Stochastic Analysis

July 7, 2014

Contents

1	Construction and properties of Brownian motion					
	1.1	Motivation	2			
	1.2	Approaches to construct Brownian motion	4			
1.3 Properties of Brownian sample paths						
	1.4	Brownian motion as martingale and Markov process				
		1.4.1 Ruin problems	15			
		1.4.2 Strong Markov property and the reflection principle	17			
2	Continuous martingales and stochastic integration					
	2.1	Continuous (local) martingales	20			
	2.2	Stochastic integration	26			
3	Main theorems of stochastic analysis					
	3.1	Itô's formula	36			
	3.2	First consequences of Itô's formula 44				
	3.3	Martingale representation theorems				
	3.4	The Girsanov theorem	47			
		3.4.1 Motivation	47			
		3.4.2 The Girsanov and the Cameron-Martin theorem	49			
		3.4.3 Maximum-Likelihood estimation for Ornstein-Uhlenbeck processes	52			

Chapter 1

Construction and properties of Brownian motion

1.1 Motivation

Why is the Brownian motion the central object of stochastic analysis?

Scaling limit of random walks

 $(X_k)_{k\geq 1}$ i.i.d. random variables with $\mathbb{E}[X_k] = 0$, $\sigma^2 = \operatorname{Var}(X_k) < \infty$. Put $S_0 := 0$, $S_n := \sum_{k=1}^n X_k$, $n \geq 1$. Zooming out (rescale time): $Y_{n/N}^{(N)} := S_n$, for $n = 0, 1, \ldots, N$. Then $\mathbb{E}[Y_{n/N}^{(N)}] = 0$, $\operatorname{Var}(Y_1^{(N)}) = \operatorname{Var}(S_N) = N\sigma^2$. Standardise (rescale space): $Z_{n/N}^{(N)} = \frac{1}{\sigma\sqrt{n}}Y_{n/N}^{(N)}$ for $n = 0, 1, \ldots, N$. Then $\mathbb{E}[Z_{n/N}^{(N)}] = 0$, $\operatorname{Var}(Z_1^{(N)}) = 1$. Use linear interpolation to define $Z_t^{(N)}$, $t \in [0, 1]$. Asymptotics $N \to \infty$: $(Z_t^{(N)}, t \in [0, 1]) \xrightarrow{d} (B_t, t \in [0, 1])$, where \xrightarrow{d} means convergence in distribution on C([0, 1]). This is Donsker's invariance principle (functional CLT).

Anti-derivative of "white noise"

Physicists and engineers often model random perturbations by a white noise process $(\Gamma_t, t \ge 0)$. They postulate: Γ is a Gaussian process (all $(\Gamma_{t_1}, \ldots, \Gamma_{t_n})$ are Gaussian) with $\mathbb{E}[\Gamma_t] = 0$, $\operatorname{Cov}(\Gamma_t, \Gamma_s) = \delta(t-s)$ with " δ -function" defined by $\delta(x) = 0$ for $x \ne 0$ and $\int_{-\varepsilon}^{\varepsilon} \delta(x) \, dx = 1$ for all $\varepsilon > 0$. The idea of the covariance structure is that for $f \in L^2([0,1])$: the linear functional $\int_0^1 f(t)\Gamma_t \, dt$ is Gaussian with mean 0 and

$$\operatorname{Var}\left(\int_{0}^{1} f(t) \Gamma_{t} dt\right) = \mathbb{E}\left[\int_{0}^{1} f(t) \Gamma_{t} dt \cdot \int_{0}^{1} f(s) \Gamma_{s} ds\right]$$
$$\stackrel{?}{=} \int_{0}^{1} \int_{0}^{1} f(t) f(s) \mathbb{E}\left[\Gamma_{t} \Gamma_{s}\right] dt ds = \int_{0}^{1} f^{2}(s) ds = \|f\|_{L^{2}}^{2}.$$

This will be made mathematically correct via the stochastic integral: $\int_0^1 f(t)\Gamma_t dt \rightsquigarrow \int_0^1 f(t) dB_t$ (Wiener's stochastic integral). White noise itself is difficult to define properly, but the stochastic integration theory is well developed. As we shall see, Brownian motion can be seen as the anti-derivative of white noise.

Why "white" noise? Fourier coefficients: for $k \ge 1$

$$C_{k} = \int_{0}^{2\pi} \Gamma_{t} \frac{1}{\sqrt{\pi}} \cos(kt) dt \sim N(0,1),$$

$$D_{k} = \int_{0}^{2\pi} \Gamma_{t} \frac{1}{\sqrt{\pi}} \sin(kt) dt \sim N(0,1),$$

and for k = 0

$$C_{0} = \frac{1}{\sqrt{2\pi}} \int_{0}^{1} \Gamma_{t} dt \sim N(0, 1).$$

By polarisation we obtain:

$$\mathbb{E}\left[C_{k}D_{l}\right] \stackrel{\text{pol.}}{=} \frac{1}{4} \left(\mathbb{E}\left[\left(C_{k}+D_{l}\right)^{2}\right] - \mathbb{E}\left[\left(C_{k}-D_{l}\right)^{2}\right]\right)$$

from above $\frac{1}{4} \left(\left\|\frac{1}{\sqrt{\pi}}\left(\cos\left(k\cdot\right)+\sin\left(l\cdot\right)\right)\right\|_{L^{2}}^{2}-\left\|\ldots-\ldots\right\|_{L^{2}}^{2}\right)$
 $\stackrel{\text{pol.}}{=} \left\langle\frac{1}{\sqrt{\pi}}\cos\left(k\cdot\right),\frac{1}{\sqrt{\pi}}\sin\left(l\cdot\right)\right\rangle_{L^{2}}$
 $= 0.$

Then C_k , D_l are uncorrelated. Equally, we can show that the entire set $\{C_k, k \ge 0\} \cup \{D_l, l \ge 0\}$ consists of independent (!) N(0, 1)-distributed random variables. This gives formally

$$\Gamma_t = \sum_{k=1}^{\infty} \left(C_k \frac{1}{\sqrt{\pi}} \cos\left(kt\right) + D_k \frac{1}{\sqrt{\pi}} \sin\left(kt\right) \right) + C_0 \frac{1}{\sqrt{2\pi}}$$

for $t \in [0, 2\pi]$. Hence, Brownian motion should be

$$B_{t} = \sum_{k=1}^{\infty} \left(C_{k} \frac{1}{\sqrt{\pi k}} \sin(kt) - D_{k} \frac{1}{\sqrt{\pi k}} \cos(kt) \right) + C_{0} \frac{t}{\sqrt{2\pi}}.$$

Continuous martingales

Let $(M_t, t \ge 0)$ be a continuous martingale on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\ge 0}, \mathbb{P})$ with *filtration* $(\mathcal{F}_t)_{t\ge 0}$ ($\forall 0 \le t \le s \mathcal{F}_t \subseteq \mathcal{F}_s$ sub- σ -algebras of \mathcal{F}), i.e.

- (i) $M_t \in L^1$,
- (ii) M_t is \mathcal{F}_t -measurable ("adapted"),
- (iii) $\forall 0 \leq t \leq s : \mathbb{E}[M_s | \mathcal{F}_t] = M_t \text{ a.s.},$
- (iv) $t \mapsto M_t(\omega)$ is continuous for almost all (a.a.) $\omega \in \Omega$.

They form basic stochastic objects! Fundamental results:

(a) M can be obtained by a (random) time shift of a Brownian motion B

$$M_t = B_{\tau(t)} + M_0, \ t \ge 0.$$

(b) M can be obtained by averaging weighted Brownian increments (as a stochastic integral):

$$M_t = M_0 + \int_0^t H_s \, dB_s, \quad t \ge 0,$$

where B is a Brownian motion and H is a suitable (random) integrand.

Understanding B means understanding continuous martingales!

4

Diffusion, Laplace operator, physical Brownian motion

 $(B_t, t \ge 0)$ should be a continuous Markov ("memoryless") process in \mathbb{R}^d . Let $f : \mathbb{R}^d \to \mathbb{R}$ be some physical quantity f(y) at some point y (e.g. temperature). Consider a diffusion equation for some "density" $\varphi(y, t)$:

$$\frac{\partial}{\partial t}\varphi\left(y,t\right) + div\left(\vec{j}\left(y,t\right)\right) = 0,$$

where $\vec{j}(y,t)$ is the flux in y at time t. Usually, $\vec{j}(y,t)$ is proportional to $-grad \varphi(y,t) = -\nabla \varphi(y,t)$. Then

$$\frac{\partial}{\partial t}\varphi\left(y,t\right) - \sigma^{2} \bigtriangleup \varphi\left(y,t\right) = 0$$

(here $\triangle = \nabla \cdot \nabla = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_d^2}$). This is a diffusion equation. We suggest as solutions $\varphi(x,t) := \mathbb{E}_x[f(B_t)], B_0 = x$ (Brownian motion starting in x), for all "nice" f. Let p(x, y, t) be the transition density of B such that $\varphi(x,t) = \int_{\mathbb{R}^d} f(y)p(x,y,t) \, dy$. This gives a PDE for p:

$$\frac{\partial}{\partial t}p(x,y,t) = \sigma^2 \Delta_x p(x,y,t) \quad \text{(master/heat equation)}. \tag{1.1.1}$$

The solution with $p(x, y, t) = \delta(x - y)$ is $p(x, y, t) = (2\pi)^{-d/2} \sigma^{-d} t^{-1/2} e^{-|x-y|^2/2t\sigma^2}$ (this is the Gaussian density!). This yields the mathematical Brownian motion (up to a factor $2\sigma^2$).

1.2 Approaches to construct Brownian motion

Definition 1.1. A stochastic process $(B_t, t \ge 0)$ is called *Brownian motion* (or *Wiener process*), if

- (i) $B_0 = 0$ a.s.,
- (ii) *B* has independent increments: $\forall n \geq 1, 0 \leq t_0 < \cdots < t_n : (B_{t_i} B_{t_{i-1}})_{1 \leq i \leq n}$ are independent random variables,
- (iii) $B_t B_s \sim N(0, t s)$ for all $t > s \ge 0$ (stationary increments),
- (iv) $t \mapsto B_t(\omega)$ is continuous for a.a. $\omega \in \Omega$ (continuous trajectories/paths).

Let T > 0. The Wiener measure \mathbb{P}^W on $(C([0,T], \mathscr{B}_{C([0,T])}))$, where $\mathscr{B}_{C([0,T])}$ is the Borel- σ -algebra on C([0,T]) (if $T < \infty$ this is induced by the sup-norm, if $T = \infty$ it is induced by a special metric inducing the topology of uniform convergence on compact sets) is given by the image measure induced by a Brownian motion B: $\mathbb{P}^W(A) = P(B \in A)$. Remark 1.2.

- (i) Given \mathbb{P}^W the coordinate process $\pi_t : C([0,T]) \to \mathbb{R}, \pi_t(f) = f(t), T < \infty$, defines a Brownian motion $(\pi_t, t \in [0,T])$ on [0,T] (check via Stochastic processes I). Here, $(C([0,T]), \mathscr{B}_{C([0,T])})$ is called *(canonical) path space.*
- (ii) $(B_t)_{t\geq 0} = (B_t, t \geq 0)$ is a centred Gaussian process with covariance function $c(t, s) := Cov(B_t, B_s) = t \wedge s$ (recall: *B* is a Gaussian process : $\Leftrightarrow \forall n, 0 \leq t_1 < \cdots < t_n : (B_{t_1}, \ldots, B_{t_n})$ is Gaussian). The Gaussianity of *B* follows by the independence and normality of increments. With respect to the covariance function let $s \leq t$ such that

$$\operatorname{Cov} (B_t, B_s) = \mathbb{E} [B_t B_s] = \mathbb{E} \left[\left(B_s + \underbrace{B_t - B_s}_{\text{indep. of } B_s \text{by (ii)}} \right) B_s \right]$$
$$= \mathbb{E} [B_s^2] + \mathbb{E} [B_t - B_s] \mathbb{E} [B_s] = s.$$

Hence, $\forall s, t \geq 0$ Cov $(B_t, B_s) = s \wedge t$. How many Brownian motions are there? Since the cylinder sets

5

$$A_{t_1,\dots,t_n;C} := \{ f \in C([0,T]]) : (f(t_1),\dots,f(t_n)) \in C \}$$

for $0 \leq t_1 < t_2 < \ldots, t_n \leq T < \infty, C \in \mathscr{B}_{\mathbb{R}^n}$, form an \cap -stable generator of $\mathscr{B}_{C([0,T])}$, the Wiener measure \mathbb{P}^W is uniquely (!) defined by these Gaussian properties.

(iii) The existence of a Brownian motion is much less evident. The main difficulty is the continuity of paths (see exercises). Since $(t, s) \mapsto C(t, s) = t \wedge s$ is a positive semidefinite function, a Gaussian process with mean 0 and covariance function C(t, s) always exists by Kolmogorov's consistency theorem (as a limit of a projective family of distributions) on $(\mathbb{R}^{\mathbb{R}_+}, \mathscr{B}_{\mathbb{R}}^{\otimes \mathbb{R}_+})$. Hence, a process $(\overline{B}_t, t \geq 0)$ satisfying properties (i)-(iii) of a Brownian motion always exists.

Donsker's invariance principle

Show existence by tightness and Prokhorov's theorem (see Stochastic processes I).

Kolmogorov/Chentsov: continuous version

Definition 1.3. A process $(\tilde{X}_t, t \in T)$ is a version of $(X_t, t \in T)$ if $\forall t \in T : \mathbb{P}(\tilde{X}_t = X_t) = 1$. \tilde{X} and X are called *indistinguishable* if $\mathbb{P}(\forall t \in T : X_t = \tilde{X}_t) = 1$.

Note that a version \hat{X} of X has the same finite-dimensional distributions, i.e. $(\tilde{X}_{t_1}, \ldots, \tilde{X}_{t_n}) \stackrel{d}{=} (X_{t_1}, \ldots, X_{t_n})$ which means $\mathbb{P}^{(\tilde{X}_{t_1}, \ldots, \tilde{X}_{t_n})} = \mathbb{P}^{(X_{t_1}, \ldots, X_{t_n})}$. We shall show that a process \overline{B} with properties (i)-(iii) of a Brownian motion has a continuous version B, which then satisfies (iv) as well (surely!).

Example 1.4. Suppose $(X_t, t \in [0, 1])$ is a continuous process. Then we can define a version $(\tilde{X}_t, t \in [0, 1])$ with discontinuous trajectories by

$$\tilde{X}_t = \begin{cases} X_t, & t \neq \tau \\ X_t + 1, & t = \tau \end{cases}$$

where $\tau \sim U([0,1])$ is independent of X on $(\Omega, \mathcal{F}, \mathbb{P})$. This follows from $\mathbb{P}(X_t = \tilde{X}_t) = \mathbb{P}(\tau \neq t) = 1$. Note that $\mathbb{P}(\forall t \in [0,1] : X_t = \tilde{X}_t) = 0$. Hence, $(\tilde{X}_t, t \in [0,1])$ is a version of $(X_t, t \in [0,1])$ but they are not indistinguishable.

Theorem 1.5 (Kolmogorov-Chentov). Let $(X_t, 0 \leq t \leq 1)$ be a stochastic process on $(\Omega, \mathcal{F}, \mathbb{P})$. If there are $C > 0, \alpha, \beta > 0$ such that

$$\forall s, t \in [0, 1] : \mathbb{E}[|X_t - X_s|^{\alpha}] \le C |t - s|^{1+\beta},$$

then X has a continuous version \tilde{X} on $(\Omega, \mathcal{F}, \mathbb{P})$. The paths $t \mapsto \tilde{X}_t(\omega)$ are even Hölder continuous of regularity $\gamma \in (0,1]$ for any $\gamma < \beta/\alpha$, i.e. $\exists L(\omega) \forall t, s \in [0,1] : |\tilde{X}_t(\omega) - \tilde{X}_s(\omega)| \le L(\omega)|t-s|^{\gamma}$.

Proof. 1. Stochastic continuity: By Markov's inequality

$$\mathbb{P}\left(|X_t - X_s| \ge \varepsilon\right) \le \varepsilon^{-\alpha} \mathbb{E}\left[|X_t - X_s|^{\alpha}\right] \le C\varepsilon^{-\alpha} |t - s|^{1+\beta}$$

For sequences $s_n \to t$ we have $X_{s_n} \xrightarrow{\mathbb{P}} X_t$ (stochastic continuity, necessary for a.s. continuity).

6

2. Control of increments along $D_n := \{k \cdot 2^{-n} : k = 0, \dots, 2^n\}$: Let $0 < \gamma < \beta/\alpha$. Then

$$\mathbb{P}\left(\left|X_{k2^{-n}} - X_{(k-1)2^{-n}}\right| \ge 2^{-\gamma n}\right) \stackrel{(*)}{\le} C \cdot 2^{\gamma n\alpha} 2^{-n(1+\beta)} = C \cdot 2^{-n(1+\beta-\alpha\gamma)}.$$

By a union bound

$$\mathbb{P}\left(\max_{k=1,\dots,2^{n}} \left| X_{k2^{-n}} - X_{(k-1)2^{-n}} \right| \ge 2^{-\gamma n} \right) \le \sum_{k=1}^{2^{n}} \mathbb{P}\left(\left| X_{k2^{-n}} - X_{(k-1)2^{-n}} \right| \ge 2^{-\gamma n} \right) \le C \cdot 2^{-n(\beta - \alpha \gamma)}.$$

By the Borel-Cantelli-Lemma $\exists \Omega^* \in \mathcal{F}, \mathbb{P}(\Omega^*) = 1$ such that $\forall \omega \in \Omega^* \exists n^*(\omega) \forall n \geq n^*(\omega) : \max_{k=1,\dots,2^n} |X_{k2^{-n}} - X_{(k-1)2^{-n}}| < 2^{-\gamma n}.$

3. Beyond neighbours in D_n : Let $w \in \Omega^*$, $n \ge n^*(\omega)$. We show $\forall m > n \forall s, t \in D_m, 0 < |t-s| < 2^{-n} : |X_t(\omega) - X_s(\omega)| \le 2 \cdot \sum_{j=n+1}^m 2^{-\gamma j}$ by induction on m. For m = n + 1 and $s, t \in D_m$, $|t-s| < 2^{-n}$ we find that $|t-s| = 2^{-m} = 2^{-(n+1)}$. Apply 2. for n + 1. For the induction step assume that the statement holds for m - 1. With respect to m assume $\exists \tilde{s}, \tilde{t} \in D_{m-1}$ such that $|\tilde{t} - \tilde{s}| \le |t-s|, |X_{\tilde{s}} - X_s| \le 2^{-\gamma m}, |X_{\tilde{t}} - X_t| \le 2^{-\gamma m}$. The induction hypothesis implies then that

$$|X_t - X_s| \le |X_t - X_{\tilde{t}}| + |X_{\tilde{t}} - X_{\tilde{s}}| + |X_{\tilde{s}} - X_s| \le 2 \cdot 2^{-\gamma m} + 2 \cdot \sum_{j=n+1}^{m-1} 2^{-\gamma j} = 2 \cdot \sum_{j=n+1}^m 2^{-\gamma j}.$$

4. Hölder continuity on $D := \bigcup_{m \ge 1} D_m$: For $s, t \in D, 0 < |t - s| < 2^{-n^*(\omega)}$ and $n \ge n^*(\omega)$ with $2^{-(n+1)} \le |t - s| < 2^{-n}$ we have

$$|X_t(\omega) - X_s(\omega)| \le 2 \cdot \sum_{j=n+1}^{\infty} 2^{-\gamma j} = \frac{2}{1 - 2^{-\gamma}} \cdot 2^{-\gamma(n+1)} \le C |t - s|^{\gamma}$$

5. Extension from D to [0,1]: Now define

$$\tilde{X}_{t}(\omega) := \begin{cases} 0, & \omega \notin \Omega^{*}, \\ X_{t}(\omega), & \omega \in \Omega^{*}, t \in D \\ \lim_{s \to t, s \in D} X_{s}(\omega), & \omega \in \Omega^{*}, t \notin D \end{cases}$$

Then $t \mapsto \tilde{X}_t(\omega)$ is continuous in t (and well defined, topology result) and measurable in ω . Even more: for $u \in D, t \notin D, (s_n) \subseteq D, s_n \to t, \omega \in \Omega^*, 0 < |t-u| < 2^{-n^*(\omega)}$

$$\left|\tilde{X}_{t}(\omega) - \tilde{X}_{u}(\omega)\right| = \lim_{s_{n} \to t} \left|X_{s_{n}}(\omega) - X_{u}(\omega)\right| \stackrel{4.}{\leq} \limsup_{n \to \infty} C \cdot |s_{n} - u|^{\gamma} = C \cdot |t - u|^{\gamma}$$

and similarly for $u, t \notin D$. For $2^{-n^*(\omega)} \leq |t-u|$ we can write $|t-u| \leq \sum_{k=1}^{2^{n^*(\omega)}} |t_k - t_{k-1}|$ with $t_0 = u, t_{2^{n^*(\omega)}} = t$ and $|t_k - t_{k-1}| \leq 2^{-n^*(\omega)}$ such that

$$\begin{aligned} \left| \tilde{X}_{t} \left(\omega \right) - \tilde{X}_{u} \left(\omega \right) \right| &\leq C \cdot \sum_{k=1}^{2^{n^{*}(\omega)}} \left| \tilde{X}_{t_{k}} \left(\omega \right) - \tilde{X}_{t_{k-1}} \left(\omega \right) \right| \\ &\leq C \cdot \sum_{k=1}^{2^{n^{*}(\omega)}} |t_{k} - t_{k-1}|^{\gamma} \\ &\leq C \cdot 2^{n^{*}(\omega)} |t - u|^{\gamma}. \end{aligned}$$

7

Then $\forall \omega \in \Omega^*, t, u \in [0, 1]$:

$$\begin{aligned} \left| \tilde{X}_t \left(\omega \right) - \tilde{X}_u \left(\omega \right) \right| &\leq \begin{cases} C \cdot |t - u|^{\gamma}, & |t - u| \leq 2^{-n^*(\omega)}, \\ C \cdot 2^{n^*(\omega)} |t - u|^{\gamma}, & |t - u| > 2^{-n^*(\omega)}, \end{cases} \\ &\leq \underbrace{C \cdot 2^{n^*(\omega)}}_{L(\omega)} |t - u|^{\gamma}. \end{aligned}$$

6. \tilde{X} is a version of X: By 1. for $s_n \in D, s_n \to t : X_{s_n} \xrightarrow{\mathbb{P}} X_t$ and there exists $\exists (n_k)$ such that $X_{s_{n_k}} \xrightarrow{\mathbb{P}-a.s.} X_t$. By construction, $\mathbb{P}(X_t = \tilde{X}_t) = \mathbb{P}(X_t = \lim_{k \to \infty} X_{s_{n_k}}) = 1$. \Box

Remark 1.6. Compare this to the very similar moment criterion for tightness (see Stochastic processes I).

Corollary 1.7. Brownian motion exists and has a.s. γ -Hölder continuous paths for any $\gamma \in (0, 1/2)$.

