Let (τn)n∈N be as after Definition 2.32. Then Mτn ∈ M2
c and X ∈ L (Mτn),

because

E

[ˆ T

0

X2
s d 〈Mτn〉s

]
= E

[ˆ T

0

X2
s d 〈M〉τn∧s

]
≤ E

[ˆ τn

0

X2
s d 〈M〉s

]
≤ n <∞,

(adapted from the lecture: have to argue why this holds) which follows as in the proof of
Lemma 2.30. (adapted from the lecture: took out the first sentence)From Lemma 2.30 we
have for m ≥ n ≥ 1 and τm ≥ τn thatˆ t

0

Xs dM
τn
s =

ˆ t

0

Xs dM
τn∧τm
s

=

ˆ t

0

Xs d (Mτm)
τn
s

Lemma 2.30
=

ˆ t∧τn

0

Xs dM
τm
s .

Hence, taking m = n we obtain
´ t

0
Xs dM

τn
s =

´ t∧τn
0

Xs dM
τn
s and therefore

ˆ t∧τn

0

Xs dM
τn
s =

ˆ t∧τn

0

Xs dM
τm
s (2.2.1)

In particular,
´ t

0
Xs dM

τn
s =

´ t
0
Xs dM

τm
s a.s. on {t ≤ τn}. (adapted from the lecture: whole

argument after this) This equality is satisfied for all m ≥ n, so letting m → ∞ this yields
for ω ∈ {t ≤ τn} that(ˆ t

0

Xs dMs

)
(ω) = lim

n≤m→∞

(ˆ t

0

Xs dM
τm
s

)
(ω) =

(ˆ t

0

Xs dM
τn
s

)
(ω) (2.2.2)

Furthermore, since τn → ∞ a.s. for any (ω, t) ∈ (Ω × R+) we can find n0 such that this is
satisfied for all n ≥ n0. Thus the stochastic integral is well-defined.
b) (adapted from the lecture: whole argument after this)Setting m = n in (2.2.1) we obtain
with (2.2.2) that

(X ◦M)t∧τn =

ˆ t∧τn

0

Xs dMs =

ˆ t∧τn

0

Xs dM
τn
s = (X ◦Mτn)t∧τn

a.s. and the right-hand side is in M2
c . Thus, (

´ t
0
Xs dMs, t ≥ 0) is a continuous local

martingale with localising sequence (τn). The quadratic variation is〈ˆ ·
0

Xs dMs

〉
t

= lim
n→∞

〈ˆ ·
0

Xs dM
τn
s

〉
t

= lim
n→∞

ˆ t

0

X2
s d 〈Mτn〉s

= lim
n→∞

ˆ t

0

X2
s d 〈M〉s∧τn = lim

n→∞

ˆ t∧τn

0

X2
s d 〈M〉s =

ˆ t

0

X2
s d 〈M〉s .
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c) (adapted from the lecture: added proof)Follows from Lemma 2.30:

(X ◦M)
τ
t = (X ◦M)τ∧t = lim

n→∞
(X ◦Mτn)t∧τ = lim

n→∞
(X ◦ (Mτ )

τn)t = (X ◦Mτ )t .

Remark 2.35. Note that E
[´ t

0
X2
s d 〈M〉s

]
may be infinite such that Itô isometry may not

make sense.

Theorem 2.36. Let M be a continuous local martingale, M0 = 0 and let X be an
adapted continuous process. Then X ∈ Lloc(M) and for partitions πm of [0, t] with
|πm| = maxtk∈πm |tk+1 − tk| → 0 we have

∑
tk∈πn

Xtk−1

(
Mtk −Mtk−1

) P−→
ˆ t

0

Xs dMs, n→∞.

Proof. For (σn) a localising sequence of M we define stopping times τn = σn ∧ inf{t ≥
0 : |Xt| ≥ n}. Because of Lemma 2.20, X is progressively measurable. Since a continuous
function is bounded on any compact interval, we thus obtain X ∈ L (M). We have (adapted
from the lecture: added measurability and comment on X simple and changed I_[0,τn](t_k-
1) to the one below)∑
tk∈πm

Xtk−1

(
Mτn
tk
−Mτn

tk−1

)
=

∑
tk∈πm

Xtk−1
1{τn≥tk−1}︸ ︷︷ ︸

Ftk−1∧τn−mb.

(
Mtk∧τn −Mtk−1∧τn

)

=

ˆ t

0

( ∑
tk∈πm

Xtk−1
1{τn≥tk−1}1(tk−1∧τn,tk∧τn](s)

)
dMτn

s

=

ˆ t

0

( ∑
tk∈πm

Xtk−1
1(tk−1∧τn,tk∧τn](s)

)
dMτn

s ,

because ∑
tk∈πm

Xtk−1
1{τn≥tk−1}1(tk−1∧τn,tk∧τn](s) =

∑
tk∈πm

Xtk−1
1(tk−1∧τn,tk∧τn](s)

is simple. Observe (adapted from the lecture: changed arguments after this) that

E

ˆ t

0

( ∑
tk∈πm

Xtk−1
1{τn≥tk−1}1(tk−1∧τn,tk∧τn](s)−Xs

)2

d 〈Mτn〉s


=
∑
tk∈πm

E
[ ˆ tk∧τn

tk−1∧τn

(
Xtk−1

−Xs

)2︸ ︷︷ ︸
→0by continuity of X

d 〈Mτn〉s

]
.

This, however, converges to 0 by dominated convergence (observe that∑
tk∈πm

´ tk∧τn
tk−1∧τn(Xtk−1

− Xs)
2 d 〈Mτn〉s ≤ 4n2 〈Mτn〉t). We have by Itô isometry (or

convergence wrt. dMτn ) that∑
tk∈πm

Xtk−1
(Mτn

tk
−Mτn

tk−1
) L2(P)−−−→

ˆ t

0

Xs dM
τn
s

Thm. 2.34
=

ˆ t∧τn

0

Xs dMs.

Let Zm :=
∑
tk∈πm Xtk−1

(Mtk −Mtk−1
) and Ωn := {t ≤ τn} such that Ωn ⊆ Ωn+1 and

P(
⋃
n Ωn) = 1. We know that Zm1Ωn

P−→ Z1Ωn as m→∞ where Z =
´ t

0
Xs dMs, (adapted



CHAPTER 2. CONTINUOUS MARTINGALES AND STOCHASTIC INTEGRATION34

from the lecture: add because... because

Zm1Ωn =

( ∑
tk∈πm

Xtk−1
(Mtk −Mtk−1

)

)
1{t≤τn}

=

( ∑
tk∈πm

Xtk−1
(Mτn

tk
−Mτn

tk−1
)

)
1{t≤τn},

Z1Ωn =

(ˆ τn∧t

0

Xs dMs

)
1{t≤τn}

and because of the Tschebycheff inequality. (adapted from the lecture: changed argu-
ment)For ε > 0 and δ > 0 let n and m0 large enough such that P(Ωcn) ≤ δ

2 and for all
m ≥ m0

P (|Zm − Z|1Ωn > ε) ≤ δ

2
This implies

P (|Z − Zm| > ε) ≤ P ({|Z − Zm| > ε} ∩ Ωn) + P (Ωcn) ≤ δ

2
+
δ

2
= δ.

Remark 2.37. This is a Riemann-type approximation of
´ t

0
Xs dMs, but it is important to

useXtk−1
and not anyXs for s ∈ [tk−1, tk] in the sum to guarantee the martingale properties.

Note that this gives a concrete approximation method for the stochastic integral. Form this
result only, however, one cannot deduce the properties of

( ´ t
0
Xs dMs, t ≥ 0

)
as a process

like being a local martingale, being continuous or calculating its quadratic variation.

Corollary 2.38. If M is a continuous local martingale, M0 = 0, then for partitions πm of
[0, T ] with |πm| → 0 as m→∞ we have for all t ∈ [0, T ]:∑

tk∈πm

(
Mtk∧t −Mtk−1∧t

)2 P−→ 〈M〉t ,

ˆ t

0

Ms dMs =
1

2
M2
t −

1

2
〈M〉t . (2.2.3)

Proof. We write (always t0 = 0,maxk tk = T )

M2
t =

∑
tk∈πm

M2
t∧tk −M

2
t∧tk−1

=
∑
tk∈πm

((
Mt∧tk −Mt∧tk−1

)2
+ 2Mtk−1

(
Mtk∧t −Mtk−1∧t

))
.

By the theorem ∑
tk∈πm

Mtk−1∧t
(
Mtk∧t −Mtk−1∧t

) P−→
ˆ t

0

Ms dMs

such that ∑
tk∈πm

(
Mtk∧t −Mtk−1∧t

)2 P−→M2
t − 2

ˆ t

0

Ms dMs =: Qt.

Since M and
´ ·

0
Ms dMs are continuous, so is Q. The limit Q is independent of the choice

of (πm). We can thus consider refinements πm ⊆ πm+1 for all m ≥ 1. We have for m ≥ n
that t 7→

∑
tk∈πm(Mtk∧t −Mtk−1∧t)

2 is increasing for t ∈ πm ⊇ πn. Hence, the limit Q is
increasing a.s. on

⋃
m≥1 πm. By continuity of Q and density of

⋃
m≥1 πm we conclude that

Qt is increasing on [0, T ]. Observing finally that M2
t − Qt = 2

´ t
0
Ms dMs is a continuous

local martingale starting in 0, we see that Qt = 〈M〉t a.s. for all t ≥ 0 (by uniqueness of
〈M〉t).
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Remark 2.39. Compare (2.2.3) to the standard equation for f ∈ C1, f(0) = 0:
ˆ t

0

f(s) df(s) =

ˆ t

0

f(s)f ′(s) ds =
1

2
f2(s).

Hence, the meaning of quadratic variation lies at the heart of the difference between stochas-
tic and deterministic integration.



Chapter 3

Main theorems of stochastic
analysis

3.1 Itô’s formula

Definition 3.1. A continuous semimartingale (Xt, t ≥ 0) with respect to a filtration (Ft)t≥0

is a continuous process which can be written asXt = Mt+At with a continuous local (Ft)t≥0-
martingale M and an (Ft)t≥0-adapted, continuous process A with paths t 7→ At(ω) of a.s.
finite variation on compact intervals. Then we define for t ≥ 0(ˆ t

0

Ys dXs

)
(ω) :=

(ˆ t

0

Ys dMs

)
(ω) +

ˆ t

0

Ys(ω) dAs(ω),

whenever the right-hand side is well-defined, i.e. Y ∈ Lloc(M) and
´ t

0
|Ys| |dAs| < ∞ a.s.

(here |dAs| = dA+
s + dA−s is the toal variation of the signed measure dAs = dA+

s − dA−s ).
Moreover, we set

〈X〉t = lim
|πm|→0

∑
tk∈πm

(
Xtk∧t −Xtk−1∧t

)2
,

whenever the limit exists in probability.

Definition 3.2. Let X,Y be continuous semimartingales. Then we define the quadratic
covariation by polarisation:

〈X,Y 〉t :=
1

4
(〈X + Y 〉t − 〈X − Y 〉t) , t ≥ 0.

Proposition 3.3. Let X,Y be continuous semimartingales.

a) The quadratic covariation exists and satisfies 〈X,Y 〉t = lim|π|→0

∑
tk∈π

(
Xtk∧t −

Xtk−1∧t
)(
Ytk∧t − Ytk−1∧t

)
in probability, where π is any partition of [0,∞).

b) a continuous semimartingale (Xt, t ≥ 0) with decomposition X = M + A into a con-
tinuous local martingale and a continuous process of bounded variation on compacts A
we have

〈X〉t = 〈M〉t = lim
|πm|→0

∑
tk∈πm

(
Xtk∧t −Xtk−1∧t

)2
.

Proof. See exercises.

36
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Theorem 3.4 (Partial integration). For continuous semimartingales X,Y we have

XtYt = X0Y0 +

ˆ t

0

Xs dYs +

ˆ t

0

Ys dXs + 〈X,Y 〉t , t ≥ 0.

In particular,

X2
t = X2

0 + 2

ˆ t

0

XsdXs + 〈X〉t , t ≥ 0.

Proof. By polarisation it suffices to prove the second identity. We have for any partition of
[0, T ], t ≤ T :∑

tk∈π

(
Xtk∧t −Xtk−1∧t

)2
= X2

t −X2
0 − 2

∑
tk∈π

Xtk−1∧t
(
Xtk∧t −Xtk−1∧t

)
= X2

t −X2
0 − 2

∑
tk∈π

Xtk−1∧t
(
Mtk∧t −Mtk−1∧t

)
+2

∑
tk∈π

Xtk−1∧t
(
Atk∧t −Atk−1∧t

)
.

The left-hand side converges in probability to 〈X〉t whereas the right-hand side converges
in probability to

X2
t −X2

0 − 2

ˆ t

0

Xs dMs − 2

ˆ t

0

Xs dAs = X2
t −X2

0 − 2

ˆ t

0

Xs dXs

using Riemann-Stieltjes approximation (we even have
∑
tk∈πXtk−1∧t(Atk∧t − Atk−1∧t) →´ t

0
Xs dAs a.s.).

Theorem 3.5 (Associativity of the stochastic integral). Let M ∈ M2
c, X ∈ L (M) and

Y ∈ L (X ◦M) with respect to a filtration (Ft)t≥0. Then:

a) Y X ∈ L (M).

b) (Y ◦ (X ◦M)) = ((Y X) ◦M), a.s.

Proof. See exercises.

The main result of this section will be Itô’s formula (a.k.a. Itô’s lemma).

Theorem 3.6 (Itô’s formula). For a continuous semimartingale X and f ∈ C2(R) the
process (f(Xt), t ≥ 0) is again a continuous semimartingale and satisfies

f (Xt) = f (X0) +

ˆ t

0

f ′(Xs) dXs +
1

2

ˆ t

0

f ′′(Xs) d 〈X〉s , t ≥ 0.

Proof. There are two main proof strategies.
1. proof (sketch). Writing f(Xt) − f(X0) as a telescoping sum and Taylor expansions, we
obtain

f
(
Xt

)
− f

(
X0

)
=

∑
tk∈π

(
f
(
Xtk∧t

)
− f

(
Xtk−1∧t

)
Taylor

=
∑
tk∈π

(
f ′
(
Xtk−1∧t

)(
Xtk∧t −Xtk−1∧t

)
+

1

2
f ′′
(
Xtk−1∧t

)(
Xtk∧t −Xtk−1∧t

)2
+ o
((
Xtk∧t −Xtk−1∧t

)2)
P−→

ˆ t

0

f ′(Xs) dXs +
1

2

ˆ t

0

f ′′(Xs) d 〈X〉s
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as |π| → 0, because the remainder terms converge to 0 in probability (not proven here, check
literature).
2. proof. We first show that Itô’s formula holds for polynomials f . We already know that
it holds for f(x) = x and f(x) = x2 (by partial integration). By linearity it holds for
polynomials f of maximal degree 2. We argue now inductively. Assume that the claim
holds for polynomials of order of maximal degree m− 1, i.e.

Xm−1
t = Xm−1

0 +

ˆ t

0

(m− 1)Xm−2
s dXs +

ˆ t

0

(m− 1) (m− 2)

2
Xm−3
s d 〈X〉s .

By partial integration and associativity of the stochastic integral (Theorem 3.5) we then
have

Xm
t = Xm−1

t Xt

= Xm−1
0 X0 +

ˆ t

0

Xm−1
s dXs +

ˆ t

0

Xs dX
m−1
s +

〈
X,Xm−1

〉
t

= Xm
0 +

ˆ t

0

Xm−1
s dXs

+

(ˆ t

0

Xs (m− 1)Xm−2
s dXs +

ˆ t

0

Xs
(m− 1) (m− 2)

2
Xm−3
s d 〈X〉s

)
+

〈
X,

ˆ ·
0

(m− 1)Xm−2
s dXs +A

〉
t

for a finite variation process A. Therefore

Xm
t = Xm

0 +m

ˆ t

0

Xm−1
s dXs +

(m− 1) (m− 2)

2

ˆ t

0

Xm−2
s d 〈X〉s

+

〈ˆ ·
0

1 dXs,

ˆ ·
0

(m− 1)Xm−2
s dXs

〉
t

.

By polarisation we obtain〈ˆ ·
0

1 dXs,

ˆ ·
0

(m− 1)Xm−2
s dXs

〉
t

=

〈ˆ ·
0

1 dMs,

ˆ ·
0

(m− 1)Xm−2
s dMs

〉
t

=

ˆ t

0

(m− 1)Xm−2
s d 〈M〉s

=

ˆ t

0

(m− 1)Xm−2
s d 〈X〉s

such that

Xm
t = Xm

0 +m

ˆ t

0

Xm−1
s dXs +

m (m− 1)

2

ˆ t

0

Xm−2
s d 〈X〉s .