Proof. The process \overline{B} satisfying properties (i)-(iii) of a Brownian motion fulfills $\overline{B}_t - \overline{B}_s \sim N(0, t-s)$ for $t \geq s$. Then $\forall m \in \mathbb{N}$:

$$\mathbb{E}\left[\left(\bar{B}_t - \bar{B}_s\right)^{2m}\right] = \mathbb{E}\left[\left(\sqrt{t-s}Z\right)^{2m}\right] = (t-s)^m \mathbb{E}\left[Z^{2m}\right] = (t-s)^m (2m-1)(2m-3)\cdots 1$$

for $Z \sim N(0, 1)$. With respect to the conditions in the theorem of Kolmogorov-Chentsov we observe:

$$\begin{split} m &= 1: \quad \beta = 0 \quad (\text{not yet...}), \\ m &= 2: \quad \beta = 1 \quad (\text{yes}, \beta > 0) \Rightarrow \gamma < 1/4 \, (\text{not enough regularity}) \\ m &\in \mathbb{N}: \quad \beta = m-1 \quad \Rightarrow \gamma < \frac{m-1}{2m}. \end{split}$$

Since *m* is arbitrary, there is for each $\gamma < \sup_{m \ge 1} \frac{m-1}{2m} = \frac{1}{2}$ a version \tilde{B} of \overline{B} with γ -Hölder continuous paths on [0,1]. Having constructed $(\tilde{B}_t, 0 \le t \le 1)$, we can take independent copies $(\tilde{B}_t^{(n)}, t \in [0,1])_{n\ge 1}$, i.e. $\tilde{B}^{(n)} \stackrel{d}{=} \tilde{B}$ and all independent, e.g. on a product space. Define $B_t = \sum_{n=1}^{\lfloor t \rfloor} \tilde{B}_1^{(n)} + \tilde{B}_{t-\lfloor t \rfloor}^{\lfloor t \rfloor + 1}$. It is easy to check that $(B_t, t \ge 0)$ is then a Brownian motion.

Approach by Wiener-Lévy, Cisielski, Itô-Nisio

Idea: "white noise" $\Gamma_t(\omega) := \sum_{k=1}^{\infty} Y_k(\omega)\varphi_k(t)$ for $Y_k \overset{\text{iid}}{\sim} N(0,1)$ and a complete orthonormal system ("basis") $(\varphi_k)_{k\geq 1}$ of $L^2([0,1])$ (see exercises). The anti-derivative should define a Brownian motion

$$B_t(\omega) := \sum_{k=1}^{\infty} Y_k(\omega) \Phi_k(t)$$
(1.2.1)

with $\Phi_k(t) = \int_0^t \varphi_k(s) \, ds$.

Theorem 1.8. (1.2.1) defines a Brownian motion on [0,1] where the sum converges uniformly in probability, *i.e.*

$$\forall \varepsilon > 0: \lim_{n \to \infty} \mathbb{P}\left(\sup_{N \ge n} \sup_{t \in [0,1]} \left| \sum_{k=n+1}^{N} Y_k \Phi_k(t) \right| > \varepsilon \right) = 0.$$

Proof. 1. Pointwise for $t \in [0,1]$: Set $M_n(\omega) := \sum_{k=1}^n Y_k(\omega) \Phi_k(t)$, $\mathcal{F}_n = \sigma(Y_1, \ldots, Y_n)$. Then (M_n, \mathcal{F}_n) is a martingale, because

$$\mathbb{E}\left[\left.M_{n+1}\right|\mathcal{F}_{n}\right] = M_{n} + \mathbb{E}\left[\left.Y_{n+1}\right|\mathcal{F}_{n}\right]\Phi_{n+1}\left(t\right) = M_{n} + 0 = M_{n}.$$

 (M_n) is L^2 -bounded:

$$\mathbb{E}\left[M_n^2\right] = \sum_{k=1}^n \mathbb{E}\left[Y_k^2\right] \Phi_k^2(t)$$

$$= \sum_{k=1}^n \langle \mathbf{1}_{[0,t]}, \varphi_k \rangle_{L^2}^2$$

$$\leq \sum_{k=1}^\infty \langle \mathbf{1}_{[0,t]}, \varphi_k \rangle^2$$
Parseval identity
$$= \|\mathbf{1}_{[0,t]}\|_{L^2}^2$$

$$= t$$

$$< \infty.$$

By the 2nd martingale convergence theorem (M_n) converges almost surely and in L^2 to some $M_{\infty} = B_t \in L^2$. We know that $M_n \sim N(0, \sum_{k=1}^n \Phi_k^2(t))$. Since $\sum_{k=1}^n \Phi_k^2(t) \xrightarrow{n \to \infty} t$ (the φ_k form an orthonormal basis, see above), we have $M_n \xrightarrow{d} N(0, t)$, implying $B_t \sim N(0, t)$. 2. Independent and stationary increments: For $0 \leq t_0 < t_1 < \cdots < t_m \leq 1$ it holds

$$\sum_{k=1}^{n} Y_{k} \underbrace{\left(\Phi_{k}(t_{1}) - \Phi_{k}(t_{0}), \dots, \Phi_{k}(t_{m}) - \Phi_{k}(t_{m-1})\right)}_{\mathbb{R}^{m}} \\ \sim N\left(0, \left(\sum_{k=1}^{n} \left(\Phi_{k}(t_{i}) - \Phi_{k}(t_{i-1})\right) \cdot \left(\Phi_{k}(t_{j}) - \Phi_{k}(t_{j-1})\right)\right)_{1 \le i, j \le m}\right).$$

Noting that $\Phi_k(t_i) - \Phi_k(t_{i-1}) = \int_{t_{i-1}}^{t_i} \varphi_k \, ds = \langle \mathbf{1}_{[t_{i-1},t_i]}, \varphi_k \rangle_{L^2}$ and $\langle f, g \rangle_{L^2} = \sum_{k=1}^{\infty} \langle f, \varphi_k \rangle_{L^2} \langle g, \varphi_k \rangle_{L^2}$ (polarisation of Parseval identity) we see

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\Phi_k \left(t_i \right) - \Phi_k \left(t_{i-1} \right) \right) \left(\Phi_k \left(t_j \right) - \Phi_k \left(t_{j-1} \right) \right) = \langle \mathbf{1}_{[t_{i-1}, t_i]}, \mathbf{1}_{[t_{j-1}, t_j]} \rangle_{L^2} = \delta_{i,j}.$$

As above $(B_{t_1} - B_{t_0}, \ldots, B_{t_m} - B_{t_{m-1}}) \sim N(0, \operatorname{diag}(t_i - t_{i-1})_{1 \leq i \leq m}).$ 3. Proof of continuity for the case of Haar basis: For the Haar basis consider double indices (j,k) with $j \in \mathbb{N}_0, k = 0, \ldots, 2^j - 1$, and functions

$$\begin{split} \varphi_0 (t) &= \mathbf{1}_{[0,1]}, \\ \psi_{0,0} (t) &= \mathbf{1}_{[0,1/2]} - \mathbf{1}_{(1/2,1]}, \\ \psi_{j,k} (t) &= 2^{j/2} \psi_{0,0} \left(2^j t - k \right). \end{split}$$

Then $(\psi_{j,k}) \cup \{\varphi_0\}$ is a complete orthonormal system in $L^2([0,1])$. The anti-derivatives are

(the Ψ are "hat functions" or "linear *B*-splines"). Then

$$\Psi_{j,k}(t) = 2^{-j/2} \Psi_{0,0} \left(2^{j} t - k \right).$$

8

Consider

$$\Delta_{j}(\omega) := \sup_{0 \le t \le 1} \left| \sum_{k=0}^{2^{j}-1} Y_{j,k}(\omega) \Psi_{j,k}(t) \right| \le \max_{\substack{k=0,\dots,2^{j}-1 \\ =: M_{j}(\omega)}} |Y_{j,k}(\omega)| \cdot 2^{-(j+1)/2}$$

Then

$$\begin{aligned} \mathbb{P}\left(\sup_{J' \ge J} \left| \sum_{j=J}^{J'} \sum_{k=0}^{2^{j}-1} Y_{j,k} \Psi_{j,k}\left(t\right) \right| &> \varepsilon \right) &\leq \mathbb{P}\left(\sum_{j=J}^{\infty} 2^{-(j+1)/2} M_{j} > \varepsilon \right) \\ &\leq \mathbb{P}\left(\exists j \ge J : 2^{-(j+1)/2} M_{j} > 2^{-(j-J)/2} \left(1 - \frac{1}{\sqrt{2}} \right) \varepsilon \right) \\ &\leq \sum_{j \ge J} \mathbb{P}\left(M_{j} > 2^{J/2} \left(\sqrt{2} - 1 \right) \varepsilon \right). \end{aligned}$$

where we use that $\sum_{j\geq J} 2^{-(j-J)/2} = \frac{1}{1-2^{-1/2}}$. Now use for $Z \sim N(0,1)$ that $\mathbb{P}(|Z| > t) \leq e^{-t^2/2}$ for any $t \geq 1$ (see Lemma 1.15) we obtain

$$\mathbb{P}\left(\sup_{J'\geq J}\left|\sum_{j=J}^{J'}\sum_{k=0}^{2^{j}-1}Y_{j,k}\Psi_{j,k}\left(t\right)\right| > \varepsilon\right) \leq \sum_{j\geq J}\sum_{k=0}^{2^{j}-1}\exp\left(-2^{J}(\sqrt{2}-1)^{2}\varepsilon^{2}/2\right) \xrightarrow{J\to\infty} 0.$$

Hence, along a subsequence $J_n \to \infty$ we have a.s. convergence. Therefore, with probability 1 are the continuous functions

$$B_t^J(\omega) = Y_{0,0}(\omega)\Phi_0(t) + \sum_{j=0}^J \sum_{k=0}^{2^j-1} Y_{j,k}(\omega)\Psi_{j,k}(t)$$

converge uniformly to $B_t(\omega)$.

Remark 1.9.

- (i) For $\gamma \in (0, 1/2)$ we even have $\sum_{i=J}^{\infty} \Delta_j(\omega) 2^{\gamma j} \xrightarrow{\mathbb{P}} 0$. This implies (direct calculations or wavelet theory) also that B_t has γ -Hölder continuous paths.
- (ii) This construction offers another way (beyond Donsker) to simulate Brownian motion by approximations $B_t^J(\omega)$ (dyadic refinements of Brownian motion).

1.3 Properties of Brownian sample paths

We start by considering the quadratic variation of Brownian paths. Let τ_n , $n \ge 1$, be a sequence of partitions of [0,1], $\tau_n \subseteq \tau_{n+1}$, for all n and $\max_{t_i \in \tau_n} |t_{i+1} - t_i| \xrightarrow{n \to \infty} 0$. An example is $\tau_n = D_n$ from the previous proof.

Theorem 1.10. For each $t \in [0,1]$ let $S_t^n := \sum_{t_i \in \tau_n, t_i \leq t} (B_{t_{i+1}} - B_{t_i})^2$. Then we have

$$\lim_{n \to \infty} S_t^n = t \quad a.s. \ and \ in \ L^2.$$

Remark 1.11. The limit is called *quadratic variation* in analogy to the variation of a function f:

$$V_{[0,t]}(f) = \sup_{\tau} \sum_{t_i \in \tau, t_i \le t} |f(t_{i+1}) - f(t_i)|,$$

where the supremum ranges over all partitions of [0, t]. If $V_{[0,t]}(f) < \infty$ for all $t \ge 0$, then f is of finite/bounded variation. If f is continuous, it can be shown that

$$V_{[0,t]}(f) = \lim_{n \to \infty} \sum_{t_i \in \tau_n, t_i \le t} |f(t_{i+1}) - f(t_i)|$$

holds for any sequence of partitions τ_n such that $\max_{t_i \in \tau_n} |t_{i+1} - t_i| \xrightarrow{n \to \infty} 0$.

Proof. 1. L²-convergence: We have $\mathbb{E}[S_t^n] = \sum_{t_i \in \tau_n, t_i \leq t} (t_{i+1} - t_i) \to t$ and

$$\operatorname{Var}(S_t^n) = \sum_{\substack{t_i \in \tau_n, t_i \leq t}} \operatorname{Var}\left(\left(B_{t_{i+1}} - B_{t_i}\right)^2\right)$$
$$= 2\sum_{\substack{t_i \in \tau_n, t_i \leq t}} (t_{i+1} - t_i)^2$$
$$\leq 2\max_{\substack{t_i \in \tau_n}} |t_{i+1} - t_i| \underbrace{\sum_{\substack{t_i \in \tau_n \\ \to t}} (t_{i+1} - t_i)}_{\rightarrow t}$$
$$\rightarrow 0.$$

Hence, $S_t^n \xrightarrow{L^2} t$.

2. a.s. convergence for $\tau_n = D_n$: From 1. and $t_i \in \tau_n$ with $t_{i+1} - t_i = 2^{-n}$ we have $\mathbb{E}[(S_t^n - t)^2] \leq 2 \cdot 2^{-n}$, if $t \in D_n$. Hence, $\sum_{n \geq 1} \mathbb{E}[(S_t^n - t)^2] < \infty$. By Chebyshev inequality and Borel-Cantelli we obtain a.s. convergence (quick L^2 -convergence implies a.s. convergence). 3. a.s. convergence for any (τ_n) : Let $\mathscr{G}_n := \sigma((B_{t_{i+1}} - B_{t_i})^2, t_i \in \tau_m, m \geq n)$. Then $\mathscr{G}_n \supseteq \mathscr{G}_{n+1}$ holds. We show for $t \in \tau_n$: $S_t^n = \mathbb{E}[B_t^2 | \mathscr{G}_n]$. Interpreting "n" as "-n", this implies that (S_t^n, \mathscr{G}_n) is a backwards martingale such that $S_t^n \xrightarrow{a.s.} \mathbb{E}[B_t^2 | \bigcap_{n \geq 1} \mathscr{G}_n]$. By 1. we must have have $\mathbb{E}[B_t^2 | \bigcap_{n \geq 1} \mathscr{G}_n] = t$. Hence, consider (wlog $t_1 = 0$)

$$\mathbb{E}\left[B_{t}^{2}\middle|\mathscr{G}_{n}\right] = \mathbb{E}\left[\left(\sum_{t_{i}\in\tau_{n},t_{i}\leq t}\left(B_{t_{i+1}}-B_{t_{i}}\right)\right)^{2}\middle|\mathscr{G}_{n}\right]\right]$$
$$= S_{t}^{n}+\sum_{i\neq j}\mathbb{E}\left[\left(B_{t_{i+1}}-B_{t_{i}}\right)\left(B_{t_{j+1}}-B_{t_{j}}\right)\middle|\mathscr{G}_{n}\right]\right]$$
$$= S_{t}^{n}+\sum_{i\neq j}\left|B_{t_{i+1}}-B_{t_{i}}\right|\cdot\left|B_{t_{j+1}}-B_{t_{j}}\right|$$
$$\cdot\mathbb{E}\left[\operatorname{sgn}\left(B_{t_{i+1}}-B_{t_{i}}\right)\operatorname{sgn}\left(B_{t_{i+1}}-B_{t_{j}}\right)\middle|\mathscr{G}_{n}\right]\right]$$
$$= S_{t}^{n}.$$

A precise argument for the conditional expectation uses that

$$\tilde{B}_t = \begin{cases} B_t, & t \le t_i, \\ B_{t_i} - (B_t - B_{t_i}) & t > t_i, \end{cases}$$

is again a Brownian motion with $|\tilde{B}_{t_{i+1}} - \tilde{B}_{t_i}| = |B_{t_{i+1}} - B_{t_i}|$ but $\operatorname{sgn}(\tilde{B}_{t_{i+1}} - \tilde{B}_{t_i}) = -\operatorname{sgn}(B_{t_{i+1}} - B_{t_i})$.

Remark 1.12. Even without the nestedness $\tau_n \subseteq \tau_{n+1}$ we have L^2 -convergence, but not necessarily a.s. convergence.

Corollary 1.13. A typical Brownian path is on no interval of finite variation, i.e. $\mathbb{P}(\exists 0 \leq a \leq b \leq 1 : V_{[a,b]}(B) < \infty) = 0$. In particular, Brownian motion is on no interval differentiable with probability one.

Proof. If $V_{[a,b]}(B(\omega)) < \infty$, then

$$\sum_{t_i \in \tau_n, t_i \in [a,b]} \left(B_{t_{i+1}}(\omega) - B_{t_i}(\omega) \right)^2 \leq \max_{\substack{t_i \in \tau_n \\ n \to \infty \\ \downarrow_i \in \tau_n, t_i \in [a,b]}} \left| B_{t_{i+1}}(\omega) - B_{t_i}(\omega) \right|,$$

$$\sum_{\substack{t_i \in \tau_n, t_i \in [a,b] \\ \underline{n \to \infty} \\ \downarrow_{i \in \tau_n, t_i \in [a,b]}} \left| B_{t_{i+1}}(\omega) - B_{t_i}(\omega) \right|,$$

but the left hand side converges a.s. to b-a > 0. This is a contradiction! Finally, note that a differentiable function is of finite variation.

Without proof let us state the much stronger result.

Theorem 1.14 (Paley, Wigner, Zygmund (1933)). With probability one a Brownian path is nowhere differentiable.

Proof. See Karatzas (1991).

Lemma 1.15. For $Z \sim N(0, 1)$, a > 0, we have

a) $\mathbb{P}(Z \ge a) \le \frac{1}{\sqrt{2\pi}} \frac{1}{a} e^{-a^2/2},$ b) $\mathbb{P}(Z \ge a) \ge \frac{1}{\sqrt{2\pi}} \frac{1}{a + \frac{1}{a}} e^{-a^2/2}.$

Proof. a) use for $x \ge a$: $e^{-x^2/2} \le \frac{x}{a}e^{-x^2/2}$, then integrate.

b) use for
$$x \ge a$$
: $e^{-x^2/2} \ge \frac{1}{1+1/a^2} (1+\frac{1}{x^2}) e^{-x^2/2} = \frac{1}{1+1/a^2} (-x^{-1}e^{-x^2/2})$ and integration.

Theorem 1.16 (Law of iterated logarithm, Khinchine (1933)). For a Brownian motion B and almost all $\omega \in \Omega$ we have

- a) $\limsup_{t\to 0} \frac{B(\omega)}{\sqrt{2t\log(\log(t^{-1}))}} = 1,$
- b) $\liminf_{t\to 0} \frac{B_t(\omega)}{\sqrt{2t\log(\log(t^{-1}))}} = -1,$
- c) $\limsup_{t\to\infty} \frac{B_t(\omega)}{\sqrt{2t\log(\log(t))}} = 1,$

d)
$$\liminf_{t \to \infty} \frac{B_t(\omega)}{\sqrt{2t \log(\log(t))}} = -1$$

Proof. By symmetry $-B_t$ is again a Brownian motion such that (a) \Rightarrow (b), (c) \Rightarrow (d). Moreover, by time inversion $X_t = t \cdot B_{1/t}$, t > 0, $X_0 = 0$, is also a Brownian motion (Stochastic processes I). We infer from (a) for X that

$$\limsup_{t \to 0} \frac{tB_{1/t}(\omega)}{\sqrt{2t\log(\log(t))}} = 1.$$

Letting $s = t^{-1}$ we obtain

$$\limsup_{s \to \infty} \frac{B_s(\omega)}{\sqrt{2s \log(\log(s))}} = 1,$$

which is (c). Hence, it suffices to prove (a).

Let $h(t) = \sqrt{2t \log(\log t^{-1})}$. The proof for

$$\limsup_{t \to 0} \frac{B_t}{h(t)} \le 1 \text{ a.s.}$$
(1.3.1)

will be given after Theorem 1.29. We show now that $\limsup_{t\to 0} \frac{B_t}{h(t)} \ge 1$ a.s. using the 2nd part of Borel-Cantelli. Fix $\vartheta \in (0,1)$ and set $A_n := \{B_{\vartheta^n} - B_{\vartheta^{n+1}} \ge \sqrt{1-\vartheta}h(\vartheta^n)\}$. By Lemma 1.15 we obtain for $x = \sqrt{2\log(n) + 2\log(\log(\vartheta^{-1}))}$

$$\mathbb{P}(A_n) = \mathbb{P}\left(\frac{B_{\vartheta^n} - B_{\vartheta^{n+1}}}{\sqrt{\vartheta^n - \vartheta^{n+1}}} \ge x\right) \stackrel{\text{Lemma}}{\ge} \frac{e^{-x^2/2}}{\sqrt{2\pi}\left(x + \frac{1}{x}\right)} \ge c \cdot \frac{1}{n\sqrt{\log n}}$$

for some constant c > 0 and $n > |1/\log \vartheta|$. Since $\sum_{n \ge 1} \frac{1}{n\sqrt{\log n}} = \infty$ and $(A_n)_{n \ge 1}$ are independent, Borel-Cantelli yields $\mathbb{P}(A_n \text{ infinitely often}) = 1$. The upper bound in (1.3.1) applied to $(-B_t)$ shows (with bounding small terms by 2 twice) that

$$-B_{\vartheta^{n+1}}(\omega) \le 2h\left(\vartheta^{n+1}\right) \le 4\vartheta^{1/2}h\left(\vartheta^n\right)$$

for all $n \ge N(\omega)$ and $\omega \in \Omega^*, \mathbb{P}(\Omega^*) = 1$. Hence, we have a.s.

$$\frac{B_{\vartheta^m}}{h\left(\vartheta^m\right)} = \frac{B_{\vartheta^m} - B_{\vartheta^{m+1}}}{h\left(\vartheta^m\right)} + \frac{B_{\vartheta^{m+1}}}{h\left(\vartheta^m\right)} \ge \sqrt{1-\vartheta} - 4\vartheta^{1/2}$$

holds for infinitely many $m \ge 1$. Therefore

$$\mathbb{P}\left(\limsup_{t \to 0} \frac{B_t}{h(t)} \ge \sqrt{1 - \vartheta} - 4\vartheta^{1/2}\right) = 1$$

for any $\vartheta \in (0,1)$. Take $\vartheta_k \to 0$ to conclude

$$\mathbb{P}\left(\limsup_{t\to 0}\frac{B_t}{h(t)}\geq 1\right)=1.$$

Except for the gap in 1.3.1 we are done.

Without proof let us state the main result for the modulus of continuity.

Theorem 1.17 (Lévy, 1937). It holds

$$\mathbb{P}\left(\limsup_{\delta \to 0} \frac{1}{\sqrt{2\delta \log \delta^{-1}}} \max_{0 \le s \le t \le 1, t-s \le \delta} |B_t - B_s| = 1\right) = 1$$

Proof. See Karatzas (1991).

1.4 Brownian motion as martingale and Markov process

Definition 1.18. A process $(X_t, t \ge 0)$ on $(\Omega, \mathcal{F}, \mathbb{P})$ is called

- a) adapted to a filtration $(\mathcal{F}_t)_{t\geq 0}$ if X_t is \mathcal{F}_t -measurable for all $t\geq 0$,
- b) $(\mathcal{F}_t)_{t\geq 0}$ -martingale if X is adapted, $X_t \in L^1(\mathbb{P})$ and $\mathbb{E}[X_t|\mathcal{F}_s] = X_s$ for all $0 \leq s \leq t$.
- c) $(\mathcal{F}_t)_{t\geq 0}$ -Brownian martingale if X is continuous, adapted, $X_t X_s \sim N(0, t-s)$ and if $X_t - X_s$ is independent of \mathcal{F}_s (written $X_t - X_s \perp \mathcal{F}_s$) for all $s \leq t$.