By linearity we thus have Itô’s formula for all polynomials f of maximal degree m.
We now show Itô’s formula for X taking values in the interval [−K,K] for some K > 0. By
Weierstraß’s approximation theorem there are polynomials pm such that

sup
x∈[−K,K]

|f ′′(x)− p′′m(x)| → 0,

sup
x∈[−K,K]

|f ′(x)− p′m(x)| → 0,

sup
x∈[−K,K]

|f(x)− pm(x)| → 0
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as m → ∞. Therefore we have a.s. pm(Xt) → f(Xt) and pm(X0) → f(X0) and by the
uniform convergences from above also

´ t
0
(f ′(Xs) − p′m(Xs)) dXs

P−→ 0 and
´ t

0
(f ′′(Xs) −

p′′m(Xs)) d 〈X〉s → 0 a.s. Since Itô’s formula holds for each pm by these convergences it also
holds for f .
The last step in the proof is to show Itô’s formula for general X and f . The formula holds
for the stopped semi-martingales XτK with τK = inf {t ≥ 0 : |Xt| ≥ K}:

f
(
Xt∧τK

)
= f

(
X0

)
+

ˆ t

0

f ′
(
XτK
s

)
dXτK

s +
1

2

ˆ t

0

f ′′
(
XτK
s

)
d 〈XτK 〉s

= f
(
X0

)
+

ˆ t

0

f ′
(
XτK
s

)
dMτK

s +

ˆ t

0

f ′
(
XτK
s

)
dAτKs +

1

2

ˆ t

0

f ′′
(
XτK
s

)
d 〈MτK 〉s .

By the stopping property of stochastic integrals in Theorem 2.34 and
´ t

0
f ′(XτK

s ) dAτKs =´ t∧τK
0

f ′(XτK
s ) dAs as well as

´ t
0
f ′′
(
XτK
s

)
d 〈MτK 〉s =

´ t∧τK
0

f ′′(XτK
s )d 〈M〉s we obtain

f
(
Xt∧τK

)
= f

(
X0

)
+

ˆ t∧τK

0

f ′
(
Xs

)
dXs +

1

2

ˆ t∧τK

0

f ′′(Xs) d 〈X〉s .

Letting K →∞ we have τK →∞ a.s. by continuity of X and thus t ∧ τK → t and

f
(
Xt

)
= f

(
X0

)
+

ˆ t

0

f ′
(
Xs

)
dXs +

1

2

ˆ t

0

f ′′
(
Xs

)
d 〈X〉s .

Remark 3.7. Suppose t 7→ Xt is C1(R). Then 〈X〉t = 0 and Itô’s formula specialises to the
fundamental theorem of calculus: f(Xt) = f(X0) +

´ t
0
f ′(Xs)X

′
s ds. Likewise, Itô’s formula

allows to calculate the stochastic integral
´ t

0
f ′(Xs) dXs.

Example 3.8 (Geometric Brownian motion). We want to solve the stochastic differential
equation

dXt = Xt (µdt+ σ dBt) = µXt dt+ σXt dBt (*)

with X0 = x0, i.e. we want to find a process (Xt, t ≥ 0) such that

Xt = X0 +

ˆ t

0

Xsµds+ σ

ˆ t

0

Xs dBs, a.s.

Informally we consider f(x) = log x, f ′(x) = 1
x , f

′′(x) = − 1
x2 , x > 0. If we assume that

such a process X exists we have by Itô’s formula

df(Xt) = f ′(Xt) dXt +
1

2
f ′′(Xt) d 〈X〉t ,

i.e.

log(Xt) = log(X0) +

ˆ t

0

1

Xs
dXs +

1

2

ˆ t

0

(
− 1

X2
s

)
d 〈X〉s

= log(x0) +

ˆ t

0

(µds+ σ dBs)−
1

2

ˆ t

0

1

X2
s

σ2X2
s ds

= log(x0) + µt+ σBt −
σ2

2
t.

Applying now the exponential function we therefore get

Xt = x0 exp

((
µ− σ2

2

)
t+ σBt

)
.



CHAPTER 3. MAIN THEOREMS OF STOCHASTIC ANALYSIS 40

Rigorously you can apply Itô’s formula to the right-hand side and derive (*). What happens
for t → ∞? If µ > σ2

2 , then Xt → ∞ a.s. by the law of the iterated logarithm and
similarly, if µ < σ2

2 , then Xt → 0 a.s. Finally, if µ = σ2

2 , then lim supt→∞Xt = ∞ and
lim inft→∞Xt = 0 a.s. If µ = 0, then X is a martingale (see Proposition 1.20), but µ < σ2

2
such that Xt → 0 such that X cannot be a uniformly integrable martingale.

Definition 3.9. A d-dimensional continuous semimartingale Xt = (X
(1)
t , . . . , X

(d)
t )T is a

vector of d one-dimensional continuous semimartingales X(1), . . . , X(d). A d-dimensional
Brownian motion Bt = (B

(1)
t , . . . , B

(d)
t )T consists of d independent Brownian motions

B(1), . . . , B(d).

Remark 3.10. As usual we understand
´ t

0
(X

(1)
s , . . . , X

(d)
s )T dYs :=

(
´ t

0
X

(1)
s dYs, . . . ,

´ t
0
X

(d)
s dYs) for a continuous semimartingale Y . More-

over, if Y is a d-dimensional continuous semimartngale, then we define´ t
0

〈(
X

(1)
s , . . . , X

(d)
s

)T
, d
(
Y

(1)
s , . . . , Y

(d)
s

)T〉
:=
∑d
k=1

´ t
0
X

(k)
s dY

(k)
s etc.

Theorem 3.11. Let X be a d-dimensional continuous semimartingale and

f ∈ C2,1(Rd × R+) =

{
g : Rd × R+ → R, (x, t) 7→ g(x, t) :

∂2g

∂xixj
∈ C(Rd × R+)

for 1 ≤ i, j ≤ d, ∂g
∂t
∈ C(Rd × R+)

}
.

Then (f(Xt, t), t ≥ 0) is a (one-dimensional) continuous semimartingale satisfying

f
(
Xt, t

)
= f

(
X0, 0

)
+

d∑
k=1

ˆ t

0

∂f

∂xk

(
Xk, s

)
dX(k)

s +

ˆ t

0

∂f

∂t

(
Xs, s

)
ds

+
1

2

d∑
i,j=1

ˆ t

0

∂2f

∂xixj

(
XS , s

)
d
〈
X(i), X(j)

〉
s

= f
(
X0, 0

)
+

ˆ t

0

〈
∇xf

(
Xs, s

)
, dXs

〉
+

ˆ t

0

∂f

∂t

(
Xs, s

)
ds

+
1

2

ˆ t

0

〈
∇2
xf
(
Xs, s

)
, d 〈X〉s

〉
HS(Rd×d)

,

where the Hilbert-Schmidt-norm on Rd×d is induced by 〈M,N〉HS =
∑d
i,j=1MijNij =

trace(MNT ) for any M,N ∈ Rd×d.

Proof. Long and tedious analogue of the proof of Theorem 3.6. Check cited literature for
details.

Corollary 3.12. For d-dimensional Brownian motion B and f ∈ C2,1(Rd × R+) we have

f
(
Bt, t

)
= f

(
0, 0
)

+

ˆ t

0

〈
∇xf

(
Bs, s

)
, dBs

〉
+

ˆ t

0

∂

∂t
f
(
Bs, s

)
ds+

1

2

ˆ t

0

4xf
(
Bs, s

)
ds,

where 4xf = ∂2f
∂x2

1
+ ∂2f

∂x2
2

+ · · ·+ ∂2f
∂xd

is the Laplace operator.

Proof. It remains to show
〈
B(i), B(j)

〉
t

= tδij . We know already
〈
B(i), B(i)

〉
t

=
〈
B(i)

〉
t

= t

and we must show for two independent Brownian motions B(1), B(2) that
〈
B(1), B(2)

〉
t

= 0
for all t ≥ 0. We have by definition〈

B(1), B(2)
〉
t

=
1

4

(〈
B(1) +B(2)

〉
t
−
〈
B(1) −B(2)

〉
t

)
,



CHAPTER 3. MAIN THEOREMS OF STOCHASTIC ANALYSIS 41

but 1√
2

(
B(1) ±B(2)

)
t
is again a Brownian motion such that

〈
B(1) ±B(2)

〉
t

= 2t, i.e.〈
B(1), B(2)

〉
t

= 0.

Corollary 3.13. If f ∈ C2,1(Rd × R) satisfies ∂f
∂t = − 1

24xf (for all (x, t)), then(
f(Bt, t), t ≥ 0

)
is a continuous local martingale.

Proof. We have f
(
Bt, t

)
= f

(
0, 0
)

+
´ t

0

〈
∇xf

(
Bs, s

)
, dBs

〉
which is a sum of continuous

local martingales and therefore itself again a local martingale.

Remark 3.14. Functions f ∈ C2,1(Rd × R) as in the corollary satisfy the heat equation
which is an important partial differential equation in applications. See also (1.1.1) in the
introduction.

Example 3.15. Note that if f : Rd → R is harmonic, i.e. 4f(x) = 0 for all x ∈ Rd. Then(
f(Bt), t ≥ 0

)
is a continuous local martingale.

1. If d = 2, then for f : R2\ {0} → R, f(x) = log |x| we calculate that ∂f
∂xi

(x) =(
1
2 log(x2

1 + x2
2

)
= 2xi

2(x2
1+x2

2)
= xi
|x|2 and ∂2f

∂x2
i
(x) = |x|2−2xixi

|x|4 = 1
|x|2 −

2x2
i

|x|4 . Thus

∂2f
∂x2

1
+ ∂2f

∂x2
2

= 2
|x|2 − 2

x2
1+x2

2

|x|4 = 0. Let now Dr,R := {x ∈ R2 : r < |x| < R} for

0 < r < R. Then h(x) := logR−log |x|
logR−log r is harmonic on Dr,R, h(x) = 0 for |x| = R,

h(x) = 1 for |x| = r. Define the stopping time τ = inf{t ≥ 0 : |Bt + x| ∈ {R, r}}
for some x ∈ Dr,R. We have P(τ < ∞) = 1 because lim supt→∞ |Bt| = ∞ a.s. (con-
sider e.g. lim supt→∞ |Bt| ≥ lim supt→∞ |B

(1)
t | = ∞). Moreover, h(x + Bt), t ≥ 0, is

bounded on [0, τ ]. Dominated convergence yields

h(x) = E [h(x+B0)]

opt. sampling
= E [h(x+Bτ )]

= E
[
1{|x+Bτ |=r}

]
= P (|x+Bτ | = r) .

Here we use that the above arguments yield that also
(
h(x + Bt∧τ ), t ≥ 0) is a

continuous local martingale if 4h = 0. Since h is bounded on [0, τ ], we have that(
h(x + Bt∧τ , t ≥ 0

)
is a martingale and thus E [h(x+Bt∧τ )] = h(x), take t → ∞ by

dominated convergence. For R→∞ we have τr,R → τr,∞ := inf{t ≥ 0 : |Bt + x| = r}
such that

P (τr,∞ <∞) = lim
R→∞

logR− log |x|
logR− log r

= 1.

Hence, with probability one the 2-dimensional Brownian motion hits any disc in finite
time. This is called 2D-Brownian motion is recurrent for discs. This means that a.s.
the trajectories of 2D-Brownian motion lie dense in R2, i.e. {|Bt|, t ≥ 0} = R2 (show
this by considering any disc Dr,R around any point y ∈ R2, not only around 0). By
considering only rational coordinates and rational r,R the claim follows a.s.).

2. If d = 3, then for f(x) = |x|2−d is harmonic on Rd\ {0}. With Dr,R as before and
h(x) = R2−d−|x|2−d

R2−d−r2−d harmonic on Dr,R, h(x) = 0 for |x| = R, h(x) = 1 for |x| = r

you conclude similarly P(τr,∞ < ∞) = |x|2−d
r2−d

< 1 (because of R2−d → 0 as R → ∞).
Hence, d-dimensional Brownian motion is transient for d ≥ 3.
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3.2 First consequences of Itô’s formula

First we establish Lévy’s characterisation of Brownian motion.

Theorem 3.16. The following are equivalent:

a) B is a Brownian motion (on some filtered probability space (Ω,F ,P, (Ft)).

b) B is a continuous local martingale with B0 = 0, 〈B〉t = t for t ≥ 0 on (Ω,F ,P, (Ft)).

Proof. (a) ⇒ (b). Clear.

(b) ⇒ (a). Let us show that Mt = exp(iuBt + u2t
2 ), t ≥ 0, is for any u ∈ R a complex-

valued martingale (i.e. real and imaginary parts are real-valued martingales). We apply
Itô’s formula (which equally holds for C-valued functions f):

Mt = M0 +

ˆ t

0

iuMs dBs +
1

2

ˆ t

0

(iu)2Ms d〈B〉s︸︷︷︸
=s

+

ˆ t

0

1

2
u2Ms ds

︸ ︷︷ ︸
=0

= M0 +

ˆ t

0

iuMs dBs.

Since |Ms| ≤ eu
2s/2 < ∞, we have iuM ∈ L (B) and (

´ t
0
iuMs dBs, t ≥ 0) is in M2

c

(everything coordinatewise for complex-valued processes). Thus, for all 0 ≤ s ≤ t we have
E[Mt

Ms
|Fs] = 1 (note Ms 6= 0 a.s.) and E[exp(iu(Bt − Bs)|Fs] = exp(−u

2(t−s)
2 ). We obtain

immediately from E[eiu(Bt−Bs)] = e−
u2(t−s)

2 for all u ∈ R that Bt −Bs ∼ N(0, t− s). More
precisely, for A ∈ Fs we get

E
[
eiu(Bt−Bs)1A

]
= e−

u2(t−s)
2 E [1A]︸ ︷︷ ︸

=P(A)

.

This shows that Bt −Bs is independent of Fs (cf. exercises or argue directly that indepen-
dence can be checked on a generator of the σ-algebras σ(Bt −Bs) and Fs and use that the
distribution of Bt − Bs and therefore the independence of its generated σ-algebra of Fs is
uniquely determined by its characteristic function). Putting things together we have shown
that B0 = 0 (by assumption), t 7→ Bt is continuous and Ft-adapted (by assumption) and
for all 0 ≤ s ≤ t Bt −Bs is independent of Fs and Bt −Bs ∼ N(0, t− s).

Consequences of this result are far reaching, see e.g. next section. Now we establish a very
useful moment inequality.

Theorem 3.17 (Burkholder-Davis-Gundy inequality (BDG)). For every p > 0 there are
constants cp, Cp > 0 such that for any continuous local martingale M with M0 = 0 we have

cpE
[
〈M〉p/2∞

]
≤ E [(M∗∞)

p
] ≤ CpE

[
〈M〉p/2∞

]
,

where M∗t = max0≤s≤t |Ms|.

Remark 3.18.

a) Since t 7→ 〈M〉t, t 7→M∗t are increasing, 〈M〉∞ and M∗∞ are well-defined in [0,∞].

b) Usually, we are interested in M∗τ for a stopping (or deterministic) time τ . The BDG
inequality applied to the stopped local martingale Mτ yields

cpE
[
〈M〉p/2τ

]
≤ E [(M∗τ )

p
] ≤ CpE

[
〈M〉p/2τ

]
.
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Proof. For the lower bound see exercises. We prove the upper bound only for p ≥ 2 (for
the general case cf. Revuz and Yor (1999); Karatzas (1991)). We apply Itô’s formula to
f(x) = |x|p which is in C2 for p ≥ 2:

|Mt|p = |M0|p︸ ︷︷ ︸
=0

+

ˆ t

0

p |Ms|p−1
sgn(Ms) dMs +

1

2

ˆ t

0

p(p− 1) |Ms|p−2
d 〈M〉s .

Let us assume thatM is a bounded martingale. Otherwise localise via the localising sequence
of stopping times with the minimum of τn = inf{t > 0 : |Mt| ≥ n}. For bounded M ∈ M2

c

we have p|Ms|p−1 sgn(Ms) ∈ L (M) such that the stochastic integral is a true martingale
with expectation zero. Therefore

E [|Mt|p] =
p(p− 1)

2
E
[ˆ t

0

|Ms|p−2
d 〈M〉s

]
≤ p(p− 1)

2
E
[
(M∗t )

p−2 〈M〉t
]

6
p(p− 1)

2
E [(M∗t )

p
]
p−2
p E

[
〈M〉p/2t

]2/p
,

using Hölder inequality in the third line. By Doob’s inequality (Proposition 1.27)

E [(M∗t )
p
] ≤

(
p

p− 1

)p
p(p− 1)

2
E [(M∗t )

p
]
p−2
p E

[
〈M〉p/2t

]2/p
for any p > 1 such that

E [(M∗t )
p
]
2/p ≤

(
p

p− 1

)p
p(p− 1)

2
E
[
〈M〉p/2t

]2/p
.

Hence, observing that 〈M〉 is a non-negative increasing process for all t > 0

E [(M∗t )
p
] ≤ CpE

[
〈M〉p/2∞

]
.

Monotone convergence yields the assertion for t→∞.

3.3 Martingale representation theorems

Theorem 3.19 (Doob 1953). Suppose M is a continuous local martingale with M0 = 0 and
an absolutely continuous quadratic variation process t 7→ 〈M〉t. Then there is a Brownian
motion B (possibly defined on an extension of the original probability space) and a process
X ∈ Lloc(B) such that

Mt =

ˆ t

0

Xs dBs, t ≥ 0, a.s

Proof. 1. step. Write 〈M〉t (ω) =
´ t

0
Gs(ω) ds and suppose Gs(ω) > 0 a.s. and a.e. (almost

everywhere). Put Bt :=
´ t

0
G
−1/2
s dMs, t ≥ 0. If well-defined, then Bt is a continuous local

martingale with B0 = 0 (as a stochastic integral) ad

〈B〉t =

ˆ t

0

G−1
s d 〈M〉s =

ˆ t

0

G−1
s Gs ds = t.