Remark 1.19. Any Brownian motion is also a Brownian motion with respect to its own filtration $\mathcal{F}_t^0 = \sigma(B_s, s \leq t)$.

Proposition 1.20. The following processes, derived from a Brownian motion B with respect to $(\mathcal{F}_t)_{t\geq 0}$, are $(\mathcal{F}_t)_{t\geq 0}$ -martingales.

- a) $M_t = B_t, t \ge 0$,
- b) $M_t = B_t^2 t, t \ge 0,$
- c) $M_t = \exp(\lambda B_t \frac{\lambda^2}{2}t), t \ge 0$, for all $\lambda \in \mathbb{R}$.

Proof. Adaptedness is clear in all cases. Just check the martingale property for t > s.

- a) $\mathbb{E}[B_t|\mathcal{F}_s] = \mathbb{E}[B_s + (B_t B_s)|\mathcal{F}_s] = B_s + \mathbb{E}[B_t B_s] = B_s.$
- b) $\mathbb{E}[B_t^2 B_s^2 | \mathcal{F}_s] = \mathbb{E}[(B_t B_s)^2 + 2(B_t B_s)B_s | \mathcal{F}_s] = \mathbb{E}[(B_t B_s)^2] + 2B_s \mathbb{E}[B_t B_s] = t s$. Rearranging the terms proves the claim.
- c) We have

$$\mathbb{E}\left[\frac{\exp\left(\lambda B_{t}-\frac{\lambda^{2}}{2}t\right)}{\exp\left(\lambda B_{s}-\frac{\lambda^{2}}{2}s\right)}\middle|\mathcal{F}_{s}\right] = \mathbb{E}\left[\exp\left(\lambda\left(B_{t}-B_{s}\right)-\frac{\lambda^{2}}{2}\left(t-s\right)\right)\middle|\mathcal{F}_{s}\right]$$
$$= \mathbb{E}\left[e^{\lambda\left(B_{t}-B_{s}\right)}\right]e^{-\frac{\lambda^{2}\left(t-s\right)}{2}}$$
$$Z^{\sim N\left(0,1\right)} = \mathbb{E}\left[e^{\lambda\sqrt{t-s}Z}\right]e^{-\frac{\lambda^{2}\left(t-s\right)}{2}}$$
$$= 1,$$

where we used that the moment generating function of a Gaussian satisfies $\mathbb{E}[e^{\lambda Z}] = e^{\frac{\lambda^2}{2}}$.

Theorem 1.21. If $(B_t, t \ge 0)$ is a Brownian motion with respect to any filtration $(\mathcal{F}^0_t)_{t\ge 0}$, then also with respect to its right-continuous extension $\mathcal{F}_t := \mathcal{F}^0_{t+} = \bigcap_{s>t} \mathcal{F}^0_s$.

Proof. We show a little more general statement, i.e. we show

$$\mathbb{E}\left[f\left(B_{t+h}-B_{t}\right)\varphi_{t}\right]=\mathbb{E}\left[f\left(B_{t+h}-B_{t}\right)\right]\mathbb{E}\left[\varphi_{t}\right]$$

for h > 0, any bounded \mathcal{F}_t -measurable φ_t and any bounded Borel-measurable f (the statement follows then from choosing $f = \mathbf{1}_A$, $\varphi_t = \mathbf{1}_B$ for any $A \in \mathscr{B}_{\mathbb{R}}$, $B \in \mathcal{F}_t$). It suffices to consider $f \in \mathcal{C}_b(\mathbb{R})$ (approximate the open intervals in \mathbb{R} by such functions and use the monotone class theorem). For $\varepsilon_n \to 0$

$$\mathbb{E}\left[f\left(B_{t+h}-B_{t}\right)\varphi_{t}\right] = \mathbb{E}\left[\lim_{n\to\infty}f\left(B_{t+h}-B_{t+\varepsilon_{n}}\right)\varphi_{t}\right]$$

$$\overset{\text{Dom.conv.}}{=} \mathbb{E}\left[\underbrace{f\left(B_{t+h}-B_{t+\varepsilon_{n}}\right)\varphi_{t}}_{\perp\mathcal{F}_{t+\varepsilon_{n}}^{0}\supseteq\mathcal{F}_{t}}\right]$$

$$= \lim_{n\to\infty}\mathbb{E}\left[f\left(B_{t+h}-B_{t+\varepsilon_{n}}\right)\right]\mathbb{E}\left[\varphi_{t}\right]$$

$$\overset{\text{Dom.conv.}}{=} \mathbb{E}\left[f\left(B_{t+h}-B_{t}\right)\right]\mathbb{E}\left[\varphi_{t}\right].$$

Remark 1.22.

- a) $(\mathcal{F}_t)_{t\geq 0}$ is usually larger than $(\mathcal{F}_t^0)_{t\geq 0}$, admitting infinitesimal looks into the future. This allows larger classes of stopping times.
- b) $(\mathcal{F}_t)_{t\geq 0}$ is itself right-continuous: $\mathcal{F}_t \subseteq \bigcap_{\varepsilon>0} \mathcal{F}_{t+\varepsilon} \subseteq \bigcap_{\varepsilon>0} \mathcal{F}_{t+2\varepsilon}^0 = \mathcal{F}_t$.

Definition 1.23. For a filtration $(\mathcal{F}_t)_{t\geq 0}$ a random variable $\tau : \Omega \to [0, \infty]$ is called $(\mathcal{F}_t)_{t\geq 0}$ stopping time if $\{\tau \leq t\} \in \mathcal{F}_t$ for all $t \geq 0$. We set $\mathcal{F}_\tau := \{A \in \mathcal{F} | A \cap \{\tau \leq t\} \in \mathcal{F}_t$ for all $t \geq 0$. 0}.

Example 1.24. Let $(X_t, t \ge 0)$ be adapted to a right-continuous filtration $(\mathcal{F}_t)_{t\ge 0}$. Is $\tau_A := \inf\{t\ge 0: X_t\in A\}$ a stopping time for a Borel set A?

- a) A open, (X_t) is right-continuous: $\{\tau_A < t\} = \bigcup_{r \in \mathbb{Q}, r < t} \underbrace{\{X_r \in A\}}_{\in \mathcal{F}_r \subseteq \mathcal{F}_t} \in \mathcal{F}_t$. Since $(\mathcal{F}_t)_{t \ge 0}$ is right-continuous, we have also $\{\tau_A \le t\} \in \mathcal{F}_{t+} = \mathcal{F}_t$.
- b) F closed, (X_t) continuous. Any open set O can be written as $O = \bigcup_{n \ge 1} F_n$ with F_n closed (e.g. $F_n = \overline{B(x_n, r_n)}$). Hence, any closed set F can be written as $F = \bigcap_{n \ge 1} U_n$, U_n open. Thus,

$$\{\tau_F \le t\} = \bigcap_{n \ge 1} \{\tau_{U_n \le t}\} \in \mathcal{F}_t.$$

c) Any Borel set A? That's very complicated...

The following facts are proved in the exercises. (the following is adapted from the lecture)

Theorem 1.25. We have for a filtration $(\mathcal{F}_t)_{t>0}$.

- a) \mathcal{F}_{τ} is a σ -algebra. If $\tau = t$ is deterministic, then $\mathcal{F}_{\tau} = \mathcal{F}_t$.
- b) If τ is a bounded $(\mathcal{F}_t)_{t\geq 0}$ -stopping time and $(X_t, t\geq 0)$ is a right-continuous process, then X_{τ} is well defined and \mathcal{F}_{τ} -measurable. In particular, X_{τ} is \mathcal{F} -measurable.
- c) If τ, σ are $(\mathcal{F}_t)_{t>0}$ -stopping times, then $\tau \wedge \sigma$ and $\tau \vee \sigma$ are stopping times, as well.
- d) If τ, σ are $(\mathcal{F}_t)_{t\geq 0}$ -stopping times and X is a \mathcal{F}_{τ} -measurable random variable, then $\{\tau \leq \sigma\} \in \mathcal{F}_{\tau \wedge \sigma}$ and $X\mathbf{1}_{\{\tau \leq \sigma\}}$ is $\mathcal{F}_{\tau \wedge \sigma}$ -measurable.

Proof. See exercises.

Theorem 1.26. Let $(\mathcal{F}_t)_{t\geq 0}$ be a filtration and $(M_t, t \geq 0)$ a right-continuous $(\mathcal{F}_t)_{t\geq 0}$ -adapted and integrable process. Then the following statements are equivalent:

- a) $(M_t, t \ge 0)$ is a $(\mathcal{F}_t)_{t\ge 0}$ -martingale.
- b) For all bounded $(\mathcal{F}_t)_{t\geq 0}$ -stopping times τ holds $\mathbb{E}[M_{\tau}] = \mathbb{E}[M_0]$.
- c) (Optional sampling) For all bounded $(\mathcal{F}_t)_{t\geq 0}$ -stopping times $\sigma \leq \tau$ holds $\mathbb{E}[M_{\tau}|\mathcal{F}_{\sigma}] = M_{\sigma}$.
- d) (Optional stopping) For all $(\mathcal{F}_t)_{t\geq 0}$ -stopping times τ the stopped process $M_t^{\tau} := M_{\tau \wedge t}$, $t \geq 0$, is an $(\mathcal{F}_t)_{t\geq 0}$ -martingale.

Proof. See exercises.

Proposition 1.27. Let $(M_t, t \ge 0)$ be a right-continuous martingale or a right-continuous non-negative submartingale and $\lambda > 0$. Then

$$\mathbb{P}\left(\sup_{0 \le t \le T} |M_t| \ge \lambda\right) \le \frac{1}{\lambda} \mathbb{E}\left[|M_T|\right] \quad (\text{Maximal inequality})$$

for all T > 0. Moreover, for p > 1 and $M_T \in L^p$ we have

$$\mathbb{E}\left[\sup_{0\leq t\leq T}\left|M_{t}\right|^{p}\right]\leq \left(\frac{p}{p-1}\right)^{p}\mathbb{E}\left[\left|M_{T}\right|^{p}\right] \quad (\text{Doob's inequality}).$$

Proof. (based on Stochastic processes I. Set $S_n = \{k2^{-n}T : k = 0, ..., 2^n\}$ and consider the discrete-time martingale $(M_k, k \in S_n)$. Then by the discrete-time Doob's inequality

$$\mathbb{P}\left(\sup_{k\in S_n}|M_k|>\lambda\right)\leq \frac{\mathbb{E}\left[|M_T|\right]}{\lambda}.$$

Since $\mathbf{1}_{\{\sup_{k \in S_n} |M_k| > \lambda\}} \to \mathbf{1}_{\{\sup_{0 \le k \le T} |M_k| > \lambda\}}$ as $n \to \infty$ by right-continuity, dominated convergence yields

$$\mathbb{P}\left(\sup_{0 \le t \le T} |M_t| > \lambda\right) = \lim_{n \to \infty} \mathbb{P}\left(\sup_{k \in S_n} |M_k| > \lambda\right) \le \frac{\mathbb{E}\left[|M_T|\right]}{\lambda}.$$

(adapted from the lecture) From this we deduce

$$\lim_{n \to \infty} \mathbb{P}\left(\sup_{0 \le t \le T} |M_t| \ge \lambda + \frac{1}{n}\right) \le \limsup_{n \to \infty} \frac{\mathbb{E}\left[|M_T|\right]}{\lambda + \frac{1}{n}} = \frac{\mathbb{E}\left[|M_T|\right]}{\lambda}$$

Doob's inequality follows in the same way from Stochastic processes I.

1.4.1 Ruin problems

Let $\tau_{a,b} = \min\{t > 0 : B_t \notin (a,b)\}$ for (a < 0 < b). $\tau_{a,b}$ is a stopping time (see above).

Theorem 1.28. It holds

a) $\mathbb{P}(B_{\tau_{a,b}} = b) = \frac{|a|}{|a|+b},$ b) $\mathbb{P}(B_{\tau_{a,b}} = a) = \frac{b}{|a|+b},$ c) $\mathbb{E}[\tau_{a,b}] = |a| \cdot b.$

Proof. $M_t = B_t^2 - t$ is a martingale. Hence, by the stopping theorem

$$\mathbb{E}\Big[\underbrace{B^2_{\tau_{a,b}\wedge m}}_{\leq (|a|+b)^2}\Big] = \mathbb{E}\Big[\underbrace{\tau_{a,b}\wedge m}_{\rightarrow \tau_{a,b}}\Big]$$

for any m > 0. The left hand side is bounded and the right hand side is monotone in m such that (adapted from the lecture)

$$\infty > \limsup_{m} \mathbb{E} \left[B^{2}_{\tau_{a,b} \wedge m} \right] = \limsup_{m} \mathbb{E} \left[\tau_{a,b} \wedge m \right] = \lim_{m} \mathbb{E} \left[\tau_{a,b} \wedge m \right] = \mathbb{E} \left[\tau_{a,b} \right].$$

Hence, $\tau_{a,b} < \infty$ P-a.s. Using dominated convergence on the left and monotone convergence on the right as $m \to \infty$, we conclude

$$\mathbb{E}\left[B_{\tau_{a,b}}^2\right] = \mathbb{E}\left[\tau_{a,b}\right].$$

In particular, $\mathbb{P}(\tau_{a,b} < \infty) = 1$. Now use that $(B_{t \wedge \tau_{a,b}})_{t \geq 0}$ is a martingale such that $\mathbb{E}[B_{t \wedge \tau_{a,b}}] = 0$. We obtain $\mathbb{E}[B_{\tau_{a,b}}] = 0$ by proving that $(B_{m \wedge \tau_{a,b}})_{m \in \mathbb{N}}$ is uniformly integrable. This is done as in Stochastic processes I and is also called Wald identity. (or use dominated convergence, right?) Then

$$0 = \mathbb{E}\left[B_{\tau_{a,b}}\right] = \mathbb{P}\left(B_{\tau_{a,b}} = a\right) \cdot a + \left(1 - \mathbb{P}\left(B_{\tau_{a,b}} = a\right)\right) \cdot b$$

and thus

$$\mathbb{P}\left(B_{\tau_{a,b}}=a\right)=\frac{b}{|a|+b}$$

Finally,

$$\mathbb{E}\left[B_{\tau_{a,b}}^2\right] = a^2 \mathbb{P}\left(B_{\tau_{a,b}} = a\right) + b^2 \left(1 - \mathbb{P}\left(B_{\tau_{a,b}} = a\right)\right) = |a| \cdot b.$$

Now consider $\tau_b = \inf\{t \ge 0 : B_t \ge b\}$ for b > 0. We have $\mathbb{P}(\tau_b < \infty) = 1$, but $\mathbb{E}[\tau_b] = \infty$, because

a)
$$\mathbb{P}(\tau_b < \infty) \ge \mathbb{P}(\tau_b = \tau_{a,b}) = \frac{|a|}{|a|+b} \to 1$$
, as $a \to -\infty$,

b) $\mathbb{E}[\tau_b] \ge \mathbb{E}[\tau_{a,b}] = |a| \cdot b \to \infty$, as $a \to -\infty$.

What about the exact law of τ_b ?

Theorem 1.29 (Laplace transform of \mathbb{P}^{τ_b}). We have for any $\lambda > 0$:

$$\mathbb{E}\left[e^{-\lambda\tau_b}\right] = e^{-b\sqrt{2\lambda}}$$

This means that τ_b has the Lebesgue density

$$f_b(t) = \frac{|b|}{\sqrt{2\pi t^3}} e^{-b^2/2t} \mathbf{1}_{\mathbb{R}_+}(t) \quad (\frac{1}{2} \text{-stable distribution}).$$

Proof. $M_t = e^{\alpha B_t - \frac{\alpha^2}{2}t}$ is a martingale and we have $0 \le M_{t \wedge \tau_b} \le e^{\alpha b}$, $\tau_b < \infty$ a.s. Thus we have for any t and by dominated convergence, as well as setting finally $\lambda = \frac{\alpha^2}{2}$, that

$$1 = \mathbb{E}[M_0] = \mathbb{E}[M_{t \wedge \tau_b}] = \mathbb{E}[M_{\tau_b}] = \mathbb{E}\left[e^{\alpha b - \frac{\alpha^2}{2}\tau_b}\right] = \mathbb{E}\left[e^{-\lambda\tau_b}\right]e^{b\sqrt{2\lambda}}.$$

Calculating the Laplace transform of f_b yields the density.

Proof of the law of the iterated logarithm completed. It remains to show

$$\mathbb{P}\left(\limsup_{t \to 0} \frac{B_t}{h(t)} \le 1\right) = 1$$

for $h(t) = \sqrt{2t \log \log t^{-1}}$. Consider $M_t = \exp(\lambda B_t - \frac{\lambda^2}{2}t)$ and the maximal inequality for M for any $\beta > 0$:

$$\mathbb{P}\left(\max_{0\leq s\leq t}\left(B_{s}-\frac{\lambda}{2}s\right)\geq\beta\right) = \mathbb{P}\left(\max_{0\leq s\leq t}M_{s}\geq e^{\lambda\beta}\right) \\
\leq \frac{\mathbb{E}\left[M_{t}\right]}{e^{\lambda\beta}} \\
= e^{-\lambda\beta}.$$

Take
$$\vartheta, \delta \in (0, 1), \lambda = (1 + \delta)\vartheta^{-n}h(\vartheta^n), \beta = \frac{1}{2}h(\vartheta^n)$$
:

$$\mathbb{P}\left(\max_{0 \le s \le \vartheta^n} \left(B_s - \frac{\lambda}{2}s\right) \ge \beta\right) \le \exp\left(-(1 + \delta)\vartheta^{-n}h(\vartheta^n)^2/2\right)$$

$$= \left(n\log\left(\vartheta^{-1}\right)\right)^{-(1+\delta)},$$

which is summable in *n*. By Borel-Cantelli there exists $\Omega_{\vartheta,\delta}$ with $\mathbb{P}(\Omega_{\vartheta,\delta}) = 1$, $N_{\vartheta,\delta}(\omega)$ such that for all $\omega \in \Omega_{\vartheta,\delta}$ and all $n \ge N_{\vartheta,\delta}(\omega)$:

$$\max_{0 \le s \le \vartheta^{n}} \left(B_{s}\left(\omega\right) - \frac{1+\delta}{2} s \vartheta^{-n} h\left(\vartheta^{n}\right) \right) < \frac{1}{2} h\left(\vartheta^{n}\right).$$

Then

$$\sup_{t \in (\vartheta^{n-1}, \vartheta^n]} \frac{B_t(\omega)}{h(t)} \leq \sup_{t \in (\vartheta^{n-1}, \vartheta^n]} \frac{\max_{\vartheta^{n-1} \leq s \leq \vartheta^n} B_s(\omega)}{h(t)} \\
\leq \left(1 + \frac{\delta}{2}\right) \sup_{t \in (\vartheta^{n-1}, \vartheta^n]} \frac{h(\vartheta^n)}{h(t)} \\
\leq \left(1 + \frac{\delta}{2}\right) \vartheta^{-1/2}.$$

As $n \to \infty$ we therefore obtain

$$\limsup_{t \to 0} \frac{B_t(\omega)}{h(t)} \le \left(1 + \frac{\delta}{2}\right) \vartheta^{-1/2}$$

for all $\omega \in \Omega_{\delta,\vartheta}$. Taking $\delta_n \to 0, \, \vartheta_n \to 1$ rational we conclude

 \mathbb{P}

$$\left(\limsup_{t\to 0}\frac{B_t}{h\left(t\right)}\leq 1\right)=1.$$

1.4.2 Strong Markov property and the reflection principle

We shall now study the Markov property of Brownian motion. It is even a strong Markov process (see below) which is not true in general for continuous time processes.

Theorem 1.30. Let B be a Brownian motion with respect to $(\mathcal{F}_t)_{t\geq 0}$ and τ an a.s. finite $(\mathcal{F}_t)_{t\geq 0}$ -stopping time. Then $\tilde{B}_t := B_{\tau+t} - B_{\tau}, t \geq 0$, is again a Brownian motion independent of \mathcal{F}_{τ} , i.e. a Brownian motion has the strong Markov property.

Proof. We show for $\varphi : \Omega \to \mathbb{R} \mathcal{F}_{\tau}$ -measurable, bounded and $F : C([0,\infty)) \to \mathbb{R}$ Borelmeasurable bounded

$$\mathbb{E}\left[\varphi F\left(\left(\tilde{B}_t, t \ge 0\right)\right)\right] = \mathbb{E}\left[\varphi\right] \int F \, d\mathbb{P}^*,$$

where \mathbb{P}^* is the Wiener measure on $C([0,\infty))$. It suffices again to consider $F \in C_b(C([0,\infty)))$ (approximation argument in Polish spaces). Let τ^n be the nth dyadic approximation of τ ,

i.e.
$$\tau^{n}(\omega) \in \{k2^{-n} : k \in \mathbb{N}_{0}\}, \tau^{n}(\omega) \to \tau(\omega).$$
 Set $\tilde{B}_{t}^{n}(\omega) = B_{\tau_{n}(\omega)+t}(\omega) - B_{\tau_{n}(\omega)}(\omega).$ Then

$$\mathbb{E}\left[\varphi F\left(\tilde{B}^{n}\right)\right] = \sum_{k\geq 0} \mathbb{E}\left[\varphi F\left(\underbrace{\tilde{B}^{n}}_{B_{k2^{-n}+t}-B_{k2^{-n}}} \underbrace{\tilde{B}^{n}}_{B_{k2^{-n}}} \operatorname{again BM, indep. of } \mathcal{F}_{k2^{-n}}\right) \mathbf{1}_{\{\tau^{n}=k2^{-n}\}}\right]$$

$$= \sum_{k\geq 0} \mathbb{E}\left[\underbrace{\varphi \mathbf{1}_{\{\tau^{n}=k2^{-n}\}}}_{\mathcal{F}_{k2^{-n}}-\operatorname{mb.}}\right] \int F d\mathbb{P}^{*}$$

$$= \mathbb{E}\left[\varphi\right] \int F d\mathbb{P}^{*}.$$

Since $F(\tilde{B}^n) \to F(\tilde{B}), D \subseteq T$ yields

$$\mathbb{E}\left[\varphi F\left(\tilde{B}\right)\right] = \lim_{n \to \infty} \mathbb{E}\left[\varphi F\left(\tilde{B}^{n}\right)\right]$$
$$= \mathbb{E}\left[\varphi\right] \int F \, d\mathbb{P}^{*}.$$

We apply this to obtain the *reflection principle* (Bachelier 1900).

Theorem 1.31. It holds $\mathbb{P}(\tau_b \leq t) = 2\mathbb{P}(B_t \geq b) = \mathbb{P}(|B_t| \geq b)$ for b > 0.

Proof. We have $\mathbb{P}(B_t \ge b) = \mathbb{P}(B_t \ge b, \tau_b \le t)$. Writing $B_t - b = B_t - B_{\tau_b} = \tilde{B}_{t-\tau_b}$ this yields

$$\mathbb{P}\left(B_{t} \geq b\right) = \mathbb{E}\left[\mathbb{E}\left[\left.\mathbf{1}_{\left[0,\infty\right)}\left(\tilde{B}_{t-\tau_{b}}\right)\right|\mathcal{F}_{\tau_{b}}\right]\mathbf{1}_{\left\{\tau_{b} \leq t\right\}}\right]$$

and by symmetrie (the probability for $\tilde{B}_{t-\tau_b}$ being positive is the same as being negative we have

$$\mathbb{P}\left(B_t \ge b\right) = \frac{1}{2}\mathbb{P}\left(\tau_b \le t\right).$$

Corollary 1.32. The random variables $M_t = \max_{0 \le s \le t} B_s$, $|B_t|$, $M_t - B_t$ all have the same law.

Proof. For the first two random variables observe that $\mathbb{P}(M_t \ge b) = \mathbb{P}(\tau_b \le t) \stackrel{\text{see above}}{=} \mathbb{P}(|B_t| \ge b)$ for all $b \ge 0$. With respect to the third random variable we use time inversion: $\tilde{B}_s = B_{t-s} - B_t$, $0 \le s \le t$, is again a Brownian motion. Then

$$M_t - B_t = \max_{0 \le s \le t} (B_s - B_t) = \max_{0 \le u \le t} (B_{t-u} - B_t) = \max_{0 \le u \le t} \tilde{B}_u =: \tilde{M}_t.$$

Since $\tilde{M}_t \stackrel{d}{=} M_t$ (same law), we also have $M_t - B_t \stackrel{d}{=} M_t$.

Remark 1.33 (Lévy). $(M_t - B_t, t \ge 0)$ and $(|B_t|, t \ge 0)$ have the same law on $C[0, \infty)$.

Theorem 1.34 (First Arcsine law). For Brownian motion the random time $\tau_M = \operatorname{argmax}_{t \in [0,1]} B_t$ is a.s. unique and satisfies

$$\mathbb{P}(\tau_M \le t) = \frac{2}{\pi} \arcsin\left(\sqrt{t}\right), \ t \in [0, 1],$$

i.e. it has density $f_{\tau_M}(t) = \frac{1}{\pi \sqrt{t(1-t)}}$.

Proof. Let $M := \max_{0 \le t \le 1} B_t$. Then

$$\mathbb{P}\left(\exists t \le s : B_t = M\right) = \mathbb{P}\left(\max_{0 \le u \le s} B_u \ge \max_{s \le v \le 1} B_v\right)$$
$$= \mathbb{P}\left(\max_{0 \le \tilde{u} \le s} \left(B_{s-\tilde{u}} - B_s\right) \ge \max_{s \le v \le 1} \left(B_v - B_s\right)\right).$$

The processes $(B_{s-\tilde{u}} - B_s, 0 \le \tilde{u} \le s)$ and $(B_v - B_s, s \le v \le 1)$ are independent Brownian motions. Thus

$$\mathbb{P}\left(\exists t \le s : B_t = M\right) = \mathbb{P}\left(\underbrace{\sqrt{s} |Z_1|}_{\stackrel{d}{=} |B_s|} \ge \underbrace{\sqrt{1-s} |Z_2|}_{\stackrel{d}{=} |B_{1-s}|}\right)$$

for $Z_1, Z_2 \stackrel{\text{iid}}{\sim} N(0, 1)$ such that rearranging the terms yields

$$= \mathbb{P}\left(\frac{|Z_2|}{\sqrt{Z_1^2 + Z_2^2}} \le \sqrt{s}\right)$$

polar coordinates
$$\mathbb{P}\left(|\sin\vartheta| \le \sqrt{s}\right),$$

where we use that $(R \cos \vartheta, R \sin \vartheta) \sim N(0, E_2)$ with $R^2 \sim exp(\frac{1}{2}), \vartheta \sim U[0, 2\pi]$, where E_2 is two dimensional identity matrix. By symmetric considerations we have

$$\begin{split} \mathbb{P}\left(|\sin\vartheta| \le \sqrt{s}\right) &= \mathbb{P}\left(|\sin\vartheta| \le \sqrt{s}, 0 \le \vartheta \le \frac{\pi}{2}\right) + \mathbb{P}\left(|\sin\vartheta| \le \sqrt{s}, \frac{\pi}{2} \le \vartheta \le \pi\right) \\ &+ \mathbb{P}\left(|\sin\vartheta| \le \sqrt{s}, \pi \le \vartheta \le \frac{3}{2}\pi\right) + \mathbb{P}\left(|\sin\vartheta| \le \sqrt{s}, \frac{3}{2}\pi \le \vartheta \le 2\pi\right) \\ &= 4\mathbb{P}\left(\sin\vartheta \le \sqrt{s}\right) \\ &= \frac{2}{\pi}\arcsin\sqrt{s}. \end{split}$$

The calculation also shows

$$\mathbb{P}\left(\max_{0\leq u\leq s} B_u = \max_{s\leq v\leq 1} B_v\right) = \mathbb{P}\left(\sqrt{s} \left|Z_1\right| = \sqrt{1-s} \left|Z_2\right|\right) = 0.$$

Hence,

$$\mathbb{P}\left(\exists s \in \mathbb{Q} \cap [0,1] : \max_{0 \le u \le s} B_u = \max_{s \le v \le 1} B_v\right) = 0$$

and therefore

$$\mathbb{P}$$
 (there are $t_1 \neq t_2$ such that $B_{t_1} = B_{t_2} = M$) = 0.

With probability one the argmax is unique and well-defined.

Chapter 2

Continuous martingales and stochastic integration

2.1 Continuous (local) martingales

Definition 2.1. $(M_t, t \ge 0)$ is called $(\mathcal{F}_t)_{t \ge 0}$ -local martingale if

- (adapted from the lecture) M is $(\mathcal{F}_t)_{t\geq 0}$ -adapted,
- there are $(\mathcal{F}_t)_{t\geq 0}$ -stopping times $(\tau_n)_{n\geq 1}$ such that $\tau_n(\omega) \to \infty$ a.s.,
- the stopped processes $M_t^{\tau_n}(\omega) := M_{\tau_n(\omega) \wedge t}(\omega), t \geq 0$, are (added this) uniformly integrable $(\mathcal{F}_t)_{t\geq 0}$ -martingales for all $n \geq 1$.

 $(\tau_n)_{n\geq 1}$ is called *localising sequence* of stopping times for M.

Example 2.2.

- a) Each right-continuous martingale is a local martingale by optional stopping.
- b) Let A be a non-negative random variable with $\mathbb{E}[A] = \infty$, independent of a Brownian motion B. Then $M_t(\omega) := A(\omega)B_t(\omega), t \ge 0$, is NOT a martingale, because for all t > 0 $\mathbb{E}[|M_t|] = \infty$, i.e. $M_t \notin L^1$. Put $\tau_n := \inf\{t \ge 0 : |M_t| \ge n\}$. Then $\tau_n, n \ge 1$, are stopping times with respect to $\mathcal{F}_t = \sigma(A, B_s, s \le t)$, increasing in n and $\lim_{n\to\infty} \tau(\omega) = \infty$ a.s. (because M is continuous and thus locally bounded). We have
 - (adapted from the lecture) $\mathbb{E}[|M_t^{\tau_n}|] = \mathbb{E}[\underbrace{|M_0|\mathbf{1}_{\{\tau_n=0\}}}_{=0} + \underbrace{|M_t^{\tau_n}|\mathbf{1}_{\{\tau_n>0\}}}_{\leq n}] \leq n < \infty,$
 - M^{τ_n} is $(\mathcal{F}_t)_{t\geq 0}$ -adapted (by definition of $(\mathcal{F}_t)_{t\geq 0}$),
 - $s < t:(adapted from the lecture!)|A\mathbb{E}[B_{t \wedge \tau_n} | \mathcal{F}_s]| = |AB_{s \wedge \tau_n}| \leq n$ is integrable such that

$$\mathbb{E} \left[M_t^{\tau_n} | \mathcal{F}_s \right] = A \mathbb{E} \left[B_{t \wedge \tau_n} | \mathcal{F}_s \right]$$

opt. stopp.
$$= A B_{s \wedge \tau_n}$$

$$= M_s^{\tau_n}.$$

Recall the martingale transform or discrete stochastic integral from Stochastic processes I: If $(X_n)_{n \in \mathbb{N}}$ is predictable, bounded, $(M_n)_{n \in \mathbb{N}}$ a martingale, then

$$(X \circ M)_n = \sum_{k=1}^n \underbrace{X_k}_{\mathcal{F}_{k-1}} \cdot \mathrm{mb.} (M_k - M_{k-1})$$

is again a martingale. Interpretation in finance as value of a portfolio (X_k number of stocks in period k, M_k price of stock in period k).

Definition 2.3. A process $(X_t, t \ge 0)$ of the form

$$X_{t}(\omega) = \sum_{k=0}^{\infty} \xi_{k}(\omega) \mathbf{1}_{(\tau_{k}(\omega), \tau_{k+1}(\omega)]}(t)$$

with $0 = \tau_0 < \tau_1 < \cdots \rightarrow \infty$ a sequence of $(\mathcal{F}_t)_{t \geq 0}$ -stopping times and ξ_k are \mathcal{F}_{τ_k} -measurable random variables is called *simple*. For another $(\mathcal{F}_t)_{t \geq 0}$ -adapted process Y then define

$$(X \circ Y)_t(\omega) := \sum_{k=0}^{\infty} \xi_k(\omega) \left(Y_{t \wedge \tau_{k+1}(\omega)}(\omega) - Y_{t \wedge \tau_k(\omega)}(\omega) \right).$$

This is called the *stochastic integral* and is sometimes denoted as $\int_0^t X_s \, dY_s$. We set $\mathcal{E} := \{(X_t, t \ge 0) : X \text{ simple and bounded}\}$.

Proposition 2.4. (adapted: added linearity, stopping)Let X and Y be simple processes. We have the following properties of $(X \circ M)$:

- a) If M is a continuous L^2 -martingale and X is bounded, then $(X \circ M)$ is again an L^2 -martingale.
- b) If M is a local continuous martingale, then $(X \circ M)$ is again a local martingale.
- c) (Linearity) If M is a local continuous martingale, then $\forall \alpha, \beta \in \mathbb{R}$: $((\alpha X + \beta Y) \circ M) = \alpha (X \circ M) + \beta (Y \circ M)$.

Proof. See exercises.

Lemma 2.5. If X is a simple, bounded process and M is a continuous L^2 -martingale, then

$$\mathbb{E}\left[\left(X \circ M\right)_{t}^{2}\right] = \mathbb{E}\left[\sum_{k \ge 0} \xi_{k}^{2} \left(\mathbb{E}\left[M_{\tau_{k+1} \wedge t}^{2} \middle| \mathcal{F}_{\tau_{k} \wedge t}\right] - M_{\tau_{k} \wedge t}^{2}\right)\right] \le C^{2} \mathbb{E}\left[M_{t}^{2}\right]$$

holds, where $||X(\omega)||_{\infty} \leq C$ a.s. for a deterministic constant C > 0.

Proof. (adapted from the lecture!) Observe from Theorem 1.25 that $\xi_k \mathbf{1}_{\{\tau_k \leq t\}}$ is $\mathcal{F}_{\tau_k \wedge t^-}$ measurable. For $n \leq m$ we have

$$\left(\sum_{k=n}^{m} \xi_k \left(M_{\tau_{k+1}\wedge t} - M_{\tau_k\wedge t}\right)\right)^2$$

= $\left(\sum_{k=n}^{m} \xi_k \mathbf{1}_{\{\tau_k \le t\}} \left(M_{\tau_{k+1}\wedge t} - M_{\tau_k\wedge t}\right)\right)^2$
= $2\sum_{n\le k< j}^{m} \xi_k \xi_j \mathbf{1}_{\{\tau_k \le t\}} \mathbf{1}_{\{\tau_j \le t\}} \left(M_{\tau_{k+1}\wedge t} - M_{\tau_k\wedge t}\right) \left(M_{\tau_{j+1}\wedge t} - M_{\tau_j\wedge t}\right)$
+ $\sum_{k=n}^{m} \xi_k^2 \mathbf{1}_{\{\tau_k \le t\}} \left(M_{\tau_{k+1}\wedge t} - M_{\tau_k\wedge t}\right)^2$

such that

$$\begin{split} & \mathbb{E}\left[\left(\sum_{k=n}^{m}\xi_{k}\left(M_{\tau_{k+1}\wedge t}-M_{\tau_{k}\wedge t}\right)\right)^{2}\right] \\ &=\left(2\sum_{n\leq k< j}^{m}\mathbb{E}\left[\xi_{k}\mathbf{1}_{\{\tau_{k}\leq t\}}\left(M_{\tau_{k+1}\wedge t}-M_{\tau_{k}\wedge t}\right)\underbrace{\mathbb{E}\left[\xi_{j}\mathbf{1}_{\{\tau_{j}\leq t\}}\left(M_{\tau_{j+1}\wedge t}-M_{\tau_{j}\wedge t}\right)\Big|\mathcal{F}_{\tau_{j}\wedge t}\right]\right]\right) \\ &+\mathbb{E}\left[\sum_{k=n}^{m}\xi_{k}^{2}\mathbf{1}_{\{\tau_{k}\leq t\}}\left(\mathbb{E}\left[M_{\tau_{k+1}\wedge t}^{2}\Big|\mathcal{F}_{\tau_{k}\wedge t}\right]-M_{\tau_{k}\wedge t}^{2}\right)\right]\right) \\ &=\mathbb{E}\left[\sum_{k=n}^{m}\xi_{k}^{2}\mathbf{1}_{\{\tau_{k}\leq t\}}\underbrace{\left(\mathbb{E}\left[M_{\tau_{k+1}\wedge t}^{2}\Big|\mathcal{F}_{\tau_{k}\wedge t}\right]-M_{\tau_{k}\wedge t}^{2}\right)}\right]\right) \\ &\geq 0 \text{ because of Jensen} \\ &\leq C^{2}\sum_{k=n}^{m}\mathbb{E}\left[M_{\tau_{k+1}\wedge t}^{2}-M_{\tau_{k}\wedge t}^{2}\right] \\ &=C^{2}\left(\mathbb{E}\left[M_{\tau_{m+1}\wedge t}^{2}-M_{\tau_{n}\wedge t}^{2}\right]\right) \\ &\leq C^{2}\left(\mathbb{E}\left[M_{t}^{2}\right]-\mathbb{E}\left[M_{\tau_{n}\wedge t}^{2}\right]\right), \end{split}$$

where the last inequality follows from Jensen's inequality and optional stopping (Theorem 1.26). Because M is uniformly integrable on [0,t] and continuous, the last term converges to 0 as $n \to \infty$. In particular, $(\sum_{k=1}^{n} \xi_k (M_{\tau_{k+1} \wedge t} - M_{\tau_k \wedge t}))_{n \geq 1}$ is an $L^2(\mathbb{P})$ -Cauchy sequence. Observing that $(X \circ M)_t(\omega)$ is a finite sum for all ω , i.e. $(X \circ M)_t(\omega) =$ $\lim_{n\to\infty} (\sum_{k=1}^{n} \xi_k(\omega) (M_{\tau_{k+1} \wedge t}(\omega) - M_{\tau_k \wedge t}(\omega)))$, this implies

$$\mathbb{E}\left[\left(X \circ M\right)_{t}^{2}\right] = \lim_{n \to \infty} \mathbb{E}\left[\left(\sum_{k=1}^{n} \xi_{k} \left(M_{\tau_{k+1} \wedge t} - M_{\tau_{k} \wedge t}\right)\right)^{2}\right]\right]$$
$$= \mathbb{E}\left[\sum_{k \ge 0} \xi_{k}^{2} \mathbf{1}_{\{\tau_{k} \le t\}} \left(\mathbb{E}\left[M_{\tau_{k+1} \wedge t}^{2} \middle| \mathcal{F}_{\tau_{k} \wedge t}\right] - M_{\tau_{k} \wedge t}^{2}\right)\right]$$
$$\leq C^{2} \left(\mathbb{E}\left[M_{t}^{2}\right] - \mathbb{E}\left[M_{0}^{2}\right]\right)$$
$$= C^{2} \mathbb{E}\left[M_{t}^{2}\right].$$

In the sequel we fix a filtered probability space $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t))$ where $(\mathcal{F}_t)_{t\geq 0}$ is complete, i.e. each $N \in \mathcal{F}$ with $\mathbb{P}(N) = 0$ is already in $\mathcal{F}_0 \subseteq \mathcal{F}_t \ \forall t \geq 0$. (added remark)This implies that a process which is indistinguishable of an adapted process is again adapted.

Definition 2.6. By \mathcal{M}_c^2 we denote the set of all $(\mathcal{F}_t)_{t\geq 0}$ -martingales $(M_t, t\geq 0)$ with $M_0 = 0$, $M_t \in L^2$ for all $t\geq 0$ and with continuous paths. We put $\|M\|_{\mathcal{M}_c^2} = \sum_{n=1}^{\infty} 2^{-n} (\|M_n\|_{L^2} \wedge 1)$ for $M = (M_t, t\geq 0) \in \mathcal{M}_c^2$.

Lemma 2.7. \mathcal{M}_c^2 is a vector space and $d(M, N) = ||M - N||_{\mathcal{M}_c^2}$ is a metric on \mathcal{M}_c^2 when identifying indistinguishable martingales.

Proof. Vector space properties are easily checked. d is well-defined (i.e. $d(M, N) < \infty$ for all $M, N \in \mathcal{M}_c^2$), clearly symmetric, non-negative and satisfies the triangle inequality (cf. the metric on $C(\mathbb{R}^+)$). Moreover,

$$d(M,N) = 0 \Leftrightarrow \forall n \ge 1 : \|M_n - N_n\|_{L^2} = 0.$$
(2.1.1)

Furthermore, if M, N are indistinguishable, then $M_t - N_t = 0$ for all $t \mathbb{P}$ -a.s. and therefore d(M, N) = 0. If, on the other hand, $M - N \in \mathcal{M}_c^2$ and d(M, N) = 0, then $(M_t - N_t)^2$ is a submartingale and for all t > 0

$$\mathbb{E}\left[\left(M_t - N_t\right)^2\right] \le \mathbb{E}\left[\left(M_{\lfloor t \rfloor + 1} - N_{\lfloor t \rfloor + 1}\right)^2\right] = \|(M - N)_{\lfloor t \rfloor + 1}\|_{L^2}^2 = 0$$

by (2.1.1). Hence, $\mathbb{P}(M_t = N_t) = 1$ for all $t \ge 0$ and therefore M, N indistinguishable, as they are also continuous (cf. exercises).

Proposition 2.8. (\mathcal{M}_c^2, d) is a complete space.

Proof. Let $(M^{(n)})_{n \in \mathbb{N}} \subseteq \mathcal{M}_c^2$ be a Cauchy sequence, i.e. $\lim_{m,n\to\infty} ||M^{(m)} - M^{(n)}||_{\mathcal{M}_c^2} = 0$. (suggestion: (suggestion: Then Then for all $t \ge 0$ $(\mathcal{M}_t^{(n)})_{n\ge 1}$ is a Cauchy sequence in $L^2(\mathcal{F}_t)$ (see the submartingale argument from above). Because $L^2(\mathcal{F}_t)$ is complete, there exist $M_t \in L^2(\mathcal{F}_t)$ such that $\mathcal{M}_t^{(n)} \xrightarrow{L^2} \mathcal{M}_t$. We claim that $(M_t, t \ge 0)$ is a martingale. Indeed, $\mathcal{M}_t \in L^2$ and adaptedness are clear. Then for all $t \ge 0$ $(\mathcal{M}_t^{(n)})_{n\ge 1}$ is a Cauchy sequence in L^2 (see the submartingale argument from above). Because L^2 is complete, there exist $M_t \in L^2$ such that $\mathcal{M}_t^{(n)} \xrightarrow{L^2} \mathcal{M}_t$. We claim that $(M_t, t \ge 0)$ is an L^2 -martingale. Indeed, $M_t \in L^2$ is clear. Moreover, for all t > 0 there exists a subsequence $\mathcal{M}_t^{(n_k)} \xrightarrow{a.s.} \mathcal{M}_t$ and all $\mathcal{M}_t^{(n_k)}$ are \mathcal{F}_t -measurable. Because all nullsets are already in \mathcal{F}_t , \mathcal{M}_t is \mathcal{F}_t -measurable. For s < t and $A \in \mathcal{F}_s$ we have then

$$\left| \mathbb{E} \left[M_t \mathbf{1}_A \right] - \mathbb{E} \left[M_t^{(n)} \mathbf{1}_A \right] \right| = \left| \langle M_t - M_t^{(n)}, \mathbf{1}_A \rangle_{L^2} \right| \xrightarrow{n \to \infty} \langle 0, \mathbf{1}_A \rangle_{L^2} = 0.$$

Hence,

$$\mathbb{E}[M_t \mathbf{1}_A] = \lim_{n \to \infty} \mathbb{E}\left[M_t^{(n)} \mathbf{1}_A\right]$$
$$\stackrel{M^n \text{ mart.}}{=} \lim_{n \to \infty} \mathbb{E}\left[M_s^{(n)} \mathbf{1}_A\right]$$
$$= \mathbb{E}[M_s \mathbf{1}_A]$$

such that $\mathbb{E}[M_t|\mathcal{F}_s] = M_s$. We still have to show that M is continuous. By Proposition 1.27 (Doob's inequality) (adapted from the lecture)

$$\mathbb{E}\left[\sup_{0 \le t \le T} \left| M_t^{(m)} - M_t^{(n)} \right|^2 \right] \le 4\mathbb{E}\left[\left| M_T^{(m)} - M_T^{(n)} \right|^2 \right] \to 0$$

as $m, n \to \infty$ for all T > 0. We can then select a subsequence $M^{(n_k)}$ such that

$$\mathbb{E}\left[\sup_{0\le t\le T} \left|M_t^{(n_{k+1})} - M_t^{(n_k)}\right|^2\right] \le 2^{-k}$$

for all $k \in \mathbb{N}$. Hence, Borel-Cantelli implies for almost all ω that $(M^{(n_k)}(\omega))_{k\in\mathbb{N}}$ is a $(C([0,T]), \|\cdot\|_{\infty})$ -Cauchy sequence. By completeness of this space and because $M_t^{(n_k)} \xrightarrow{L^2} M_t$ we see that M is a.s. continuous on [0,T]. We obtain that M is a.s. continuous on $\bigcup_{T\in\mathbb{N}}[0,T] = \mathbb{R}^+$. Because the filtration is complete, we can find a process $\tilde{M} \in \mathcal{M}_c^2$ which is indistinguishable of M. In particular, $\|M^{(n)} - \tilde{M}\|_{\mathcal{M}_c^2} = \|M^{(n)} - M\|_{\mathcal{M}_c^2} \to 0$.

Remark 2.9. If we restrict the martingales in \mathcal{M}_c^2 to the time interval [0,T] for some T > 0, then $\mathcal{M}_c^2|_{[0,T]}$ with $||M|| := ||M_T||_{L^2}^2$ is even a Hilbert space (cf. exercises).