By Theorem 3.16 B is a Brownian motion and by associativity of the stochastic integral
(Theorem 3.5) ˆ t

0

G1/2
s dBs =

ˆ t

0

G1/2
s G−1/2

s dMs = Mt.
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Thus, we choose Xs = G
1/2
s . It remains to show G

−1/2
s ∈ Lloc(M). For a.a. s and a.a.

ω we have Gs(ω) = limh→0
〈M〉s(ω)−〈M〉s−h(ω)

h , from which we may conclude that Gs is
progressively measurable. Moreover, we have for all t ≥ 0

ˆ t

0

(
G−1/2
s

)2

d 〈M〉s =

ˆ t

0

G−1
s ·Gs ds = t <∞.

This implies G−1/2 ∈ Lloc(M).
2. step. If Gs(ω) > 0 does not almost always hold, then construct a Brownian mo-
tion B′ on some filtered probability space (Ω′,F ′, (F ′t) ,P′) and consider the product space(

Ω× Ω′,F × F ′, (Ft ⊗F ′t)t≥0 ,P
)
, where M and B′ are still (Ft ⊗ F ′t)-local martingales.

Put

Bt :=

ˆ t

0

G−1/2
s 1{Gs>0} dMs +

ˆ t

0

1{Gs=0} dB
′
s, t ≥ 0.

Then B is a continuous local martingale, B0 = 0 and

〈B〉t =

〈ˆ ·
0

G−1/2
s 1{Gs>0} dMs

〉
t

+

〈ˆ ·
0

1{Gs=0} dB
′
s

〉
t

+2

〈ˆ ·
0

G−1/2
s 1{Gs>0} dMs,

ˆ ·
0

1{Gs=0} dB
′
s

〉
t︸ ︷︷ ︸

=:A

=

ˆ t

0

G−1/2
s 1{Gs>0} d 〈M〉s︸ ︷︷ ︸

=Gs ds

+

ˆ t

0

1{Gs=0} d 〈B′〉s︸ ︷︷ ︸
=ds

+ 0

=

ˆ t

0

1{Gs>0} ds+

ˆ t

0

1{Gs=0} ds

= t,

if we can show that A = 0. For this there are two possible arguments:

i)
〈´ ·

0
Xs dM

1
s ,
´ ·

0
Ys dM

2
s

〉
t

=
´ t

0
XsYs d

〈
M1,M2

〉
s
holds (use approximation by simple

integrands, see e.g. Karatzas (1991)) such that〈ˆ ·
0

G−1/21{G>0} dMs,

ˆ ·
0

1{G=0} dB
′
s

〉
t

=

ˆ t

0

G−1/2 · 0 d 〈M,B′〉s = 0.

ii) The processes ((Mt, Gt, B
′
t), t ≥ 0) and (Mt, Gt,−B′t), t ≥ 0) have exactly the same

distribution such that〈ˆ ·
0

G−1/21{G>0} dM,

ˆ ·
0

1{G=0} dB
′
s

〉
t

= −
〈ˆ ·

0

G−1/21{G>0} dMs,

ˆ ·
0

1{G=0} dB
′
s

〉
t

such that they both equal zero.

This means again by Theorem 3.16 that B is a Brownian motion and as above Mt =´ t
0
G

1/2
s dBs.

Remark.

a) A function f : R+ → R is absolutely continuous if there is a function g ∈ L1([0, T ]) for
all T > 0 such that f(t) = f(0) +

´ t
0
g(s) ds. We have g(s) = f ′(s) for Lebesgue-a.a.
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b) For general M0 we then obtain Mt = M0 +
´ t

0
Xs dBs by considering M̃t = Mt −M0.

Theorem 3.20 (Brownian martingales). Let (Ft)t>0 be the canonical filtration of a Brown-
ian motion B, i.e. F0

t = σ(Bs, s ≤ t) completed by events of probability zero in σ(Bt, t ≥ 0).
Then for each random variable Z ∈ L2(Ω,F∞,P) there is a unique process h ∈ L (B) such
that

Z = E [Z] +

ˆ ∞
0

hs dBs,

where E[
´∞

0
h2
s ds] <∞. Moreover, for each martingale M bounded in L2 (for each continu-

ous local martingale, respectively) adapted to (F0
t )t≥0, there is an h ∈ L (B) (h ∈ Lloc(B))

and a constant C > 0 such that

Mt = C +

ˆ t

0

hs dBs, t ≥ 0, a.s.

Remark 3.21. M is not assumed to be continuous a priori (see below).

We first need a Lemma.

Lemma 3.22. The vector space generated by the random variables exp(i
∑n
j=1 λj(Btj −

Btj−1)) for 0 = t0 < t1 < · · · < tn, λ1, . . . , λn ∈ R is dense in L2
C(Ω,F∞,P) of C-valued

L2-random variables.

Proof. We show that Z ∈ L2
C(Ω,F∞,P) with〈

Z, exp

i n∑
j=1

λj
(
Btj −Btj−1

)〉
L2

= E

Z exp

−i n∑
j=1

λj
(
Btj −Btj−1

) = 0 (*)

for all n, (tj), (λj) must satisfy Z = 0 a.s. For F ∈ BRn we set

µ(F ) = E
[
Z1F

(
Bt1 −Bt0 , . . . , Btn −Btn−1

)]
.

Then µ is a complex-valued finite measure. Then (*) shows that the characteristic function
of µ vanishes identically. By uniqueness of characteristic functions this means that µ = 0
holds. Hence, E [Z1A] = 0 holds for all A ∈ σ(Bt1 , . . . , Btn). By a monotone class argument
(or measure-theoretic induction) this extends to A ∈ σ(Bs, s ≥ 0). Adding nullsets to A
does not affect validity of E [Z1A] = 0. Therefore E [Z1A] = 0 for all A ∈ F∞ and thus
Z = 0 a.s. (consider for this A = {Z > 0} and A = {Z < 0}).

Proof of Theorem 3.20. Let H be the vector space of all Z ∈ L2(Ω,F∞,P) with repre-
sentation Z = E[Z] +

´∞
0
hs dBs. The Z ∈ H the process h is unique because for h, h′´∞

0
hs dBs =

´∞
0
h′s dBs a.s. Then

´∞
0

(hs − h′s) dBs = 0 a.s. and by Itô’s isometry

0 = E

[(ˆ ∞
0

(hs − h′s) dBs
)2
]

= E
[ˆ ∞

0

(hs − h′s)
2
ds

]
.

Thus hs = h′s a.s. for almost all s. (indistinguishable?) Moreover, for Z ∈ H we have

E
[
Z2
]

= E

[(
E [Z] +

ˆ ∞
0

hs dBs

)2
]

= (E [Z])
2

+

ˆ ∞
0

E
[
h2
s

]
ds+ 2 · 0.

Using this formula for E
[
Z2
]
we obtain directly that a sequence (Zn) in H converging to

Z ∈ L2 has corresponding processes (hn) which form a Cauchy sequence with respect to
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‖h‖2 =
´∞

0
E
[
h2
s

]
ds. Then by the construction of the stochastisc integral this implies that´∞

0
hn dBs converges in L2 (Itô isometry on [0,∞)). Since also E [Zn] → E [Z] holds, we

have
Z = E [Z] +

ˆ ∞
0

hs dBs,

where hs = limn→∞ hn,s. That’s why H is closed. Now let us write f(s) =∑n
j=1 λj1(tj−1,tj ](s) and consider

Eft = exp

(
i

ˆ t

0

f(s) dBs︸ ︷︷ ︸
=:Xt

+
1

2

ˆ t

0

f2(s) ds

)
.