Theorem 2.10. If $M \in \mathcal{M}^2_c$ has finite variation on [0,T], i.e. $V_T(M(\omega)) < \infty$ a.s., then M is a.s. constant on [0,T] (i.e. equal to 0).

CHAPTER 2. CONTINUOUS MARTINGALES AND STOCHASTIC INTEGRATION24

Proof. Let $\pi = \{0 = t_0 < t_1 < \cdots < t_m = T\}$ be a partition of [0, T]. Then

$$\mathbb{E}\left[M_T^2\right] = \mathbb{E}\left[\sum_{k=0}^{m-1} \left(M_{t_{k+1}}^2 - M_{t_k}^2\right)\right] \stackrel{M \text{ martingale}}{=} \mathbb{E}\left[\sum_{k=0}^{m-1} \left(M_{t_{k+1}} - M_{t_k}\right)^2\right].$$

Assume first $\exists K > 0 \forall \omega \in \Omega$ such that $V_T(M(\omega)) \leq K < \infty$. Then

$$\mathbb{E}\left[M_T^2\right] \le \mathbb{E}\left[\max_{0\le k\le m} \left|M_{t_{k+1}} - M_{t_k}\right| \cdot \underbrace{\sum_{k=0}^{m-1} \left|M_{t_{k+1}} - M_{t_k}\right|}_{\le V_T(M)\le K}\right] \le K \cdot \mathbb{E}\left[\max_{0\le k\le m} \left|M_{t_{k+1}} - M_{t_k}\right|\right].$$

For partitions $\pi^{(n)}$ such that $\max_k |t_{k+1}^{(n)} - t_k^{(n)}| \to 0$, uniform continuity of M on [0, T] yields $\max_{0 \le k \le m} |M_{t_{k+1}^{(n)}} - M_{t_k^{(n)}}| \xrightarrow{a.s.} 0$. Since

$$|M_t(\omega)| \leq \underbrace{|M_0(\omega)|}_{=0} + V_T(M(\omega)) \leq K,$$

we have $|M_{t_{k+1}} - M_{t_k}| \le 2K$ and dominated convergence implies

$$\mathbb{E}\left[\max_{0\leq k\leq m}\left|M_{t_{k+1}^{(n)}}-M_{t_{k}^{(n)}}\right|\right]\xrightarrow[n\to\infty]{}0$$

(independent of the sequence of partitions). Hence, $\mathbb{E}[M_T^2] = 0$ and because M^2 is a submartingale, we also have $\mathbb{E}[M_t^2] = 0$ for all $t \in [0, T]$. This implies $M_t = 0$ for all $t \in [0, T]$ a.s. by continuity.

Let now $M \in \mathcal{M}_c^2$ and put $\tau_n = \inf\{t > 0 : V_t(M) \ge n\}$ (observe that $V_t(M)$ is continuous, increasing in t and $(\mathcal{F}_t)_{t\ge 0}$ -adapted). Then τ_n is a stopping time and the stopped martingale $M_t^{\tau_n} = M_{t\wedge\tau_n}$ satisfies by the first part above (note: $V_T(M^{\tau_n}) \le n$) for all $0 \le t \le T$ that $M_{t\wedge\tau_n} = 0$ a.s. More precisely, it holds $\mathbb{P}(\forall 0 \le t \le T : M_{t\wedge\tau_n} = 0) = 1$. Since $V_T(M) < \infty$ a.s., we have $\tau_n \to \infty$ a.s. and thus $\mathbb{P}(\forall n \ge 1, 0 \le t \le T : M_{t\wedge\tau_n} = 0) = 1$ and thus $\mathbb{P}(\forall 0 \le t \le T : M_t = 0) = 1$. \Box

Corollary 2.11. Any non-trivial (non-constant) continuous L^2 -martingale has indefinite variation on every interval [s,t], in particular, is non-differentiable there.

Proof. Immediate consequence of the previous theorem.

Remark 2.12.

- a) This holds more generally for any continuous local martingale.
- b) There are of course many discontinuous martingales of finite variation, e.g. $M_t = N_t \lambda_t, t \ge 0$, with N_t Poisson process of intensity λt (on [0, T]).

Theorem 2.13. (adapted from lecture: we don't need $M_0 = 0$ here)Every continuous bounded martingale M possesses a unique (up to indistuinguishability) continuous (added adapted)adapted increasing process $(\langle M \rangle_t, t \ge 0)$ with $\langle M \rangle_0 = 0$ such that $(M_t^2 - \langle M \rangle_t, t \ge 0)$ is a martingale.

Proof. We first show existence of $\langle M \rangle$. For all $n \geq 1$ introduce the stopping times $\tau_0^n(\omega) = 0$, $\tau_{k+1}^n(\omega) = \inf\{t > 0 : |M_{t+\tau_k^n(\omega)}(\omega) - M_{\tau_k^n(\omega)}(\omega)| \geq 2^{-n}\}$. Let us write $t_k^n = t \wedge \tau_k^n$ and note

CHAPTER 2. CONTINUOUS MARTINGALES AND STOCHASTIC INTEGRATION25

 $\lim_{k\to\infty} \tau_k^n(\omega) = \infty$, because M is uniformly continuous on each compact [0,T]. The main point is

$$M_t^2 = \sum_{k=1}^{\infty} \left(M_{t_k^n}^2 - M_{t_{k-1}^n}^2 \right)$$

=
$$\sum_{k=1}^{\infty} \left(M_{t_k^n} - M_{t_{k-1}^n} \right)^2 + 2 \sum_{k=1}^{\infty} M_{t_{k-1}^n} \left(M_{t_k^n} - M_{t_{k-1}^n} \right)$$

=: A_t^n = $2 \cdot (H^n \cdot M)_t$

with $H_t^n = \sum_{k=1}^{\infty} M_{\tau_{k-1}^n} \mathbf{1}_{(\tau_{k-1}^n, \tau_k^n]}(t)$ simple and bounded. The following properties are easily checked:

i. $J_n(\omega) := \{\tau_k^n(\omega) : k \ge 0\} \subseteq J_{n+1}(\omega),$ ii. $\sup_{t\ge 0} |H_t^n - H_t^{n-1}| \le 2^{-(n+1)}, \sup_{t\ge 0} |H_t^n - M_t| \le 2^{-n},$ iii. $A_{\tau_k}^n \le A_{\tau_{k-1}}^n.$

For all t > 0 we have by linearity of the stochastic integral for simple processes (Proposition 2.4) and Lemma 2.5

$$\mathbb{E}\left[\left(\left(H^{n} \circ M\right)_{t} - \left(H^{n+1} \circ M\right)_{t}\right)^{2}\right] = \mathbb{E}\left[\left(\left(H^{n} - H^{n+1}\right) \circ M\right)_{t}^{2}\right]$$

$$\leq 4^{-(n+1)}\mathbb{E}\left[M_{t}^{2}\right]$$

$$\stackrel{M \text{ bounded}}{\leq} \underbrace{\underbrace{C \cdot 4^{-(n+1)}}_{\text{summable!}}}.$$

Hence, $((H^n \circ M))_{n \ge 1}$ converges in \mathcal{M}_c^2 to some continuous martingale $N \in \mathcal{M}_c^2$ (by completeness of \mathcal{M}_c^2 and by completeness of the underlying filtration). Therefore $(\mathcal{M}_t^2 - \mathcal{A}_t^n, t \ge 0)_n$ converges in \mathcal{M}_c^2 to $2 \cdot N$ and thus, \mathcal{A}_t^n converges in \mathcal{L}^2 better: in $L^2(\mathcal{F}_t)$ to some \mathcal{A}_t for each t, i.e. \mathcal{A} is adapted. Moreover, convergence in \mathcal{M}_c^2 ensures even uniform convergence on compacts such that for a subsequence (n_k) we have

 $\mathbb{P}(A_t^{n_k} \to A_t \text{ uniformly on } [0,T]) = 1$

for all $T \in \mathbb{N}$ (cf. proof of Proposition 2.8), i.e. A is a.s. continuous. (ii) and (iii) yield that (A_t) is increasing on $J_{\infty}(\omega) = \bigcup_{n \geq 1} J_n(\omega)$. Suppose $I \subseteq J_{\infty}(\omega)^c$ is an open interval. Then $\forall n, k \ \tau_k^n(\omega) \notin I$ implies $M_t(\omega)$ is constant on I, i.e. $A_t(\omega)$ is constant on I (since each A_t^n is so). In all, we obtain that $A_t(\omega)$ is increasing on $[0,\infty)$ globally, i.e. A is an increasing, adapted, a.s. continuous process with $A_0 = 0$, $M_t^2 - A_t = 2N_t$, which is a continuous martingale. So, existence is proven if we choose $\langle M \rangle_t = A_t$.suggestion: if we choose a continuous indistinguishable version \hat{A} of A which still satisfies these properties and set $\langle M \rangle_t = \hat{A}_t$.

With respect to uniqueness, suppose that \tilde{A} is another such process with $M_t^2 - \tilde{A}_t = \tilde{N}_t$, where \tilde{N} is a continuous martingale. Then $A_t - \tilde{A}_t = \tilde{N}_t - 2N_t$ is also a continuous martingale with $A_0 - \tilde{A}_0 = 0$ and is of finite variation as difference of two increasing functions for each ω . By Theorem 2.10 we have $A_t - \tilde{A}_t = 0$ for all $t \ge 0$ a.s. and therefore A, \tilde{A} are indistinguishable.

Remark 2.14.

a) This is the analogue of the Doob composition of (M_n^2) in discrete time. There the *compensator* A_n of the submartingale M_n^2 satisfied

$$A_n = \sum_{k=1}^m \mathbb{E}\left[\left(M_k - M_{k-1}\right)^2 \middle| \mathcal{F}_{k-1}\right] =: \langle M \rangle_n,$$

where A_n is predictible (i.e. \mathcal{F}_{n-1} -measurable). In continuous time the predictability is replaced by the continuity requirement of A.

b) One can prove for partitions $\pi^{(n)}$ with $|\pi^{(n)}| = \max |t_{k+1}^{(n)} - t_k^{(n)}| \to 0$ that

$$A_t = \lim_{n \to \infty} \sum_k \left(M_{t_{k+1}^{(n)} \wedge t} - M_{t_k^{(n)} \wedge t} \right)^2$$

in probability, i.e. M has finite quadratic variation (cf. the Brownian motion case and Corollary 2.38 below).

Corollary 2.15. (adapted from the lecture: added 0 in 0) For every continuous local martingale M there exists a unique (up to indistinguishability) increasing, continuous process $\langle M \rangle$ such that $\langle M \rangle_0 = 0$ and $M_t^2 - \langle M \rangle_t$ is a local martingale.

Proof. Use stopping times and apply the previous theorem. See exercises.

Example 2.16. For Brownian motion B we have $\langle B \rangle_t = t$ (deterministic!), because $(B_t^2 - t, t \ge 0)$ is a martingale and f(t) = t is increasing, continuous and f(0) = 0.

2.2 Stochastic integration

Recall

A simple process X has the form $X_t(\omega) = \sum_{k=1}^{\infty} \xi_k(\omega) \mathbf{1}_{(\tau_{k-1}(\omega),\tau_k(\omega)]}(t)$, ξ_k is $\mathcal{F}_{\tau_{k-1}}$ -measurable. For simple, bounded X, $M \in \mathcal{M}_c^2$ we defined the *stochastic integral*

$$\int_0^t X_s \, dM_s := (X \circ M)_t = \sum_{k=1}^\infty \xi_k \left(M_{\tau_k \wedge t} - M_{\tau_{k-1} \wedge t} \right) \in \mathcal{M}_c^2$$

Can we extend this to more general integrands X? To put it differently: Which processes X can we approximate by simple, bounded processes $X^{(n)}$ such that $(X^{(n)} \cdot M)_{n \ge 1}$ converges in \mathcal{M}^2_c (which is complete)?

Lemma 2.17. Let τ be a bounded stopping time. For simple, bounded X and $M \in \mathcal{M}_c^2$ we have

$$\langle X \circ M \rangle_{\tau} = \int_0^\tau X_s^2 d \langle M \rangle_s.$$

In particular,

$$\mathbb{E}\left[\left(X\circ M\right)_{\tau}^{2}\right] = \mathbb{E}\left[\int_{0}^{\tau} X_{s}^{2} d\left\langle M\right\rangle_{s}\right].$$

Proof. (adapted from the lecture!) The martingale property according to Lemma 2.5 ensures $\mathbb{E}\left[(X \circ M)_{\tau}\right] = 0$ and

$$\mathbb{E}\left[\left(X \circ M\right)_{\tau}^{2}\right] \stackrel{\text{Lemma 2.5}}{=} \sum_{k} \mathbb{E}\left[\xi_{k}^{2} \mathbf{1}_{\{\tau_{k} \leq \tau\}} \left(M_{\tau_{k} \wedge \tau}^{2} - M_{\tau_{k-1} \wedge \tau}^{2}\right)\right]$$

(check that the proof still works if we use τ instead of t using Theorem 1.25). Observe now that $N_t := M_t^2 - \langle M \rangle_t$ is a martingale such that

$$\begin{split} & \mathbb{E}\left[\xi_{k}^{2}\mathbf{1}_{\{\tau_{k-1}\leq\tau\}}\left(M_{\tau_{k}\wedge\tau}^{2}-M_{\tau_{k-1}\wedge\tau}^{2}\right)\right] \\ &= \mathbb{E}\left[\xi_{k}^{2}\mathbf{1}_{\{\tau_{k-1}\leq\tau\}}\left(\langle M\rangle_{\tau_{k}\wedge\tau}-\langle M\rangle_{\tau_{k-1}\wedge\tau}+N_{\tau_{k-1}\wedge\tau}-N_{\tau_{k}\wedge\tau}\right)\right] \\ &= \mathbb{E}\left[\xi_{k}^{2}\mathbf{1}_{\{\tau_{k-1}\leq\tau\}}\left(\langle M\rangle_{\tau_{k}\wedge\tau}-\langle M\rangle_{\tau_{k-1}\wedge\tau}\right)\right] \\ &+ \mathbb{E}\left[\underbrace{\xi_{k}^{2}\mathbf{1}_{\{\tau_{k-1}\leq\tau\}}\mathbb{E}\left[N_{\tau_{k-1}\wedge\tau}-N_{\tau_{k}\wedge\tau}\middle|\mathcal{F}_{\tau_{k-1}\wedge\tau}\right]}_{=0}\right] \\ &\text{opt. stopp. } \mathbb{E}\left[\xi_{k}^{2}\mathbf{1}_{\{\tau_{k-1}\leq\tau\}}\left(\langle M\rangle_{\tau_{k}\wedge\tau}-\langle M\rangle_{\tau_{k-1}\wedge\tau}\right)\right] \\ &= \mathbb{E}\left[\xi_{k}^{2}\left(\langle M\rangle_{\tau_{k}\wedge\tau}-\langle M\rangle_{\tau_{k-1}\wedge\tau}\right)\right]. \end{split}$$

Thus,

$$\mathbb{E}\left[\left(X\circ M\right)_{\tau}^{2}\right] = \mathbb{E}\left[\int_{0}^{\tau} X_{u}^{2} d\left\langle M\right\rangle_{u}\right],$$

where the integral in the last line is just a usual Lebesgue-Stieltjes integral. In particular,

$$\mathbb{E}\left[\left(X\circ M\right)_{\tau}^{2}-\int_{0}^{\tau}X_{u}^{2}d\left\langle M\right\rangle_{u}\right]=0=\mathbb{E}\left[\left(X\circ M\right)_{0}^{2}-\int_{0}^{0}X_{u}^{2}d\left\langle M\right\rangle_{u}\right].$$

Theorem 1.26 (part (b)) yields the claim.

Remark 2.18. The last identity will be seen as a major tool in the construction of the stochastic integral and is called *Itô isometry* (for simple integrands).

Definition 2.19. A process $(X_t, t \ge 0)$ is called *progressively measurable* with respect to $(\mathcal{F}_t)_{t\ge 0}$ if X is (\mathcal{F}_t) -adapted and $(\omega, s) \mapsto X_s(\omega)$ on $\Omega \times [0, t]$ is $\mathcal{F}_t \otimes \mathscr{B}_{[0,t]}$ -measurable for all $t \ge 0$.

Lemma 2.20. Every adapted and left- or right-continuous process is progressively measurable.

Proof. We consider only the left-continuous case. Write $X_s^n := X_{(k-1)t/n}$ for $s \in [\frac{(k-1)t}{n}, \frac{kt}{n}]$ and $X_t^n := X_t$. By left-continuity, $X_s^n \xrightarrow{a.s.} X_s$ for each $s \in [0, t]$. For all $A \in \mathscr{B}_{\mathbb{R}}$ we have

$$\{(w,s) \in \Omega \times [0,t] : X_s^n(\omega) \in A\}$$
$$= \{X_t \in A\} \times \{t\} \cup \bigcup_{k=1}^n \left\{ X_{\frac{(k-1)t}{n}} \in A \right\} \times [\frac{(k-1)}{n}t, \frac{k}{n}t) \in \mathcal{F}_t \otimes \mathscr{B}_{[0,t]}.$$

Therefore $(\omega, s) \mapsto X_s^n(\omega)$ is $\mathcal{F}_t \otimes \mathscr{B}_{[0,t]}$ -measurable and thus also $(\omega, s) \mapsto X_s(\omega)$. \Box

Remark 2.21. The white noise process (cf. exercises) is NOT jointly measurable in $\Omega \times [0, t]$ for any $t \ge 0$ and thus not progressively measurable.

Definition 2.22. For $M \in \mathcal{M}^2_c$ introduce the space of "integrands"

$$\mathscr{L}(M) := \left\{ (X_t, t \ge 0) \text{ progressively measurable process } : \forall t \ge 0 : \mathbb{E} \left[\int_0^t X_s^2 \, d \, \langle M \rangle_s \right] < \infty \right\}$$

and endow it with the (semi-)metric

$$d_M(X,Y) = \sum_{n=1}^{\infty} 2^{-n} \left(\|X - Y\|_{M,n} \wedge 1 \right),$$

where

$$\|X\|_{M,n}^2 = \mathbb{E}\left[\int_0^n X_t^2 \, d\left\langle M \right\rangle_t\right].$$

(adapted: moved out the definition of \mathcal{E} to the definition of simple processes above)

Lemma 2.23. $(\mathscr{L}(M), d_M)$ is a complete metric space, if we identify any two elements with distance 0 with respect to d_M (quotient space with respect to the kernel of the metric).

Proof. Use completeness of the restrictions in $\mathscr{L}(M)$ to [0, n] under the semi-norm $\|\cdot\|_{M,n}$ (which is a norm after identificiation of elements in the kernel of d_M) and proceed as for the completeness proof of \mathcal{M}^2_c .

Theorem 2.24. \mathcal{E} is dense in $\mathcal{L}(M)$.

Proof. The proof relies on the fact that a subspace L of a Hilbert space H is dense if its orthogonal complement $L^{\perp} = \{h \in H : \forall l \in L \ \langle l, h \rangle = 0\}$ is trivial, i.e. $L^{\perp} = \{0\}$. Note that $d_M(X,Y) \leq \varepsilon$ if $N \in \mathbb{N}$ such that $\sum_{n=N+1}^{\infty} 2^{-n} \cdot 1 = 2^{-N} < \varepsilon/2$ and (changed $\varepsilon/2$ to $\varepsilon/4$) $||X-Y||_{M,N} \leq \varepsilon/4$. Therefore it suffices to show that \mathcal{E} is dense with respect to $||\cdot||_{M,T}$ for all T > 0 (restricting to [0,T]). Then we have a Hilbert space $(\mathscr{L}(M)|_{[0,T]}, ||\cdot||_{M,T})$, cf. exercises, i.e.

$$\langle X, Y \rangle_{M,T} = \mathbb{E}\left[\int_0^T X_s Y_s \, d \left\langle M \right\rangle_s\right].$$

Now suppose $Z \in \mathscr{L}(M)|_{[0,T]}$ satisfies $\mathbb{E}[\int_0^T X_t Z_t d\langle M \rangle_t] = 0$ for all $X \in \mathcal{E}$. For $X_t = \xi \cdot \mathbf{1}_{(s,u]}(t), \xi \mathcal{F}_s$ -measurable, bounded, $0 \leq s \leq u \leq T$, this means

$$\mathbb{E}\left[\int_{s}^{u} \xi \cdot Z_{t} d\left\langle M\right\rangle_{t}\right] = 0.$$

Therefore,

$$\mathbb{E}\left[\xi \cdot \mathbb{E}\left[\left.\int_{s}^{u} Z_{t} \, d\left\langle M \right\rangle_{t} \right| \mathcal{F}_{s}\right]\right] = 0$$

for all bounded \mathcal{F}_s -measurable ξ such that

$$\mathbb{E}\left[\left.\int_{s}^{u} Z_{t} \, d \left\langle M \right\rangle_{t} \right| \mathcal{F}_{s}\right] = 0 \text{ a.s.}$$

Hence, $(\int_0^u Z_t d\langle M \rangle_t, u \ge 0)$ is a martingale. Since $t \mapsto \langle M \rangle_t$ is continuous, so is $u \mapsto \int_0^u Z_t d\langle M \rangle_t$. Moreover, $u \mapsto \int_0^u Z_t d\langle M \rangle_t$ has finite variation. Indeed, for a partition $\pi = \{t_k\}$ of [0, T] we have

$$\sum_{k} \left| \int_{t_{k-1}}^{t_{k}} Z_{t} d\left\langle M\right\rangle_{t} \right| \leq \sum_{k} \int_{t_{k-1}}^{t_{k}} |Z_{t}| \ d\left\langle M\right\rangle_{t} = \int_{0}^{T} |Z_{t}| \ d\left\langle M\right\rangle_{t} < \infty \quad \text{a.s.}$$

(as a proof for the last step consider e.g. $\mathbb{E}[\int_0^T 1 \cdot |Z_t| d \langle M \rangle_t]^2 \leq \mathbb{E}[\int_0^T Z_t^2 d \langle M \rangle_t] \cdot \mathbb{E}[\langle M \rangle_T] < \infty$ by Cauchy-Schwarz). Theorem 2.10 then yields $\int_0^u Z_t d \langle M \rangle_t$ is a.s. constant in u, i.e. $Z_t(\omega) = 0$ for almost all $\omega \in \Omega$ and $d \langle M(\omega) \rangle$ -almost all $t \geq 0$. This in turn implies that $\int_0^T Z_t^2 d \langle M \rangle_t = 0$ a.s. for all T > 0 and thus $\|Z\|_{M,T} = 0$. This shows that the orthogonal complement is trivial (on the quotient space as $\|\cdot\|_{M,T}$ is only a semi-norm).

Remark 2.25.

CHAPTER 2. CONTINUOUS MARTINGALES AND STOCHASTIC INTEGRATION29

a) $\mathcal{E} \subseteq \mathscr{L}(M)$ holds because each $X \in \mathcal{E}$ is (\mathcal{F}_t) -adapted and left-continuous, thus by the lemma progressively measurable. Moreover,

$$\mathbb{E}\left[\int_{0}^{t} \underbrace{X_{s}^{2}}_{\leq C^{2}} d\left\langle M\right\rangle_{s}\right] \leq \mathbb{E}\left[\int_{0}^{t} C^{2} d\left\langle M\right\rangle_{s}\right] = C^{2} \mathbb{E}\left[\left\langle M\right\rangle_{t}\right] = C^{2} \left[M_{t}^{2}\right] < \infty.$$

b) The proof above is "algebraic". A more constructive approximation argument can also be used, but is challenging if $t \mapsto \langle M \rangle_t$ is not absolutely continuous (cf. Karatzas (1991)).