By Itô’s formula we get

Eft = Ef0 +

ˆ t

0

iEfs f(s) dBs,

because the quadratic variation terms cancel (see proof of Theorem 3.16). Then

exp

i n∑
j=1

λj
(
Btj −Btj−1

)
+

1

2

n∑
j=1

λ2
j (tj − tj−1)

 = 1 +

ˆ ∞
0

Efs f(s) dBs

and both the left-hand side and therefore also exp(i
∑n
j=1 λj(Btj −Btj−1

)) is in H. By the
lemma, linear combinations of the latter random variables are dense in L2. Therefore H is
dense in L2. Since H is closed, we must have H = L2.
For the second part we know by the martingale convergence theorem (reference?)(e.g. from
Stochastic processes I) that if M is an L2-bounded martingale, then there exists an F∞-
measurable random variableM∞ such thatMt

L2,a.s.−−−−→M∞. From the first part we therefore
find h ∈ L (B) with M∞ = E[M∞] +

´∞
0
hs dBs and thus for all t ≥ 0 we have Mt =

E[M∞|Ft] = E[M∞] +
´ t

0
hs dBs, a.s. In particular, M has a continuous version (namely the

right-hand side of this equality).
If M is only a local martingale, but continuous, with associated stopping times (τn), then
the stopped processes N = Mτn are uniformly integrable martingales. By the martingale
convergence theorem (reference?) there exists an F∞-measurable random variableM∞ ∈ L1.
Since L2 is dense in L1, we find F∞-measurable random variables M (n)

∞ ∈ L2 such that
M

(n)
∞

L1

−−→ M∞ as n → ∞. By the first part we can associate with each M (n)
∞ a continuous

L2-bounded martingaleM (n)
t = E[M

(n)
∞ ]+

´ t
0
h

(n)
s dBs for processes h(n) ∈ L (B). By Doob’s

maximal inequality we find then for ε > 0 that

P
(

sup
0≤t≤∞

∣∣∣Mt −M (n)
t

∣∣∣)
define further stopping times σn = τn∧inf {t ≥ 0 : |Mt| ≥ n}. SinceM0 is F0-measurable, we
have that M0 is constant a.s. (σ(B0) = {∅,Ω}. Then there exist processes hn ∈ L (B) such
that Mt∧σn = M0 +

´ t
0
hn,s dBs, t ≥ 0. By uniqueness of hn, we have hm,s = hn,s ·1[0,σm](s)

for m < n (P-a.s., λ-a.e.). So, since σn → ∞ a.s. we can define a process hs such that
hm,s = hs1[0,σm](s) for all m ≥ 1. Hence, we have a.s.

Mt = lim
n→∞

Mt∧σn = M0 + lim
n→∞

ˆ t∧σn

0

hs dBs = M0 +

ˆ t

0

hs dBs.
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Corollary 3.23. Every local martingale with respect to (Ft)t≥0 as above has a continuous
version.

Proof. t 7→
´ t

0
hs dBs is continuous such that Mt = C +

´ t
0
hs dBs a.s. and the right-hand

side is a.s. continuous in t.

Corollary 3.24. (Ft)t≥0, the completion of the canonical Brownian filtration, is right-
continuous, i.e. Ft = Ft+ =

⋂
s>t Fs, t ≥ 0.

Proof. Let Z be an Ft+-measurable bounded random variable. Then there is an h such that
Z = E[Z] +

´∞
0
hs dBs by the theorem. Since Z is Ft+ε-measurable for any ε > 0, we have

Z = E [Z| Ft+ε] = E [Z] +

ˆ t+ε

0

hs dBs.

By uniqueness of h, we derive that hs = 0 a.s. for a.a. s ∈ [t+ ε,∞). Use εn → 0 such that
h = h1[0,t] up to indistinguishability and Z = E[Z] +

´ t
0
hs dBs is Ft-measurable. Therefore

Ft+ = Ft.

Theorem 3.25. If M is a continuous local martingale, then there exists a Brownian motion
B and a family of stopping times τt such that Mt = Bτt (=”random change of Brownian
motion”).

3.4 The Girsanov theorem

3.4.1 Motivation

Let PW be the Wiener measure (i.e. the law of Brownian motion) on (C([0, 1]),BC([0,1])).
Which probability measures Q on the same space are equivalent/absolutely continuous with
respect to PW (i.e. Q ∼ PW , Q � PW ) and what are the corresponding Radon-Nikodym
densities? As motivation consider first the finite-dimensional case, i.e. let X1, . . . Xn ∼
N(0, 1) be iid random variables and let Pn be the law on (Rn,BRn). We realize X1, . . . , Xn

as the coordinate projections on Rn. Consider

Zn(x1, . . . , xn) = exp

(
n∑
k=1

µkxk −
1

2

n∑
k=1

µ2
k

)

for some µk ∈ R. Then by independence

E [Zn(X1, . . . , Xn)] = E

[
exp

(
n∑
k=1

µkXk

)]
e−

1
2

∑n
k=1 µ

2
k

=

(
n∏
k=1

E [exp (µkXk)]

)
e−

1
2

∑n
k=1 µ

2
k

=

(
n∏
k=1

eµ
2
k/2

)
e−

1
2

∑n
k=1 µ

2
k

= 1.

This means that
´
Rn Zn(x1, . . . , xn) dPn(x1, . . . , xn) = 1 and we have Zn > 0. This means Zn

is a density with respect to Pn. Hence, we can define a probability measure Qn on (Rn,BRn)
via dQn

dPn = Zn, i.e. Qn(A) =
´
A
Zn dPn, A ∈ BRn . What is the law of the coordinate
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projections X1, . . . , Xn under Qn? With λn denoting the n-dimensional Lebesgue-measure,
we have

dQn
dλn

(x) =
dQn
dPn

(x) · dPn
dλn

(x) = Zn(x) · (2π)
−n/2

e−|x|
2/2

= (2π)
−n/2

exp

(
n∑
k=1

µkxk −
1

2

n∑
k=1

µ2
k −

1

2

n∑
k=1

x2
k

)

= (2π)
−n/2

exp

(
−1

2

n∑
k=1

(µk − xk)
2

)
.

Thus, (X1, . . . , Xn) are independent under Qn and each Xk is N(µk, 1)-distributed. In
particular, (X̄1, . . . , X̄n) with X̄k = Xk − µk is iid N(0, 1)-distributed under Qn. This is
also true if (X1, . . . , Xn) is defined on some abstract probability space (Ω,F ,Pn) (not only
on Ω = Rn). We shall exploit this to obtain an infinite-dimensional analogue. Suppose
h : [0, 1] → R is given such that h(t) =

´ t
0
g(s) ds for some function g ∈ L2([0, 1]). Let

B = (Bt, t ≥ 0) be a Brownian motion on (Ω,F ,P). Then Xk :=
√
n(Bk/n − B(k−1)/n)

iid∼
N(0, 1), k = 1, . . . , n. Putting µk =

√
n(h( kn )− h(k−1

n )) and

Zn(ω) = exp

(
n∑
k=1

√
n

(
h

(
k

n

)
− h

(
k − 1

n

))√
n
(
B k
n

(ω)−B k−1
n

(ω)
)
− 1

2

n∑
k=1

n

(
h

(
k

n

)
− h

(
k − 1

n

))2
)

we define as above Qn on (Ω,F) via dQn
dP = Zn. Then we also have

X̄k =
√
n
(
B k
n
−B k−1

n

)
−
√
n

(
h

(
k

n

)
− h

(
k − 1

n

))
=
√
n

((
B k
n
− h

(
k

n

))
−
(
B k−1

n
− h

(
k − 1

n

)))
and (X̄1, . . . , X̄n) ∼ N(0, En) under Qn, where En is the n-dimensional unit matrix. Under
Qn we have that X̄1, . . . , X̄n is distributed like the increments of Brownian motion at k/n.
We want to study now the asymptotic behaviour of Qn. For this take the dyadic grid with
n = 2j , j → ∞. Let Fj = σ(Bk2−j , k = 0, . . . , 2j), j ≥ 1, be a filtration on (Ω,F). Then
(Z2j )j≥1 is an (Fj)j≥1-martingale (cf. exercises). We use h(t) =

´ t
0
g(s) ds to obtain

Zn = exp

 n∑
k=1

(
n

ˆ k
n

k−1
n

g(s) ds

)(
B k
n
−B k−1

n

)
− 1

2

n∑
k=1

(
n

ˆ k
n

k−1
n

g(s) ds

)2
1

n

 .

Since gn(t) =
∑n
k=1

(
n
´ k
n
k−1
n

g(s) ds
)
1[ k−1

n , kn )(t) (Haar approximation) converges to g a.e.

and in L2([0, 1]) we have

Zn = exp
( ˆ 1

0

gn(s) dBs︸ ︷︷ ︸
L2(P)−−−→

´ 1
0
g(s) dBs

− 1

2

ˆ 1

0

g2
n(s) ds︸ ︷︷ ︸

→
´ 1
0
g2(s) ds

)

P−→ Z∞ = exp

(ˆ 1

0

g(s) dBs −
1

2

ˆ 1

0

g2(s) ds

)
.

One can show Z2j
j→∞−−−→ Z∞ holds even in L1. This is easily checked by showing

E[Z∞|Fj ] = Z2j , i.e. (Z2j , j ≥ 1) is a closable martingale (to be done precisely, see
below). This implies in particular EP[Z∞] = EP[Z2j ] = 1. Define Q∞ on (Ω,F)
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via dQ∞
dP = Z∞. From exercises we obtain for any n = 2j that 1√

n

(
X̄1, . . . , X̄n

)
=((

B 1
n
− h

(
1
n

))
− (B0 − h(0)) , . . . , (B1 − h(1))−

(
Bn−1

n
− h(n−1

n )
))

has law N(0, 1
nEn)

under Q∞, i.e. the law of the increments of Brownian motion (B 1
n
− B0, . . . , B1 − Bn−1

n
)

under P. Since BC([0,1]) = σ(Fj , j ≥ 1) holds and (Bt − h(t), 0 ≤ t ≤ 1) is continuous. This
implies (B k

n
−h( kn ), k = 0, . . . , n) under Q∞ is thus distributed like (B k

n
, k = 0, . . . , n) under

P and B̄t := Bt − h(t) is a Brownian motion under Q∞ using that BC([0,1]) = σ(Fj , j ≥ 1)
and the definition of Brownian motion. This is the Cameron-Martin theorem.

3.4.2 The Girsanov and the Cameron-Martin theorem

Lemma 3.26. Suppose (Zt, 0 ≤ t ≤ T ) is a non-negative martingale on (Ω,F , (Ft),P) with
E[ZT ] = 1. Define QT on (Ω,FT ) via dQT

dP = ZT . Then for any Y ∈ L1(QT ) we have for
all 0 ≤ s ≤ t ≤ T

EQT [Y | Fs] =
1

Zs
EP [Y Zt| Ft] , P-a.s., QT−a.s.

Proof. See exercises.

Corollary 3.27. If (M̄tZt, 0 ≤ t ≤ T ) is a martingale on (Ω,F , (Ft),P) for some Ft-
adapted process M̄ , then M̄ = (M̄t, 0 ≤ t ≤ T ) is a martingale on (Ω,F , (Ft)t≥0,QT ) (with
the notation from above).

Proof. See exercises.

Now let us recall the stochastic exponential

Zt = exp

(ˆ t

0

Xs dBs −
1

2

ˆ t

0

X2
s ds

)
, t ≥ 0,

for some X ∈ Lloc(B). This is a non-negative local martingale due to Itô’s formula:

Zt = 1 +

ˆ t

0

ZsXs dBs +
1

2

ˆ t

0

ZsX
2
s ds−

1

2

ˆ t

0

ZsX
2
s ds

= 1 +

ˆ t

0

ZsXs dBs.

We have that (Zt, 0 ≤ t 6 T ) is a martingale if (and only if) E[ZT ] = 1.

Theorem 3.28 (Girsanov, 1960). If (Zt, 0 ≤ t ≤ T ) with Zt = exp(
´ t

0
Xs dBs− 1

2

´ t
0
X2
s ds)

is a martingale on (Ω,FT , (Ft),P), then

B̄t := Bt −
ˆ t

0

Xs ds, 0 ≤ t ≤ T,

defines a Brownian motion with respect to (Ω,FT , (Ft)0≤t≤T ,QT ) with dQT
dP := ZT .

Proof. The key idea is to apply Levy’s characterisation of Brownian motion (Theorem 3.16).
1. (B̄tZt, 0 ≤ t ≤ T ) is a continuous local P-martingale. Integration by parts (under P)
yields indeed:

B̄tZt = B̄0Z0 +

ˆ t

0

Bs dZs +

ˆ t

0

Zs dB̄s +
〈
B̄, Z

〉
t

= 0 +

ˆ t

0

B̄sZsXs dB̄s +

ˆ t

0

Zs dB̄s −
ˆ t

0

ZsXs ds+

ˆ t

0

1 · ZsXs ds

=

ˆ t

0

(B̄sXs + 1)Zs dBs
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which is a continuous local P-martingale.
2. (B̄t, 0 ≤ t ≤ T ) is a local QT -martingale. Let (B̄Z)t∧τn , 0 ≤ t ≤ T, be P-martingales
for suitable stopping times τn →∞. By the first step and Corollary 3.27 we see that B̄t∧τn
is a continuous QT -martingale with respect to (Ft∧τn)0≤t≤T and thus (B̄t, 0 ≤ t 6 T ) is a
continuous local martingale with respect to QT .
3. B̄ has quadratic variation

〈
B̄
〉
t

= t under QT . We need to show that (B̄2
t − t, 0 ≤ t ≤ T )

is a continuous local martingale under QT . Equivalently (see below) it is enough to show
that (Zt(B̄

2
t − t), 0 ≤ t ≤ T ) is a continuous local martingale under P. Continuity is obvious.

Use (under P)
〈
B̄
〉
t

=
〈
B −

´ ·
0
Xs ds

〉
t

= 〈B〉t = t such that

B̄2
t = 2

ˆ t

0

B̄t dB̄t +
〈
B̄
〉
t

= 2

ˆ t

0

B̄t dB̄t + t

and by partial integration

Zt(B̄
2
t − t) =

ˆ t

0

Zs2B̄s dB̄s +

ˆ t

0

(B̄2
s − s)ZsXs dBs +

ˆ t

0

ZsXs2B̄s ds

= 2

ˆ t

0

(ZsB̄s + (B̄2
s − s)ZsXs dBs

which is a local P-martingale. This yields directly the claim.

We are now interested in the support of Wiener measure PW on (C([0, 1]),BC([0,1])).
Trivial question: Suppose U ∼ U([0, 1]). Which of the outcomes U = 0.5, U = 0, U = −1
is typical? We can argue that 0 and 0.5 are typical outcomes, because any open interval
around 0 and 0.5 has positive probability while this is not true for −1.

Definition 3.29. The support of a probability measure P on a metric space S equipped
with its Borel-σ-algebra is the smallest closed set A such that P(A) = 1 holds, i.e. A =⋂
F closed,P(F )=1. The set

H =

{
f ∈ C([0, 1]) : ∃g ∈ L2([0, 1])∀t ∈ [0, 1] f(t) =

ˆ t

0

g(s) ds

}
is called Cameron-Martin space.

Remark. H is the space of all weakly differentiable (= absolutely continuous) functions f
with f(0) = 0, f ′ ∈ L2, i.e. H = H1 ∩ {f ∈ C([0, 1]) : f(0) = 0} with the L2-Sobolev space
H1.

The Girsanov theorem yields a very interesting shift property of Wiener measure.

Proposition 3.30. For all h ∈ H the laws of Brownian motion (Bt, t ∈ [0, 1]) and Brow-
nian motion with drift h, i.e. (Bt + h(t), t ∈ [0, 1]), are equivalent on (C([0, 1]),BC([0,1])).

Proof. For g ∈ L2([0, 1]) with h(t) =
´ t

0
g(s) ds we consider Zt = exp(

´ t
0
g(s) dBs −

1
2

´ t
0
g(s)2 ds), 0 ≤ t ≤ 1. Since g ∈ L2 is deterministic, g ∈ L (B) and Zt is well-defined. We

have that
´ 1

0
g(s) dBs is normally distributed (via Gaussian approximations, cf. exercises)

with E[
´ 1

0
g(s) dBs] = 0, E[(

´ 1

0
g(s) dBs)

2] =
´ 1

0
g2(s) ds, i.e.

´ 1

0
g(s) dBs ∼ ‖g‖2L2U , where

U ∼ N(0, 1). Z is a martingale, because

E [Z1] = E
[
e
´ 1
0
g(s) dBs

]
e−

1
2

´ 1
0
g2 ds = e

1
2‖g‖

2
L2− 1

2‖g‖
2
L2 = 1.

By Girsanov B̄t = Bt −
´ t

0
g(s) ds = Bt − h(t) is a Q1-Brownian motion with dQ1

dP = Z1 on
F1 such that Bt = B̄t + h(t) is a Brownian motion with drift under Q1. Since by definition
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Q1 � P on (Ω,F1) and the density Z1 is strictly positive, Q1 and P are equivalent measures
and so are their image measures QB1 , PB under B on (C([0, 1]),BC([0,1])). Hence, the law of
Brownian motion PB and the law of Brownian motion PB and the law of Brownian motion
with drift h QB1 are equivalent.

Corollary 3.31. The support of PW on (C([0, 1]),BC([0,1])) is given by H = {f ∈ C([0, 1]) :
f(0) = 0}.

Proof. For any h ∈H , ε > 0, we have (‖f‖∞ = sup0≤t≤1 |f(t)|)

P (‖B + h‖∞ ≤ ε) = EP
[
1{‖B+h‖∞≤ε}

]
= EQ1

[
1{‖B̄+h‖∞≤ε}

]
= EQ1

[
1{‖B‖∞≤ε}

]
= EP

[
1{‖B‖∞≤ε}Z1

]
> 0,

because Z1 > 0 P-a.s. and P(‖B‖∞ ≤ ε) > 0 such that 1{‖B‖∞≤ε}Z1 > 0 on a set of positive
P-measure (note: we have proved

P
(

sup
0≤t≤1

Bt ≤ ε
)

= P (|Z| ≤ ε) =

ˆ ε

−ε

1√
2π
e−

x2

2 dx > 0

for all ε > 0; it is also possible to show that P(sup0≤t≤1 |Bt| ≤ ε) > 0 for all ε > 0 (“small ball
property of Brownian motion”)). This means all ‖·‖∞-balls around h ∈ H of radius ε > 0
are charged (i.e. have positive probability) by PW . For any open set O with O ∩H 6= ∅ we
have PW (O) > 0. Hence, O open with PW (O) = 0 must satisfy O ∩H = ∅, i.e. O ⊆ H c

such that
⋃
O open,PW (0)=0O ⊆ H c. Taking complements this means the support of PW

contains H and thus H . Because B0 = 0 a.s. the support of PW is exactly H .