Now we are able to define the stochastic integral $\int_0^t X_s dM_s$ for all $X \in \mathscr{L}(M)$ by approximation. Choose $X^{(n)} \in \mathcal{E}$ such that $d_M(X^{(n)}, X) \to 0$ (by density always possible) and infer that

$$\left(\int_0^t X_s^{(n)} \, dM_s, t \ge 0\right)_{n \ge 1} \subseteq \mathcal{M}_c^2$$

converges in \mathcal{M}_c^2 . By completeness, the limit is what we want:

$$\int_0^t X_s \, dM_s = \lim_{n \to \infty} \int_0^t X_s^n dM_s.$$

The convergence of $(\int_0^{\cdot} X^{(n)} dM)_{n\geq 1}$ in \mathcal{M}_c^2 follows easily by isometry (Lemma 2.17):

$$d_{\mathcal{M}_{c}^{2}}\left(\int_{0}^{\cdot} X_{s}^{(n)} dM_{s}, \int_{0}^{\cdot} X_{s}^{(m)} dM_{s}\right)$$

$$= \sum_{k=1}^{\infty} 2^{-k} \left(\mathbb{E}\left[\left(\int_{0}^{k} \left(X_{s}^{(n)} - X_{s}^{(m)}\right) dM_{s}\right)^{2}\right]^{1/2} \wedge 1\right)$$

$$= \sum_{k=1}^{\infty} 2^{-k} \left(\mathbb{E}\left[\int_{0}^{k} \left(X_{s}^{(n)} - X_{s}^{(m)}\right)^{2} d\langle M \rangle_{s}\right]^{1/2} \wedge 1\right)$$

$$= d_{M} \left(X^{(n)}, X^{(m)}\right).$$

This means that $X \mapsto \int_0^{\cdot} X_s dM_s$ is an isometry from (\mathcal{E}, d_M) to $(\mathcal{M}_c^2, d_{\mathcal{M}_c^2})$. This extends to its closure $\overline{\mathcal{E}} = \mathscr{L}(M)$ by continuity.

Definition 2.26. For $X \in \mathscr{L}(M)$ define $(\int_0^t X_s \, dM_s, t \ge 0)$ as the element of \mathcal{M}_c^2 obtained by extending the isometry $X \mapsto \int_0^{\cdot} X_s \, dM_s$ from \mathcal{E} to its closure $\mathscr{L}(M)$.

Example 2.27. Let M be a bounded continuous martingale, $M_0 = 0$ (i.e. $M \in \mathcal{M}_c^2$). We want to study $\int_0^t M_s \, dM_s$. First note

$$\mathbb{E}\left[\int_{0}^{t} M_{s}^{2} d\left\langle M\right\rangle_{s}\right] \leq C^{2} \mathbb{E}\left[\left\langle M\right\rangle_{t}\right] \leq C^{4} < \infty$$

and $M \in \mathscr{L}(M)$. For a partition $\pi = \{0 = t_0 < t_1 < \cdots < t_m = T\}$, $M_t^{\pi} := \sum_{k=1}^m M_{t_{k-1}} \mathbf{1}_{(t_{k-1},t_k]}(t) \in \mathcal{E}$. As M is continuous, this implies $M_t^{\pi} \xrightarrow{a.s.} M_t$ when $|\pi| = \sup_k |t_k - t_{k-1}| \to 0$. Dominated convergence (M is bounded!) yields

$$\mathbb{E}\left[\int_0^T \left(\underbrace{M_t^{\pi} - M_t}_{\to 0}\right)^2 d\langle M \rangle_t\right] \to 0$$

as $|\pi| \to 0$. Thus, $\int_0^T M_t \, dM_t = \lim_{|\pi| \to 0} \int_0^T M_t^{\pi} \, dM_t$ (in \mathcal{M}_c^2). Now note that

$$\int_{0}^{t} M_{s}^{\pi} dM_{s} = \sum_{k=1}^{m} M_{t_{k-1}\wedge t} \left(M_{t_{k}\wedge t} - M_{t_{k-1}\wedge t} \right)$$
$$= \frac{1}{2} \left(M_{t}^{2} - \underbrace{M_{0}^{2}}_{=0} \right) - \frac{1}{2} \sum_{k=1}^{m} \left(M_{t_{k}\wedge t} - M_{t_{k-1}\wedge t} \right)^{2}$$

converges in L^2 , limit is increasing, continuous process

This means that $\sum_{k=1}^{m} \left(M_{t_k \wedge t} - M_{t_{k-1} \wedge t} \right)^2 \xrightarrow{L^2} \langle M \rangle_t$ (whenever $|\pi| \to 0$), cf. Brownian motion case. Furthermore, we have $\int_0^t M_s \, dM_s = \frac{1}{2} (M_t^2 - \langle M \rangle_t)$.

Remark 2.28. For $f \in C^1$: $\int_0^t f(s) df(s) = \int_0^t f(s) f'(s) ds = \frac{1}{2} (f(t)^2 - f(0)^2) = \frac{1}{2} f(t)^2$ if f(0) = 0.

Theorem 2.29. (added properties from tutorial) For $M \in \mathcal{M}_c^2$ and $X, Y \in \mathcal{L}(M)$ the stochastic integral has the following properties:

- a) (linearity) $\forall \alpha, \beta \in \mathbb{R}: \int_0^{\cdot} (\alpha X + \beta Y)_s \, dM_s = \alpha \int_0^{\cdot} X_s \, dM_s + \beta \int_0^{\cdot} Y_s \, dM_s,$
- b) (Itô-isometry) $\mathbb{E}\left[\left(\int_0^t X_s \, dM_s\right)^2\right] = \mathbb{E}\left[\int_0^t X_s^2 \, d\langle M \rangle_s\right] = \|X\|_{M,t}^2$ and $\|\int_0^t X_s \, dM_s\|_{\mathcal{M}^2_c} = \|X\|_M,$
- c) (quadratic variation) $\left\langle \int_0^{\cdot} X_s \, dM_s \right\rangle_t = \int_0^t X_s^2 \, d\left\langle M \right\rangle_s, \, t \ge 0.$

Proof. Show by approximation with simple and bounded processes (cf. exercises). \Box

Lemma 2.30. For $M \in \mathcal{M}^2_c$, $X \in \mathscr{L}(M)$, τ stopping time (all with respect to some filtration $(\mathcal{F}_t)_{t\geq 0}$) we have

$$(X \circ M)_{t \wedge \tau} = (X \circ M^{\tau})_t = \left(\left(X \mathbf{1}_{[0,\tau]} \right) \circ M \right)_t$$

Proof. 1. for $X_t = \sum_{k=1}^{\infty} \xi_k \mathbf{1}_{(\tau_{k-1},\tau_k]}(t)$ simple and bounded. (adapted from the lecture) The first equality follows directly from

$$(X \circ M)_{\tau \wedge t} = \sum_{k=1}^{\infty} \xi_k \left(M_{\tau_k \wedge \tau \wedge t} - M_{\tau_{k-1} \wedge \tau \wedge t} \right)$$
$$= \sum_{k=1}^{\infty} \xi_k \left(M_{\tau_k \wedge t}^{\tau} - M_{\tau_{k-1} \wedge t}^{\tau} \right).$$

For the second equality note that $X\mathbf{1}_{[0,\tau]} \in \mathscr{L}(M)$, because $\mathbf{1}_{[0,\tau]}$ adapted and leftcontinuous. Therefore the second equality is clear for $X_t^{(n)} = \sum_{k=1}^n \xi_k \mathbf{1}_{(\tau_{k-1},\tau_k]}(t)$, because

$$X_{t}^{(n)} \mathbf{1}_{[0,\tau]}(t) = \sum_{k=1}^{n} \xi_{k} \mathbf{1}_{[0,\tau]}(t) \mathbf{1}_{(\tau_{k-1},\tau_{k}]}(t)$$
$$= \sum_{k=1}^{n} \underbrace{\xi_{k} \mathbf{1}_{\{\tau_{k-1} \leq \tau\}}}_{\mathcal{F}_{\tau_{k-1} \wedge \tau} - mb} \mathbf{1}_{(\tau_{k-1} \wedge \tau, \tau_{k} \wedge \tau]}(t)$$

is simple and bounded by Thoerem 1.25 such that

$$\left(\left(X^{(n)} \mathbf{1}_{[0,\tau]} \right) \circ M \right)_{\tau \wedge t} = \sum_{k=1}^{n} \xi_k \mathbf{1}_{\{\tau_{k-1} \leq \tau\}} \left(M_{\tau_k \wedge \tau \wedge t} - M_{\tau_{k-1} \wedge \tau \wedge t} \right)$$
$$= \sum_{k=1}^{n} \xi_k \left(M_{\tau_k \wedge \tau \wedge t} - M_{\tau_{k-1} \wedge \tau \wedge t} \right)$$
$$= \left(X^{(n)} \circ M \right)_{\tau \wedge t}.$$

Because $X^{(n)} \xrightarrow{d_M} X$ and $X^{(n)} \mathbf{1}_{[0,\tau]} \xrightarrow{d_M} X \mathbf{1}_{[0,\tau]}$, we obtain therefore

$$(X \circ M)_{t \wedge \tau} = \lim_{n \to \infty} \left(X^{(n)} \circ M \right)_{t \wedge \tau} = \lim_{n \to \infty} \left(\left(X^{(n)} \mathbf{1}_{[0,\tau]} \right) \circ M \right) = \left(\left(X \mathbf{1}_{[0,\tau]} \right) \circ M \right)$$

in $L^2(\mathbb{P})$.

2. for general $X \in \mathscr{L}(M)$: For T > 0 we have $\int_0^T X_t^2 \mathbf{1}_{[0,\tau]}(t) d\langle M \rangle_t \leq \int_0^T X_t^2 d\langle M \rangle_t$. Moreover, we also have $X \in \mathscr{L}(M^{\tau})$ because

$$\begin{split} \int_0^T X_t^2 \, d \, \langle M^\tau \rangle_t &= \int_0^T X_t^2 \, d \, \langle M \rangle_{\tau \wedge t} \\ &= \int_0^{T \wedge \tau} X_t^2 \, d \, \langle M \rangle_t \\ &\leq \int_0^T X_t^2 \, d \, \langle M \rangle_t \,. \end{split}$$

(adapted from the lecture: have to argue why $\langle M^{\tau} \rangle = \langle M \rangle_{\tau \wedge \cdot}$ and why the second equality holds) For the first equality we use that $M_{\tau \wedge t}^2 - \langle M \rangle_{\tau \wedge t}$ and $(M_t^{\tau})^2 - \langle M^{\tau} \rangle_t$ are martingales by optional stopping (Theorem 1.26) such that uniqueness of the quadratic variation shows $\langle M^{\tau} \rangle_t = \langle M \rangle_{\tau \wedge t}$ a.s. for all $t \geq 0$. For the second equality we use that the measure $d \langle M \rangle_{\tau \wedge \cdot}$, which is induced by the map $t \mapsto \langle M \rangle_{\tau \wedge t}$, is supported on $[0, \tau]$. Now take simple processes $X^{(n)} \xrightarrow{d_M} X$ and use $X^{(n)} \mathbf{1}_{[0,\tau]} \xrightarrow{d_M} X \mathbf{1}_{[0,\tau]}$ as well as $X^{(n)} \xrightarrow{d_M \tau} X$. Then the result is obtained by identifying the limits as $n \to \infty$.

Remark 2.31. From now on we can just write $\int_0^{\tau \wedge t} X_s \, dM_s$ to mean one of the three stochastic integrals. If the limit $t \to \infty$ exists, we just write $\int_0^{\tau} X_s \, dM_s$. Similarly we write $\int_a^b X_s \, dM_s = \int_0^b X_s \, dM_s - \int_0^a X_s \, dM_s$ for $0 \le a < b$, i.e. $\int_a^b X_s \, dM_s = \int_0^\infty X_s \mathbf{1}_{[a,b]}(s) \, dM_s$.

Definition 2.32. For a continuous local martingale M with $M_0 = 0$ we set

$$\mathscr{L}_{loc}(M) = \left\{ (X_t, t \ge 0) : X \text{ progr. mb}, \forall T > 0 : \mathbb{P}\left(\int_0^T X_t^2 d \langle M \rangle_t < \infty \right) = 1 \right\}.$$

Let σ_n be the localizing sequence of M such that M^{σ_n} is a bounded martingale and let $\rho_n := \inf\{t > 0 : \int_0^t (X_s^2 + 1) d\langle M \rangle_s \ge n\}, n \ge 1$, for $X \in \mathscr{L}_{loc}(M)$ be stopping times. Set $\tau_n = \sigma_n \land \rho_n$ such that $\tau_n \to \infty$ a.s. and M^{τ_n} is still a bounded continuous martingale by Theorem 1.26. Then we define $(X \circ M)_t(\omega) := (\int_0^t X_s dM_s)(\omega) = \lim_{n\to\infty} (\int_0^t X_s dM_s^{\tau_n})(\omega)$.

Remark 2.33.

a) Even for $M \in \mathcal{M}_c^2$ the space $\mathscr{L}_{loc}(M)$ is much larger than $\mathscr{L}(M)$. For Brownian motion, for instance, we have

$$\mathscr{L}_{loc}(B) = \left\{ (X_t, t \ge 0) : X \text{ prog. mb. and } \int_0^T X_t^2 \, dt < \infty \text{ a.s. for all } T > 0 \right\}$$

and any continuous, adapted process lies in $\mathscr{L}_{loc}(B)$ (no moment assumptions like $\mathbb{E}[X_T^2] < \infty$ for T > 0).

b) If $M \in \mathcal{M}_c^2$ and $X \in \mathscr{L}(M)$, then by the lemma $\int_0^t X_s \, dM_s^{\tau_n} = \int_0^{t \wedge \tau_n} X_s \, dM_s$ which tends a.s. to $\int_0^t X_s \, dM_s$ as $n \to \infty$, since $\tau_n \to \infty$ a.s.

Theorem 2.34. Let M be a continuous local martingale with $M_0 = 0$ and let $X \in \mathscr{L}_{loc}(M)$. Then:

- a) The stochastic integral $\int_0^t X_s \, dM_s$ is well-defined as an a.s. limit.
- b) $\left(\int_{0}^{t} X_{s} dM_{s}, t \geq 0\right)$ is itself a continuous local martingale with quadratic variation $\left\langle \int_{0}^{t} X_{s} dM_{s} \right\rangle_{t} = \int_{0}^{t} X_{s}^{2} d\left\langle M \right\rangle_{s}.$
- c) (adapted from the lecture: added stopping from the lemma) For any stopping time τ which is a.s. finite we have $(X \circ M)_t^{\tau} = (X \mathbf{1}_{[0,\tau]} \circ M)_t = (X \circ M^{\tau})_t$.

Proof. a) Let $(\tau_n)_{n \in \mathbb{N}}$ be as after Definition 2.32. Then $M^{\tau_n} \in \mathcal{M}^2_c$ and $X \in \mathscr{L}(M^{\tau_n})$, because

$$\mathbb{E}\left[\int_{0}^{T} X_{s}^{2} d\left\langle M^{\tau_{n}}\right\rangle_{s}\right] = \mathbb{E}\left[\int_{0}^{T} X_{s}^{2} d\left\langle M\right\rangle_{\tau_{n} \wedge s}\right] \leq \mathbb{E}\left[\int_{0}^{\tau_{n}} X_{s}^{2} d\left\langle M\right\rangle_{s}\right] \leq n < \infty,$$

(adapted from the lecture: have to argue why this holds) which follows as in the proof of Lemma 2.30. (adapted from the lecture: took out the first sentence)From Lemma 2.30 we have for $m \ge n \ge 1$ and $\tau_m \ge \tau_n$ that

$$\int_{0}^{t} X_{s} dM_{s}^{\tau_{n}} = \int_{0}^{t} X_{s} dM_{s}^{\tau_{n} \wedge \tau_{m}}$$
$$= \int_{0}^{t} X_{s} d(M^{\tau_{m}})_{s}^{\tau_{n}}$$
$$\text{Lemma 2.30} \quad \int_{0}^{t \wedge \tau_{n}} X_{s} dM_{s}^{\tau_{m}}.$$

Hence, taking m = n we obtain $\int_0^t X_s \, dM_s^{\tau_n} = \int_0^{t \wedge \tau_n} X_s \, dM_s^{\tau_n}$ and therefore

$$\int_{0}^{t \wedge \tau_{n}} X_{s} \, dM_{s}^{\tau_{n}} = \int_{0}^{t \wedge \tau_{n}} X_{s} \, dM_{s}^{\tau_{m}} \tag{2.2.1}$$

In particular, $\int_0^t X_s dM_s^{\tau_n} = \int_0^t X_s dM_s^{\tau_m}$ a.s. on $\{t \leq \tau_n\}$. (adapted from the lecture: whole argument after this) This equality is satisfied for all $m \geq n$, so letting $m \to \infty$ this yields for $\omega \in \{t \leq \tau_n\}$ that

$$\left(\int_{0}^{t} X_{s} dM_{s}\right)(\omega) = \lim_{n \le m \to \infty} \left(\int_{0}^{t} X_{s} dM_{s}^{\tau_{m}}\right)(\omega) = \left(\int_{0}^{t} X_{s} dM_{s}^{\tau_{n}}\right)(\omega)$$
(2.2.2)

Furthermore, since $\tau_n \to \infty$ a.s. for any $(\omega, t) \in (\Omega \times \mathbb{R}_+)$ we can find n_0 such that this is satisfied for all $n \ge n_0$. Thus the stochastic integral is well-defined.

b) (adapted from the lecture: whole argument after this)Setting m = n in (2.2.1) we obtain with (2.2.2) that

$$(X \circ M)_{t \wedge \tau_n} = \int_0^{t \wedge \tau_n} X_s \, dM_s = \int_0^{t \wedge \tau_n} X_s \, dM_s^{\tau_n} = (X \circ M^{\tau_n})_{t \wedge \tau_n}$$

a.s. and the right-hand side is in \mathcal{M}_c^2 . Thus, $(\int_0^t X_s \, dM_s, t \ge 0)$ is a continuous local martingale with localising sequence (τ_n) . The quadratic variation is

$$\left\langle \int_0^t X_s \, dM_s \right\rangle_t = \lim_{n \to \infty} \left\langle \int_0^t X_s \, dM_s^{\tau_n} \right\rangle_t = \lim_{n \to \infty} \int_0^t X_s^2 \, d\left\langle M^{\tau_n} \right\rangle_s$$
$$= \lim_{n \to \infty} \int_0^t X_s^2 \, d\left\langle M \right\rangle_{s \wedge \tau_n} = \lim_{n \to \infty} \int_0^{t \wedge \tau_n} X_s^2 \, d\left\langle M \right\rangle_s = \int_0^t X_s^2 \, d\left\langle M \right\rangle_s.$$

c) (adapted from the lecture: added proof)Follows from Lemma 2.30:

$$(X \circ M)_t^{\tau} = (X \circ M)_{\tau \wedge t} = \lim_{n \to \infty} (X \circ M^{\tau_n})_{t \wedge \tau} = \lim_{n \to \infty} (X \circ (M^{\tau})^{\tau_n})_t = (X \circ M^{\tau})_t.$$

Remark 2.35. Note that $\mathbb{E}\left[\int_0^t X_s^2 d\langle M \rangle_s\right]$ may be infinite such that Itô isometry may not make sense.