So far it remained open how to check in general whether Zt = exp
(´ t

0
Xs dBs − 1

2

´ t
0
X2
s ds

)
is a martingale. There are two useful sufficient conditions for that, namely the Kazamaki
and the Novikov condition, see. e.g. Revuz and Yor (1999). Here we merely prove an
ε-weaker version of Novikov’s condition.

Theorem 3.32 (Weak Novikov condition). Let M be a continuous local martingale, M0 = 0

and Zt = eMt− 1
2 〈M〉t . Then E[ZT ] = 1 holds (and (Zt, 0 ≤ t ≤ T ) is a martingale) if for

some ε > 0

E
[
exp

((
1

2
+ ε

)
〈M〉T

)]
<∞.

Proof. Suppose τn → ∞ are stopping times such that (Zt∧τn , 0 ≤ t ≤ T ) are martingales
(cf. exercises). We show that (ZT∧τn)n≥1 are uniformly integrable. Then

E [ZT ] = lim
n→∞

E [ZT∧τn ]︸ ︷︷ ︸
=E[Z0]

= 1.

For this we prove that supn≥1 E[ZrT∧τn ] <∞ for some r > 1. For any p > 1 we have

Zrt = exp

(
rMt −

1

2
r 〈M〉t

)
= exp

(
rMt −

p

2
〈rM〉t +

1

2

(
pr2 − r

)
〈M〉t

)
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such that by Hölder-inequality

E
[
ZrT∧τn

]
≤ E

[
exp

(
prMT∧τn −

p2

2
〈rM〉T∧τn

)]1/p

︸ ︷︷ ︸
=E[exp(prMT∧τn− 1

2 〈prM〉T∧τn)]
1/p

E
[
exp

(q
2

(
pr2 − r

)
〈M〉T∧τn

)]1/q
.

Observe that prMt is a local martingale such that exp (. . . ) is a stopped non-negative local
martingale and, in particular, a submartingale. Hence, by Fatou’s lemma and because
〈M〉T∧τn ≤ 〈M〉T

E
[
ZrT∧τn

]
≤ 11/pE

[
exp

(
p

2(p− 1)

(
pr2 − r

)
〈M〉T

)]1/q

,

where we use that q = p
p−1 by Hölder inequality. This is finite if p

2(p−1) (pr2 − r) ≤ 1
2 + ε.

The left-hand side for r → 1 converges to p
2 which for p → 1 in turn converges to 1

2 . By
continuity there are r, p > 1 such that it is smaller than 1

2 + ε.

Corollary 3.33. The previous proposition still holds if there are times 0 = t0 < t1 < · · · <
tn = T such that

E
[
exp

((
1

2
+ ε

)
〈M〉tk − 〈M〉tk−1

)]
<∞

holds for k = 1, . . . , n.

Proof. We have

E [ZT ] = E
[
E
[

exp

(
MT −

1

2
〈M〉T

)∣∣∣∣Ftn−1

]]
= E

[
exp

(
Mtn−1

− 1

2
〈M〉tn−1

)
E
[

exp

((
Mtn −Mtn−1

)
− 1

2

(
〈M〉tn − 〈M〉tn−1

))∣∣∣∣Ftn−1

]]
.

Now (Mt −Mtn−1
, t ∈ [tn−1, tn]) is also a continuous local martingale starting at t = tn−1

in zero with quadratic variation 〈M〉t − 〈M〉tn−1
. Thus, the previous argument (for

Novikov’s condition) applied to (Mt −Mtn−1
, t ∈ [tn−1, tn]) and conditional on Ftn−1

yields
that E[exp(Mtn −Mtn−1

− 1
2 (〈M〉tn − 〈M〉tn−1

)|Ftn−1
] = 1, using E[exp(( 1

2 + ε)(〈M〉tn −
〈M〉tn−1

))] < ∞. We obtain the claim by applying this argument for tn−1, tn−2, . . . yields
E[ZT ] = 1.

Remark 3.34. A different proof is given in Karatzas (1991) using a multi-dimensional version
of Novikov’s condition.

3.4.3 Maximum-Likelihood estimation for Ornstein-Uhlenbeck
processes

Consider the Ornstein-Uhlenbeck-process X solving the SDE dXt = −aXt dt+dBt, X0 = 0,
where a ∈ R is a parameter. A solution is given by Xt =

´ t
0
e−a(t−s) dBs. a = 0 corresponds

to Brownian motion. Our aim is to estimate a ∈ R from the observation of one trajectory
(Xt, t ∈ [0, T ]). The Maximum-Likelihood approach is then the following, first in a more
general setting: Suppose we observe Y , a random variable (even function valued), with
density pa where a ∈ A, the parameter set, is an unknown parameter. Here, we assume that
all densities pa are taken with respect to one dominating measure (e.g. Lebesgue-measure
or the Wiener-measure). Then the Maximum-Likelihood estimator â is the value of a which
maximises pa(y) over a ∈ A where y is a realisation of Y . Formally, â = arg maxa∈A pa(y).
Here, we shall use the Girsanov Theorem to determine the density of (Xt, t ∈ [0, T ]) with
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respect to the Wiener measure on C([0, T ],BC([0,T ])). We want that (Xt, t ∈ [0, T ]) is an
Ornstein-Uhlenbeck-process with parameter a under Q(a). For this write dXt = −aXt+dB̄t,
X0 = 0 with a Q(a)-Brownian motion B̄, whereas under Q(0) = P X should be just a
Brownian motion. So, we have B̄t = Xt −

(
−a
´ t

0
Xs ds

)
, which is indeed a Q(a)-Brownian

motion for
dQ(a)

dP
= ZT = exp

(ˆ T

0

(−aXsdXs −
1

2

ˆ T

0

a2X2
s ds

)
by Girsanov’s Theorem. In order to apply Girsanov, we must make sure that

E [ZT ] = E

[
exp

(ˆ T

0

(−aXs dXs −
1

2

ˆ T

0

a2X2
s ds

)]
= 1

holds. By the corollary to Novikov’s condition it suffices to show

E

[
exp

((
1

2
+ ε

)
a2

ˆ tk

tk−1

B2
s ds

)]
<∞

for suitable 0 = t0 < t1 < · · · < tn = T (observe for Z ∼ N(0, 1) that E[ecZ
2

] < ∞ if and
only if c < 1

2 ). For interval lengths tk−tk−1 such that
(

1
2 + ε

)
a2 (tk − tk−1) this expectation

is indeed finite (check!). Hence,

dQ(a)

dQ(0)
= exp

(
−a
ˆ T

0

Xs dXs −
1

2

ˆ T

0

X2
s ds

)

is the density of the law of the Ornstein-Uhlenbeck-process on [0, T ] with respect to the law
of Brownian motion. Thus, the Maximum-Likelihood-estimator is given by

â = arg max
a∈R

exp

(
−a
ˆ T

0

Xs dXs −
a2

2

ˆ T

0

X2
s ds

)

= arg max
a∈R

(
−a
ˆ T

0

Xs dXs −
a2

2

ˆ T

0

X2
s ds

)

=
−
´ T

0
Xs dXs´ T

0
X2
s ds

=
− 1

2

(
X2
T − T

)
´ T

0
X2
s ds

.

If our observations (Xt, t ∈ [0, T ]) are generated under Q(a0) for some a0 ∈ R, then

â =
−
´ T

0
Xs(−a0Xs ds+ dB̄s)´ T

0
X2
s ds

= a0 −
´ T

0
Xs dB̄s´ T

0
X2
s ds

= a0 −
MT

〈M〉T

for the martingale Mt =
´ t

0
Xs dB̄s. We always have 〈M〉T =

´ T
0
X2
s ds

a.s.−−→ ∞ for T →∞
such that the law of large numbers for martinges (cf. ) yields âT Q(a)-a.s.−−−−−−→ a0 as T → ∞
(consistent estimator). If a0 > 0 (’asymptotically stationary case’), then a central limit
theorem holds: √

T (âT − a0) T→∞−−−−→ N(0,
1

2a0
)

under Q(a0). For a0 < 0 we even have an exponentially fast convergence in ecT (âT −a0) a.s.−−→
0 for some c > 0.
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