Theorem 2.36. Let M be a continuous local martingale, $M_0 = 0$ and let X be an adapted continuous process. Then $X \in \mathscr{L}_{loc}(M)$ and for partitions π_m of [0,t] with $|\pi_m| = \max_{t_k \in \pi_m} |t_{k+1} - t_k| \to 0$ we have

$$\sum_{t_k \in \pi_n} X_{t_{k-1}} \left(M_{t_k} - M_{t_{k-1}} \right) \xrightarrow{\mathbb{P}} \int_0^t X_s \, dM_s, \quad n \to \infty.$$

Proof. For (σ_n) a localising sequence of M we define stopping times $\tau_n = \sigma_n \wedge \inf\{t \ge 0 : |X_t| \ge n\}$. Because of Lemma 2.20, X is progressively measurable. Since a continuous function is bounded on any compact interval, we thus obtain $X \in \mathscr{L}(M)$. We have (adapted from the lecture: added measurability and comment on X simple and changed $I_[0,\tau_n](t_k-1)$ to the one below)

$$\sum_{t_k \in \pi_m} X_{t_{k-1}} \left(M_{t_k}^{\tau_n} - M_{t_{k-1}}^{\tau_n} \right) = \sum_{t_k \in \pi_m} \underbrace{X_{t_{k-1}} \mathbf{1}_{\{\tau_n \ge t_{k-1}\}}}_{\mathcal{F}_{t_{k-1} \wedge \tau_n} - \mathrm{mb.}} \left(M_{t_k \wedge \tau_n} - M_{t_{k-1} \wedge \tau_n} \right)$$
$$= \int_0^t \left(\sum_{t_k \in \pi_m} X_{t_{k-1}} \mathbf{1}_{\{\tau_n \ge t_{k-1}\}} \mathbf{1}_{(t_{k-1} \wedge \tau_n, t_k \wedge \tau_n]}(s) \right) dM_s^{\tau_n}$$
$$= \int_0^t \left(\sum_{t_k \in \pi_m} X_{t_{k-1}} \mathbf{1}_{(t_{k-1} \wedge \tau_n, t_k \wedge \tau_n]}(s) \right) dM_s^{\tau_n},$$

because

$$\sum_{t_k \in \pi_m} X_{t_{k-1}} \mathbf{1}_{\{\tau_n \ge t_{k-1}\}} \mathbf{1}_{(t_{k-1} \land \tau_n, t_k \land \tau_n]}(s) = \sum_{t_k \in \pi_m} X_{t_{k-1}} \mathbf{1}_{(t_{k-1} \land \tau_n, t_k \land \tau_n]}(s)$$

is simple. Observe (adapted from the lecture: changed arguments after this) that

$$\mathbb{E}\left[\int_{0}^{t} \left(\sum_{t_{k}\in\pi_{m}} X_{t_{k-1}} \mathbf{1}_{\{\tau_{n}\geq t_{k-1}\}} \mathbf{1}_{\{t_{k-1}\wedge\tau_{n},t_{k}\wedge\tau_{n}]}(s) - X_{s}\right)^{2} d\langle M^{\tau_{n}}\rangle_{s}\right]$$
$$= \sum_{t_{k}\in\pi_{m}} \mathbb{E}\left[\int_{t_{k-1}\wedge\tau_{n}}^{t_{k}\wedge\tau_{n}} \underbrace{\left(X_{t_{k-1}}-X_{s}\right)^{2}}_{\to 0 \text{ by continuity of } X} d\langle M^{\tau_{n}}\rangle_{s}\right].$$

This, however, converges to 0 by dominated convergence (observe that $\sum_{t_k \in \pi_m} \int_{t_{k-1} \wedge \tau_n}^{t_k \wedge \tau_n} (X_{t_{k-1}} - X_s)^2 d \langle M^{\tau_n} \rangle_s \leq 4n^2 \langle M^{\tau_n} \rangle_t$). We have by Itô isometry (or convergence wrt. $d_{M^{\tau_n}}$) that

$$\sum_{t_k \in \pi_m} X_{t_{k-1}} (M_{t_k}^{\tau_n} - M_{t_{k-1}}^{\tau_n}) \xrightarrow{L^2(\mathbb{P})} \int_0^t X_s \, dM_s^{\tau_n} \stackrel{\text{Thm. 2.34}}{=} \int_0^{t \wedge \tau_n} X_s \, dM_s.$$

Let $Z_m := \sum_{t_k \in \pi_m} X_{t_{k-1}}(M_{t_k} - M_{t_{k-1}})$ and $\Omega_n := \{t \leq \tau_n\}$ such that $\Omega_n \subseteq \Omega_{n+1}$ and $\mathbb{P}(\bigcup_n \Omega_n) = 1$. We know that $Z_m \mathbf{1}_{\Omega_n} \xrightarrow{\mathbb{P}} Z \mathbf{1}_{\Omega_n}$ as $m \to \infty$ where $Z = \int_0^t X_s \, dM_s$, (adapted

from the lecture: add because... because

$$Z_m \mathbf{1}_{\Omega_n} = \left(\sum_{t_k \in \pi_m} X_{t_{k-1}} (M_{t_k} - M_{t_{k-1}}) \right) \mathbf{1}_{\{t \le \tau_n\}}$$
$$= \left(\sum_{t_k \in \pi_m} X_{t_{k-1}} (M_{t_k}^{\tau_n} - M_{t_{k-1}}^{\tau_n}) \right) \mathbf{1}_{\{t \le \tau_n\}},$$
$$Z \mathbf{1}_{\Omega_n} = \left(\int_0^{\tau_n \wedge t} X_s \, dM_s \right) \mathbf{1}_{\{t \le \tau_n\}}$$

and because of the Tschebycheff inequality. (adapted from the lecture: changed argument) For $\varepsilon > 0$ and $\delta > 0$ let n and m_0 large enough such that $\mathbb{P}(\Omega_n^c) \leq \frac{\delta}{2}$ and for all $m \geq m_0$

$$\mathbb{P}\left(\left|Z_m - Z\right| \mathbf{1}_{\Omega_n} > \varepsilon\right) \le \frac{\delta}{2}$$

This implies

$$\mathbb{P}\left(|Z - Z_m| > \varepsilon\right) \le \mathbb{P}\left(\{|Z - Z_m| > \varepsilon\} \cap \Omega_n\right) + \mathbb{P}\left(\Omega_n^c\right) \le \frac{\delta}{2} + \frac{\delta}{2} = \delta.$$

Remark 2.37. This is a Riemann-type approximation of $\int_0^t X_s \, dM_s$, but it is important to use $X_{t_{k-1}}$ and not any X_s for $s \in [t_{k-1}, t_k]$ in the sum to guarantee the martingale properties. Note that this gives a concrete approximation method for the stochastic integral. Form this result only, however, one cannot deduce the properties of $\left(\int_0^t X_s \, dM_s, t \ge 0\right)$ as a process like being a local martingale, being continuous or calculating its quadratic variation.

Corollary 2.38. If M is a continuous local martingale, $M_0 = 0$, then for partitions π_m of [0,T] with $|\pi_m| \to 0$ as $m \to \infty$ we have for all $t \in [0,T]$:

$$\sum_{t_k \in \pi_m} \left(M_{t_k \wedge t} - M_{t_{k-1} \wedge t} \right)^2 \xrightarrow{\mathbb{P}} \langle M \rangle_t ,$$

$$\int_0^t M_s \, dM_s = \frac{1}{2} M_t^2 - \frac{1}{2} \, \langle M \rangle_t .$$
(2.2.3)

Proof. We write (always $t_0 = 0$, max_k $t_k = T$)

$$M_{t}^{2} = \sum_{t_{k} \in \pi_{m}} M_{t \wedge t_{k}}^{2} - M_{t \wedge t_{k-1}}^{2}$$
$$= \sum_{t_{k} \in \pi_{m}} \left(\left(M_{t \wedge t_{k}} - M_{t \wedge t_{k-1}} \right)^{2} + 2M_{t_{k-1}} \left(M_{t_{k} \wedge t} - M_{t_{k-1} \wedge t} \right) \right)$$

By the theorem

$$\sum_{k_k \in \pi_m} M_{t_{k-1} \wedge t} \left(M_{t_k \wedge t} - M_{t_{k-1} \wedge t} \right) \xrightarrow{\mathbb{P}} \int_0^t M_s \, dM_s$$

such that

$$\sum_{t_k \in \pi_m} \left(M_{t_k \wedge t} - M_{t_{k-1} \wedge t} \right)^2 \xrightarrow{\mathbb{P}} M_t^2 - 2 \int_0^t M_s \, dM_s =: Q_t.$$

Since M and $\int_0^{\cdot} M_s dM_s$ are continuous, so is Q. The limit Q is independent of the choice of (π_m) . We can thus consider refinements $\pi_m \subseteq \pi_{m+1}$ for all $m \ge 1$. We have for $m \ge n$ that $t \mapsto \sum_{t_k \in \pi_m} (M_{t_k \wedge t} - M_{t_{k-1} \wedge t})^2$ is increasing for $t \in \pi_m \supseteq \pi_n$. Hence, the limit Q is increasing a.s. on $\bigcup_{m\ge 1} \pi_m$. By continuity of Q and density of $\bigcup_{m\ge 1} \pi_m$ we conclude that Q_t is increasing on [0,T]. Observing finally that $M_t^2 - Q_t = 2 \int_0^t M_s dM_s$ is a continuous local martingale starting in 0, we see that $Q_t = \langle M \rangle_t$ a.s. for all $t \ge 0$ (by uniqueness of $\langle M \rangle_t$).

CHAPTER 2. CONTINUOUS MARTINGALES AND STOCHASTIC INTEGRATION35

Remark 2.39. Compare (2.2.3) to the standard equation for $f \in C^1$, f(0) = 0:

$$\int_0^t f(s) \, df(s) = \int_0^t f(s) f'(s) \, ds = \frac{1}{2} f^2(s).$$

Hence, the meaning of quadratic variation lies at the heart of the difference between stochastic and deterministic integration.

Chapter 3

Main theorems of stochastic analysis

3.1 Itô's formula

Definition 3.1. A continuous semimartingale $(X_t, t \ge 0)$ with respect to a filtration $(\mathcal{F}_t)_{t\ge 0}$ is a continuous process which can be written as $X_t = M_t + A_t$ with a continuous local $(\mathcal{F}_t)_{t\ge 0}$ martingale M and an $(\mathcal{F}_t)_{t\ge 0}$ -adapted, continuous process A with paths $t \mapsto A_t(\omega)$ of a.s. finite variation on compact intervals. Then we define for $t \ge 0$

$$\left(\int_0^t Y_s \, dX_s\right)(\omega) := \left(\int_0^t Y_s \, dM_s\right)(\omega) + \int_0^t Y_s(\omega) \, dA_s(\omega),$$

whenever the right-hand side is well-defined, i.e. $Y \in \mathscr{L}_{loc}(M)$ and $\int_0^t |Y_s| |dA_s| < \infty$ a.s. (here $|dA_s| = dA_s^+ + dA_s^-$ is the toal variation of the signed measure $dA_s = dA_s^+ - dA_s^-$). Moreover, we set

$$\left\langle X\right\rangle_t = \lim_{|\pi_m|\to 0} \sum_{t_k\in\pi_m} \left(X_{t_k\wedge t} - X_{t_{k-1}\wedge t}\right)^2,$$

whenever the limit exists in probability.

Definition 3.2. Let X, Y be continuous semimartingales. Then we define the quadratic covariation by polarisation:

$$\langle X, Y \rangle_t := \frac{1}{4} \left(\langle X + Y \rangle_t - \langle X - Y \rangle_t \right), \quad t \ge 0.$$

Proposition 3.3. Let X, Y be continuous semimartingales.

- a) The quadratic covariation exists and satisfies $\langle X, Y \rangle_t = \lim_{|\pi| \to 0} \sum_{t_k \in \pi} (X_{t_k \wedge t} X_{t_{k-1} \wedge t}) (Y_{t_k \wedge t} Y_{t_{k-1} \wedge t})$ in probability, where π is any partition of $[0, \infty)$.
- b) a continuous semimartingale $(X_t, t \ge 0)$ with decomposition X = M + A into a continuous local martingale and a continuous process of bounded variation on compacts Awe have

$$\langle X \rangle_t = \langle M \rangle_t = \lim_{|\pi_m| \to 0} \sum_{t_k \in \pi_m} \left(X_{t_k \wedge t} - X_{t_{k-1} \wedge t} \right)^2$$

Proof. See exercises.

Theorem 3.4 (Partial integration). For continuous semimartingales X, Y we have

$$X_{t}Y_{t} = X_{0}Y_{0} + \int_{0}^{t} X_{s} \, dY_{s} + \int_{0}^{t} Y_{s} \, dX_{s} + \langle X, Y \rangle_{t} \,, \quad t \ge 0$$

In particular,

$$X_t^2 = X_0^2 + 2\int_0^t X_s dX_s + \langle X \rangle_t, \ t \ge 0.$$

Proof. By polarisation it suffices to prove the second identity. We have for any partition of $[0,T], t \leq T$:

$$\sum_{t_k \in \pi} (X_{t_k \wedge t} - X_{t_{k-1} \wedge t})^2 = X_t^2 - X_0^2 - 2 \sum_{t_k \in \pi} X_{t_{k-1} \wedge t} (X_{t_k \wedge t} - X_{t_{k-1} \wedge t})$$
$$= X_t^2 - X_0^2 - 2 \sum_{t_k \in \pi} X_{t_{k-1} \wedge t} (M_{t_k \wedge t} - M_{t_{k-1} \wedge t})$$
$$+ 2 \sum_{t_k \in \pi} X_{t_{k-1} \wedge t} (A_{t_k \wedge t} - A_{t_{k-1} \wedge t}).$$

The left-hand side converges in probability to $\langle X\rangle_t$ whereas the right-hand side converges in probability to

$$X_t^2 - X_0^2 - 2\int_0^t X_s \, dM_s - 2\int_0^t X_s \, dA_s = X_t^2 - X_0^2 - 2\int_0^t X_s \, dX_s$$

using Riemann-Stieltjes approximation (we even have $\sum_{t_k \in \pi} X_{t_{k-1} \wedge t} (A_{t_k \wedge t} - A_{t_{k-1} \wedge t}) \rightarrow \int_0^t X_s \, dA_s$ a.s.).

Theorem 3.5 (Associativity of the stochastic integral). Let $M \in \mathcal{M}^2_c$, $X \in \mathscr{L}(M)$ and $Y \in \mathscr{L}(X \circ M)$ with respect to a filtration $(\mathcal{F}_t)_{t \geq 0}$. Then:

$$\begin{array}{l} a) \ YX \in \mathscr{L}(M). \\ b) \ (Y \circ (X \circ M)) = ((YX) \circ M), \ a.s. \end{array}$$

Proof. See exercises.

The main result of this section will be *Itô's formula* (a.k.a. *Itô's lemma*).

Theorem 3.6 (Itô's formula). For a continuous semimartingale X and $f \in C^2(\mathbb{R})$ the process $(f(X_t), t \ge 0)$ is again a continuous semimartingale and satisfies

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) \, dX_s + \frac{1}{2} \int_0^t f''(X_s) \, d\langle X \rangle_s \,, \ t \ge 0.$$

Proof. There are two main proof strategies.

1. proof (sketch). Writing $f(X_t) - f(X_0)$ as a telescoping sum and Taylor expansions, we obtain

$$f(X_t) - f(X_0) = \sum_{t_k \in \pi} (f(X_{t_k \wedge t}) - f(X_{t_{k-1} \wedge t}))$$

Taylor

$$= \sum_{t_k \in \pi} (f'(X_{t_{k-1} \wedge t})(X_{t_k \wedge t} - X_{t_{k-1} \wedge t}))$$

$$+ \frac{1}{2} f''(X_{t_{k-1} \wedge t})(X_{t_k \wedge t} - X_{t_{k-1} \wedge t})^2 + o((X_{t_k \wedge t} - X_{t_{k-1} \wedge t})^2))$$

$$= \int_0^t f'(X_s) \, dX_s + \frac{1}{2} \int_0^t f''(X_s) \, d\langle X \rangle_s$$

as $|\pi| \to 0$, because the remainder terms converge to 0 in probability (not proven here, check literature).

2. proof. We first show that Itô's formula holds for polynomials f. We already know that it holds for f(x) = x and $f(x) = x^2$ (by partial integration). By linearity it holds for polynomials f of maximal degree 2. We argue now inductively. Assume that the claim holds for polynomials of order of maximal degree m - 1, i.e.

$$X_t^{m-1} = X_0^{m-1} + \int_0^t (m-1) \, X_s^{m-2} \, dX_s + \int_0^t \frac{(m-1) \, (m-2)}{2} X_s^{m-3} \, d\left\langle X \right\rangle_s.$$

By partial integration and associativity of the stochastic integral (Theorem 3.5) we then have

$$\begin{aligned} X_t^m &= X_t^{m-1} X_t \\ &= X_0^{m-1} X_0 + \int_0^t X_s^{m-1} \, dX_s + \int_0^t X_s \, dX_s^{m-1} + \left\langle X, X^{m-1} \right\rangle_t \\ &= X_0^m + \int_0^t X_s^{m-1} \, dX_s \\ &+ \left(\int_0^t X_s \left(m - 1 \right) X_s^{m-2} \, dX_s + \int_0^t X_s \frac{(m-1) \left(m - 2 \right)}{2} X_s^{m-3} \, d \left\langle X \right\rangle_s \right) \\ &+ \left\langle X, \int_0^\cdot \left(m - 1 \right) X_s^{m-2} \, dX_s + A \right\rangle_t \end{aligned}$$

for a finite variation process A. Therefore

$$\begin{aligned} X_t^m &= X_0^m + m \int_0^t X_s^{m-1} \, dX_s + \frac{(m-1)(m-2)}{2} \int_0^t X_s^{m-2} \, d\langle X \rangle_s \\ &+ \left\langle \int_0^\cdot 1 \, dX_s, \int_0^\cdot (m-1) \, X_s^{m-2} \, dX_s \right\rangle_t. \end{aligned}$$

By polarisation we obtain

$$\left\langle \int_0^t 1 \, dX_s, \int_0^t (m-1) \, X_s^{m-2} \, dX_s \right\rangle_t = \left\langle \int_0^t 1 \, dM_s, \int_0^t (m-1) \, X_s^{m-2} \, dM_s \right\rangle_t$$
$$= \int_0^t (m-1) \, X_s^{m-2} \, d\langle M \rangle_s$$
$$= \int_0^t (m-1) \, X_s^{m-2} \, d\langle X \rangle_s$$

such that

$$X_t^m = X_0^m + m \int_0^t X_s^{m-1} \, dX_s + \frac{m \, (m-1)}{2} \int_0^t X_s^{m-2} \, d \, \langle X \rangle_s \,.$$

By linearity we thus have Itô's formula for all polynomials f of maximal degree m. We now show Itô's formula for X taking values in the interval [-K, K] for some K > 0. By Weierstraß's approximation theorem there are polynomials p_m such that

$$\sup_{\substack{x \in [-K,K]}} |f''(x) - p''_m(x)| \to 0,$$

$$\sup_{\substack{x \in [-K,K]}} |f'(x) - p'_m(x)| \to 0,$$

$$\sup_{\substack{x \in [-K,K]}} |f(x) - p_m(x)| \to 0$$

as $m \to \infty$. Therefore we have a.s. $p_m(X_t) \to f(X_t)$ and $p_m(X_0) \to f(X_0)$ and by the uniform convergences from above also $\int_0^t (f'(X_s) - p'_m(X_s)) dX_s \xrightarrow{\mathbb{P}} 0$ and $\int_0^t (f''(X_s) - p'_m(X_s)) d\langle X \rangle_s \to 0$ a.s. Since Itô's formula holds for each p_m by these convergences it also holds for f.

The last step in the proof is to show Itô's formula for general X and f. The formula holds for the stopped semi-martingales X^{τ_K} with $\tau_K = \inf \{t \ge 0 : |X_t| \ge K\}$:

$$\begin{aligned} f(X_{t\wedge\tau_{K}}) &= f(X_{0}) + \int_{0}^{t} f'(X_{s}^{\tau_{K}}) \, dX_{s}^{\tau_{K}} + \frac{1}{2} \int_{0}^{t} f''(X_{s}^{\tau_{K}}) \, d\langle X^{\tau_{K}} \rangle_{s} \\ &= f(X_{0}) + \int_{0}^{t} f'(X_{s}^{\tau_{K}}) \, dM_{s}^{\tau_{K}} + \int_{0}^{t} f'(X_{s}^{\tau_{K}}) \, dA_{s}^{\tau_{K}} + \frac{1}{2} \int_{0}^{t} f''(X_{s}^{\tau_{K}}) \, d\langle M^{\tau_{K}} \rangle_{s} \end{aligned}$$

By the stopping property of stochastic integrals in Theorem 2.34 and $\int_0^t f'(X_s^{\tau_{\kappa}}) dA_s^{\tau_{\kappa}} = \int_0^{t \wedge \tau_{\kappa}} f'(X_s^{\tau_{\kappa}}) dA_s$ as well as $\int_0^t f''(X_s^{\tau_{\kappa}}) d\langle M^{\tau_{\kappa}} \rangle_s = \int_0^{t \wedge \tau_{\kappa}} f''(X_s^{\tau_{\kappa}}) d\langle M \rangle_s$ we obtain

$$f(X_{t\wedge\tau_K}) = f(X_0) + \int_0^{t\wedge\tau_K} f'(X_s) \, dX_s + \frac{1}{2} \int_0^{t\wedge\tau_K} f''(X_s) \, d\langle X \rangle_s \, .$$

Letting $K \to \infty$ we have $\tau_K \to \infty$ a.s. by continuity of X and thus $t \wedge \tau_K \to t$ and

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) \, dX_s + \frac{1}{2} \int_0^t f''(X_s) \, d\langle X \rangle_s \, .$$

Remark 3.7. Suppose $t \mapsto X_t$ is $C^1(\mathbb{R})$. Then $\langle X \rangle_t = 0$ and Itô's formula specialises to the fundamental theorem of calculus: $f(X_t) = f(X_0) + \int_0^t f'(X_s) X'_s ds$. Likewise, Itô's formula allows to calculate the stochastic integral $\int_0^t f'(X_s) dX_s$.

Example 3.8 (Geometric Brownian motion). We want to solve the *stochastic differential* equation

$$dX_t = X_t \left(\mu \, dt + \sigma \, dB_t\right) = \mu X_t \, dt + \sigma X_t \, dB_t \tag{*}$$

with $X_0 = x_0$, i.e. we want to find a process $(X_t, t \ge 0)$ such that

$$X_t = X_0 + \int_0^t X_s \mu \, ds + \sigma \int_0^t X_s \, dB_s, \ a.s.$$

Informally we consider $f(x) = \log x$, $f'(x) = \frac{1}{x}$, $f''(x) = -\frac{1}{x^2}$, x > 0. If we assume that such a process X exists we have by Itô's formula

$$df(X_t) = f'(X_t) \, dX_t + \frac{1}{2} f''(X_t) \, d\langle X \rangle_t \,,$$

i.e.

$$\log(X_t) = \log(X_0) + \int_0^t \frac{1}{X_s} dX_s + \frac{1}{2} \int_0^t \left(-\frac{1}{X_s^2} \right) d\langle X \rangle_s$$

= $\log(x_0) + \int_0^t (\mu \, ds + \sigma \, dB_s) - \frac{1}{2} \int_0^t \frac{1}{X_s^2} \sigma^2 X_s^2 \, ds$
= $\log(x_0) + \mu t + \sigma B_t - \frac{\sigma^2}{2} t.$

Applying now the exponential function we therefore get

$$X_t = x_0 \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma B_t\right).$$

Rigorously you can apply Itô's formula to the right-hand side and derive (*). What happens for $t \to \infty$? If $\mu > \frac{\sigma^2}{2}$, then $X_t \to \infty$ a.s. by the law of the iterated logarithm and similarly, if $\mu < \frac{\sigma^2}{2}$, then $X_t \to 0$ a.s. Finally, if $\mu = \frac{\sigma^2}{2}$, then $\lim \sup_{t\to\infty} X_t = \infty$ and $\lim \inf_{t\to\infty} X_t = 0$ a.s. If $\mu = 0$, then X is a martingale (see Proposition 1.20), but $\mu < \frac{\sigma^2}{2}$ such that $X_t \to 0$ such that X cannot be a uniformly integrable martingale.

Definition 3.9. A *d*-dimensional continuous semimartingale $X_t = (X_t^{(1)}, \ldots, X_t^{(d)})^T$ is a vector of *d* one-dimensional continuous semimartingales $X^{(1)}, \ldots, X^{(d)}$. A *d*-dimensional Brownian motion $B_t = (B_t^{(1)}, \ldots, B_t^{(d)})^T$ consists of *d* independent Brownian motions $B^{(1)}, \ldots, B^{(d)}$.

Theorem 3.11. Let X be a d-dimensional continuous semimartingale and

$$\begin{split} f \in C^{2,1}(\mathbb{R}^d \times \mathbb{R}^+) &= \left\{ g : \mathbb{R}^d \times \mathbb{R}^+ \to \mathbb{R}, (x,t) \mapsto g(x,t) : \frac{\partial^2 g}{\partial x_i x_j} \in C(\mathbb{R}^d \times \mathbb{R}^+) \\ for \ 1 \leq i, j \leq d, \frac{\partial g}{\partial t} \in C(\mathbb{R}^d \times \mathbb{R}^+) \right\}. \end{split}$$

Then $(f(X_t, t), t \ge 0)$ is a (one-dimensional) continuous semimartingale satisfying

$$f(X_{t},t) = f(X_{0},0) + \sum_{k=1}^{d} \int_{0}^{t} \frac{\partial f}{\partial x_{k}} (X_{k},s) dX_{s}^{(k)} + \int_{0}^{t} \frac{\partial f}{\partial t} (X_{s},s) ds$$

+ $\frac{1}{2} \sum_{i,j=1}^{d} \int_{0}^{t} \frac{\partial^{2} f}{\partial x_{i} x_{j}} (X_{s},s) d\langle X^{(i)}, X^{(j)} \rangle_{s}$
= $f(X_{0},0) + \int_{0}^{t} \langle \nabla_{x} f(X_{s},s), dX_{s} \rangle + \int_{0}^{t} \frac{\partial f}{\partial t} (X_{s},s) ds$
+ $\frac{1}{2} \int_{0}^{t} \langle \nabla_{x}^{2} f(X_{s},s), d\langle X \rangle_{s} \rangle_{HS(\mathbb{R}^{d \times d})},$

where the Hilbert-Schmidt-norm on $\mathbb{R}^{d \times d}$ is induced by $\langle M, N \rangle_{HS} = \sum_{i,j=1}^{d} M_{ij} N_{ij} =$ trace (MN^T) for any $M, N \in \mathbb{R}^{d \times d}$.

Proof. Long and tedious analogue of the proof of Theorem 3.6. Check cited literature for details. $\hfill \Box$

Corollary 3.12. For d-dimensional Brownian motion B and $f \in C^{2,1}(\mathbb{R}^d \times \mathbb{R}^+)$ we have

$$f(B_t,t) = f(0,0) + \int_0^t \left\langle \nabla_x f(B_s,s), \, dB_s \right\rangle + \int_0^t \frac{\partial}{\partial t} f(B_s,s) \, ds + \frac{1}{2} \int_0^t \triangle_x f(B_s,s) \, ds,$$

where $\triangle_x f = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_d}$ is the Laplace operator.

Proof. It remains to show $\langle B^{(i)}, B^{(j)} \rangle_t = t \delta_{ij}$. We know already $\langle B^{(i)}, B^{(i)} \rangle_t = \langle B^{(i)} \rangle_t = t$ and we must show for two independent Brownian motions $B^{(1)}, B^{(2)}$ that $\langle B^{(1)}, B^{(2)} \rangle_t = 0$ for all $t \ge 0$. We have by definition

$$\left\langle B^{(1)}, B^{(2)} \right\rangle_t = \frac{1}{4} \left(\left\langle B^{(1)} + B^{(2)} \right\rangle_t - \left\langle B^{(1)} - B^{(2)} \right\rangle_t \right),$$

but $\frac{1}{\sqrt{2}} \left(B^{(1)} \pm B^{(2)} \right)_t$ is again a Brownian motion such that $\left\langle B^{(1)} \pm B^{(2)} \right\rangle_t = 2t$, i.e. $\left\langle B^{(1)}, B^{(2)} \right\rangle_t = 0.$

Corollary 3.13. If $f \in C^{2,1}(\mathbb{R}^d \times \mathbb{R})$ satisfies $\frac{\partial f}{\partial t} = -\frac{1}{2} \Delta_x f$ (for all (x,t)), then $(f(B_t,t),t \ge 0)$ is a continuous local martingale.

Proof. We have $f(B_t, t) = f(0, 0) + \int_0^t \langle \nabla_x f(B_s, s), dB_s \rangle$ which is a sum of continuous local martingales and therefore itself again a local martingale. \Box

Remark 3.14. Functions $f \in C^{2,1}(\mathbb{R}^d \times \mathbb{R})$ as in the corollary satisfy the *heat equation* which is an important partial differential equation in applications. See also (1.1.1) in the introduction.

Example 3.15. Note that if $f : \mathbb{R}^d \to \mathbb{R}$ is harmonic, i.e. $\Delta f(x) = 0$ for all $x \in \mathbb{R}^d$. Then $(f(B_t), t \ge 0)$ is a continuous local martingale.

1. If d = 2, then for $f : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}, f(x) = \log |x|$ we calculate that $\frac{\partial f}{\partial x_i}(x) = \left(\frac{1}{2}\log(x_1^2 + x_2^2) = \frac{2x_i}{2(x_1^2 + x_2^2)} = \frac{x_i}{|x|^2} \text{ and } \frac{\partial^2 f}{\partial x_i^2}(x) = \frac{|x|^2 - 2x_i x_i}{|x|^4} = \frac{1}{|x|^2} - \frac{2x_i^2}{|x|^4}$. Thus $\frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} = \frac{2}{|x|^2} - 2\frac{x_1^2 + x_2^2}{|x|^4} = 0$. Let now $D_{r,R} := \{x \in \mathbb{R}^2 : r < |x| < R\}$ for 0 < r < R. Then $h(x) := \frac{\log R - \log |x|}{\log R - \log r}$ is harmonic on $D_{r,R}, h(x) = 0$ for |x| = R, h(x) = 1 for |x| = r. Define the stopping time $\tau = \inf\{t \ge 0 : |B_t + x| \in \{R, r\}\}$ for some $x \in D_{r,R}$. We have $\mathbb{P}(\tau < \infty) = 1$ because $\limsup_{t \to \infty} |B_t| = \infty$ a.s. (consider e.g. $\limsup_{t \to \infty} |B_t| \ge \limsup_{t \to \infty} |B_t^{(1)}| = \infty$). Moreover, $h(x + B_t), t \ge 0$, is bounded on $[0, \tau]$. Dominated convergence yields

$$h(x) = \mathbb{E} [h(x + B_0)]$$

opt. sampling
$$= \mathbb{E} [h(x + B_\tau)]$$

$$= \mathbb{E} [\mathbf{1}_{\{|x + B_\tau| = r\}}]$$

$$= \mathbb{P} (|x + B_\tau| = r).$$

Here we use that the above arguments yield that also $(h(x + B_{t\wedge\tau}), t \ge 0)$ is a continuous local martingale if $\Delta h = 0$. Since h is bounded on $[0, \tau]$, we have that $(h(x + B_{t\wedge\tau}, t \ge 0))$ is a martingale and thus $\mathbb{E}[h(x + B_{t\wedge\tau})] = h(x)$, take $t \to \infty$ by dominated convergence. For $R \to \infty$ we have $\tau_{r,R} \to \tau_{r,\infty} := \inf\{t \ge 0 : |B_t + x| = r\}$ such that

$$\mathbb{P}\left(\tau_{r,\infty} < \infty\right) = \lim_{R \to \infty} \frac{\log R - \log |x|}{\log R - \log r} = 1.$$

Hence, with probability one the 2-dimensional Brownian motion hits any disc in finite time. This is called 2D-Brownian motion is recurrent for discs. This means that a.s. the trajectories of 2D-Brownian motion lie dense in \mathbb{R}^2 , i.e. $\overline{\{|B_t|, t \ge 0\}} = \mathbb{R}^2$ (show this by considering any disc $D_{r,R}$ around any point $y \in \mathbb{R}^2$, not only around 0). By considering only rational coordinates and rational r, R the claim follows a.s.).

2. If d = 3, then for $f(x) = |x|^{2-d}$ is harmonic on $\mathbb{R}^d \setminus \{0\}$. With $D_{r,R}$ as before and $h(x) = \frac{R^{2-d} - |x|^{2-d}}{R^{2-d} - r^{2-d}}$ harmonic on $D_{r,R}$, h(x) = 0 for |x| = R, h(x) = 1 for |x| = r you conclude similarly $\mathbb{P}(\tau_{r,\infty} < \infty) = \frac{|x|^{2-d}}{r^{2-d}} < 1$ (because of $R^{2-d} \to 0$ as $R \to \infty$). Hence, d-dimensional Brownian motion is transient for $d \geq 3$.

3.2 First consequences of Itô's formula

First we establish Lévy's characterisation of Brownian motion.

Theorem 3.16. The following are equivalent:

- a) B is a Brownian motion (on some filtered probability space $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t))$.
- b) B is a continuous local martingale with $B_0 = 0$, $\langle B \rangle_t = t$ for $t \ge 0$ on $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t))$.

Proof. (a) \Rightarrow (b). Clear.

(b) \Rightarrow (a). Let us show that $M_t = \exp(iuB_t + \frac{u^2t}{2})$, $t \ge 0$, is for any $u \in \mathbb{R}$ a complexvalued martingale (i.e. real and imaginary parts are real-valued martingales). We apply Itô's formula (which equally holds for \mathbb{C} -valued functions f):

$$M_{t} = M_{0} + \int_{0}^{t} i u M_{s} dB_{s} + \frac{1}{2} \int_{0}^{t} (i u)^{2} M_{s} d\langle B \rangle_{s} + \int_{0}^{t} \frac{1}{2} u^{2} M_{s} ds$$
$$= M_{0} + \int_{0}^{t} i u M_{s} dB_{s}.$$

Since $|M_s| \leq e^{u^2 s/2} < \infty$, we have $iuM \in \mathscr{L}(B)$ and $(\int_0^t iuM_s \, dB_s, t \geq 0)$ is in \mathcal{M}_c^2 (everything coordinatewise for complex-valued processes). Thus, for all $0 \leq s \leq t$ we have $\mathbb{E}[\frac{M_t}{M_s}|\mathcal{F}_s] = 1$ (note $M_s \neq 0$ a.s.) and $\mathbb{E}[\exp(iu(B_t - B_s)|\mathcal{F}_s] = \exp(-\frac{u^2(t-s)}{2}))$. We obtain immediately from $\mathbb{E}[e^{iu(B_t - B_s)}] = e^{-\frac{u^2(t-s)}{2}}$ for all $u \in \mathbb{R}$ that $B_t - B_s \sim N(0, t-s)$. More precisely, for $A \in \mathcal{F}_s$ we get

$$\mathbb{E}\left[e^{iu(B_t-B_s)}\mathbf{1}_A\right] = e^{-\frac{u^2(t-s)}{2}}\underbrace{\mathbb{E}\left[\mathbf{1}_A\right]}_{=\mathbb{P}(A)}.$$

This shows that $B_t - B_s$ is independent of \mathcal{F}_s (cf. exercises or argue directly that independence can be checked on a generator of the σ -algebras $\sigma(B_t - B_s)$ and \mathcal{F}_s and use that the distribution of $B_t - B_s$ and therefore the independence of its generated σ -algebra of \mathcal{F}_s is uniquely determined by its characteristic function). Putting things together we have shown that $B_0 = 0$ (by assumption), $t \mapsto B_t$ is continuous and \mathcal{F}_t -adapted (by assumption) and for all $0 \leq s \leq t B_t - B_s$ is independent of \mathcal{F}_s and $B_t - B_s \sim N(0, t - s)$.

Consequences of this result are far reaching, see e.g. next section. Now we establish a very useful moment inequality.

Theorem 3.17 (Burkholder-Davis-Gundy inequality (BDG)). For every p > 0 there are constants $c_p, C_p > 0$ such that for any continuous local martingale M with $M_0 = 0$ we have

$$c_p \mathbb{E}\left[\langle M \rangle_{\infty}^{p/2}\right] \leq \mathbb{E}\left[\left(M_{\infty}^*\right)^p\right] \leq C_p \mathbb{E}\left[\langle M \rangle_{\infty}^{p/2}\right],$$

where $M_t^* = \max_{0 \le s \le t} |M_s|$.

Remark 3.18.

- a) Since $t \mapsto \langle M \rangle_t$, $t \mapsto M_t^*$ are increasing, $\langle M \rangle_{\infty}$ and M_{∞}^* are well-defined in $[0, \infty]$.
- b) Usually, we are interested in M_{τ}^* for a stopping (or deterministic) time τ . The BDG inequality applied to the stopped local martingale M^{τ} yields

$$c_p \mathbb{E}\left[\langle M \rangle_{\tau}^{p/2}\right] \leq \mathbb{E}\left[\left(M_{\tau}^*\right)^p\right] \leq C_p \mathbb{E}\left[\langle M \rangle_{\tau}^{p/2}\right].$$

Proof. For the lower bound see exercises. We prove the upper bound only for $p \ge 2$ (for the general case cf. Revuz and Yor (1999); Karatzas (1991)). We apply Itô's formula to $f(x) = |x|^p$ which is in C^2 for $p \ge 2$:

$$|M_t|^p = \underbrace{|M_0|^p}_{=0} + \int_0^t p |M_s|^{p-1} \operatorname{sgn}(M_s) \, dM_s + \frac{1}{2} \int_0^t p(p-1) \, |M_s|^{p-2} \, d \, \langle M \rangle_s \, .$$

Let us assume that M is a bounded martingale. Otherwise localise via the localising sequence of stopping times with the minimum of $\tau_n = \inf\{t > 0 : |M_t| \ge n\}$. For bounded $M \in \mathcal{M}_c^2$ we have $p|M_s|^{p-1} \operatorname{sgn}(M_s) \in \mathscr{L}(M)$ such that the stochastic integral is a true martingale with expectation zero. Therefore

$$\mathbb{E}\left[|M_t|^p\right] = \frac{p(p-1)}{2} \mathbb{E}\left[\int_0^t |M_s|^{p-2} d\langle M \rangle_s\right]$$

$$\leq \frac{p(p-1)}{2} \mathbb{E}\left[(M_t^*)^{p-2} \langle M \rangle_t\right]$$

$$\leqslant \frac{p(p-1)}{2} \mathbb{E}\left[(M_t^*)^p\right]^{\frac{p-2}{p}} \mathbb{E}\left[\langle M \rangle_t^{p/2}\right]^{2/p}$$

using Hölder inequality in the third line. By Doob's inequality (Proposition 1.27)

$$\mathbb{E}\left[\left(M_t^*\right)^p\right] \le \left(\frac{p}{p-1}\right)^p \frac{p(p-1)}{2} \mathbb{E}\left[\left(M_t^*\right)^p\right]^{\frac{p-2}{p}} \mathbb{E}\left[\left\langle M \right\rangle_t^{p/2}\right]^{2/p}$$

for any p > 1 such that

$$\mathbb{E}\left[\left(M_t^*\right)^p\right]^{2/p} \le \left(\frac{p}{p-1}\right)^p \frac{p(p-1)}{2} \mathbb{E}\left[\langle M \rangle_t^{p/2}\right]^{2/p}.$$

Hence, observing that $\langle M \rangle$ is a non-negative increasing process for all t > 0

$$\mathbb{E}\left[\left(M_{t}^{*}\right)^{p}\right] \leq C_{p}\mathbb{E}\left[\left\langle M\right\rangle_{\infty}^{p/2}\right]$$

Monotone convergence yields the assertion for $t \to \infty$.

3.3 Martingale representation theorems

Theorem 3.19 (Doob 1953). Suppose M is a continuous local martingale with $M_0 = 0$ and an absolutely continuous quadratic variation process $t \mapsto \langle M \rangle_t$. Then there is a Brownian motion B (possibly defined on an extension of the original probability space) and a process $X \in \mathscr{L}_{loc}(B)$ such that

$$M_t = \int_0^t X_s \, dB_s, \quad t \ge 0, a.s$$

Proof. 1. step. Write $\langle M \rangle_t (\omega) = \int_0^t G_s(\omega) \, ds$ and suppose $G_s(\omega) > 0$ a.s. and a.e. (almost everywhere). Put $B_t := \int_0^t G_s^{-1/2} \, dM_s, t \ge 0$. If well-defined, then B_t is a continuous local martingale with $B_0 = 0$ (as a stochastic integral) ad

$$\langle B \rangle_t = \int_0^t G_s^{-1} d \langle M \rangle_s = \int_0^t G_s^{-1} G_s \, ds = t.$$

By Theorem 3.16 B is a Brownian motion and by associativity of the stochastic integral (Theorem 3.5)

$$\int_0^t G_s^{1/2} \, dB_s = \int_0^t G_s^{1/2} G_s^{-1/2} \, dM_s = M_t.$$

Thus, we choose $X_s = G_s^{1/2}$. It remains to show $G_s^{-1/2} \in \mathscr{L}_{loc}(M)$. For a.a. s and a.a. ω we have $G_s(\omega) = \lim_{h \to 0} \frac{\langle M \rangle_s(\omega) - \langle M \rangle_{s-h}(\omega)}{h}$, from which we may conclude that G_s is progressively measurable. Moreover, we have for all $t \geq 0$

$$\int_0^t \left(G_s^{-1/2}\right)^2 d\langle M \rangle_s = \int_0^t G_s^{-1} \cdot G_s \, ds = t < \infty$$

This implies $G^{-1/2} \in \mathscr{L}_{loc}(M)$.

2. step. If $G_s(\omega) > 0$ does not almost always hold, then construct a Brownian motion B' on some filtered probability space $(\Omega', \mathcal{F}', (\mathcal{F}'_t), \mathbb{P}')$ and consider the product space $(\Omega \times \Omega', \mathcal{F} \times \mathcal{F}', (\mathcal{F}_t \otimes \mathcal{F}'_t)_{t \geq 0}, \mathbb{P})$, where M and B' are still $(\mathcal{F}_t \otimes \mathcal{F}'_t)$ -local martingales. Put

$$B_t := \int_0^t G_s^{-1/2} \mathbf{1}_{\{G_s > 0\}} \, dM_s + \int_0^t \mathbf{1}_{\{G_s = 0\}} \, dB'_s, \quad t \ge 0.$$

Then B is a continuous local martingale, $B_0 = 0$ and

$$\begin{split} \langle B \rangle_t &= \left\langle \int_0^{\cdot} G_s^{-1/2} \mathbf{1}_{\{G_s > 0\}} \, dM_s \right\rangle_t + \left\langle \int_0^{\cdot} \mathbf{1}_{\{G_s = 0\}} \, dB'_s \right\rangle_t \\ &+ 2 \underbrace{\left\langle \int_0^{\cdot} G_s^{-1/2} \mathbf{1}_{\{G_s > 0\}} \, dM_s, \int_0^{\cdot} \mathbf{1}_{\{G_s = 0\}} \, dB'_s \right\rangle_t}_{=:A} \\ &= \int_0^t G_s^{-1/2} \mathbf{1}_{\{G_s > 0\}} \underbrace{d \langle M \rangle_s}_{=G_s \, ds} + \int_0^t \mathbf{1}_{\{G_s = 0\}} \underbrace{d \langle B' \rangle_s}_{=ds} + 0 \\ &= \int_0^t \mathbf{1}_{\{G_s > 0\}} \, ds + \int_0^t \mathbf{1}_{\{G_s = 0\}} \, ds \\ &= t, \end{split}$$

if we can show that A = 0. For this there are two possible arguments:

i) $\left\langle \int_{0}^{\cdot} X_{s} \, dM_{s}^{1}, \int_{0}^{\cdot} Y_{s} \, dM_{s}^{2} \right\rangle_{t} = \int_{0}^{t} X_{s} Y_{s} \, d\left\langle M^{1}, M^{2} \right\rangle_{s}$ holds (use approximation by simple integrands, see e.g. Karatzas (1991)) such that

$$\left\langle \int_0^{\cdot} G^{-1/2} \mathbf{1}_{\{G>0\}} \, dM_s, \int_0^{\cdot} \mathbf{1}_{\{G=0\}} \, dB'_s \right\rangle_t = \int_0^t G^{-1/2} \cdot 0 \, d \, \langle M, B' \rangle_s = 0.$$

ii) The processes $((M_t,G_t,B_t'),t\geq 0)$ and $(M_t,G_t,-B_t'),t\geq 0)$ have exactly the same distribution such that

$$\left\langle \int_{0}^{\cdot} G^{-1/2} \mathbf{1}_{\{G>0\}} \, dM, \int_{0}^{\cdot} \mathbf{1}_{\{G=0\}} \, dB'_{s} \right\rangle_{t} = -\left\langle \int_{0}^{\cdot} G^{-1/2} \mathbf{1}_{\{G>0\}} \, dM_{s}, \int_{0}^{\cdot} \mathbf{1}_{\{G=0\}} \, dB'_{s} \right\rangle_{t}$$

such that they both equal zero.

This means again by Theorem 3.16 that B is a Brownian motion and as above $M_t = \int_0^t G_s^{1/2} dB_s$.

Remark.

a) A function $f : \mathbb{R}^+ \to \mathbb{R}$ is absolutely continuous if there is a function $g \in L^1([0,T])$ for all T > 0 such that $f(t) = f(0) + \int_0^t g(s) \, ds$. We have g(s) = f'(s) for Lebesgue-a.a.

b) For general M_0 we then obtain $M_t = M_0 + \int_0^t X_s \, dB_s$ by considering $\tilde{M}_t = M_t - M_0$.

Theorem 3.20 (Brownian martingales). Let $(\mathcal{F}_t)_{t\geq 0}$ be the canonical filtration of a Brownian motion B, i.e. $\mathcal{F}_t^0 = \sigma(B_s, s \leq t)$ completed by events of probability zero in $\sigma(B_t, t \geq 0)$. Then for each random variable $Z \in L^2(\Omega, \mathcal{F}_\infty, \mathbb{P})$ there is a unique process $h \in \mathscr{L}(B)$ such that

$$Z = \mathbb{E}\left[Z\right] + \int_0^\infty h_s \, dB_s,$$

where $\mathbb{E}[\int_0^{\infty} h_s^2 ds] < \infty$. Moreover, for each martingale M bounded in L^2 (for each continuous local martingale, respectively) adapted to $(\mathcal{F}_t^0)_{t\geq 0}$, there is an $h \in \mathscr{L}(B)$ $(h \in \mathscr{L}_{loc}(B))$ and a constant C > 0 such that

$$M_t = C + \int_0^t h_s \, dB_s, \quad t \ge 0, a.s.$$

Remark 3.21. M is not assumed to be continuous a priori (see below).

We first need a Lemma.

Lemma 3.22. The vector space generated by the random variables $\exp(i \sum_{j=1}^{n} \lambda_j (B_{t_j} - B_{t_{j-1}}))$ for $0 = t_0 < t_1 < \cdots < t_n$, $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ is dense in $L^2_{\mathbb{C}}(\Omega, \mathcal{F}_{\infty}, \mathbb{P})$ of \mathbb{C} -valued L^2 -random variables.

Proof. We show that $Z \in L^2_{\mathbb{C}}(\Omega, \mathcal{F}_{\infty}, \mathbb{P})$ with

$$\left\langle Z, \exp\left(i\sum_{j=1}^{n}\lambda_{j}\left(B_{t_{j}}-B_{t_{j-1}}\right)\right)\right\rangle_{L^{2}} = \mathbb{E}\left[Z\exp\left(-i\sum_{j=1}^{n}\lambda_{j}\left(B_{t_{j}}-B_{t_{j-1}}\right)\right)\right] = 0 \quad (*)$$

for all $n, (t_i), (\lambda_i)$ must satisfy Z = 0 a.s. For $F \in \mathscr{B}_{\mathbb{R}^n}$ we set

$$\mu(F) = \mathbb{E}\left[Z\mathbf{1}_F\left(B_{t_1} - B_{t_0}, \dots, B_{t_n} - B_{t_{n-1}}\right)\right].$$

Then μ is a complex-valued finite measure. Then (*) shows that the characteristic function of μ vanishes identically. By uniqueness of characteristic functions this means that $\mu = 0$ holds. Hence, $\mathbb{E}[Z\mathbf{1}_A] = 0$ holds for all $A \in \sigma(B_{t_1}, \ldots, B_{t_n})$. By a monotone class argument (or measure-theoretic induction) this extends to $A \in \sigma(B_s, s \ge 0)$. Adding nullsets to Adoes not affect validity of $\mathbb{E}[Z\mathbf{1}_A] = 0$. Therefore $\mathbb{E}[Z\mathbf{1}_A] = 0$ for all $A \in \mathcal{F}_{\infty}$ and thus Z = 0 a.s. (consider for this $A = \{Z > 0\}$ and $A = \{Z < 0\}$).

Proof of Theorem 3.20. Let H be the vector space of all $Z \in L^2(\Omega, \mathcal{F}_{\infty}, \mathbb{P})$ with representation $Z = \mathbb{E}[Z] + \int_0^\infty h_s \, dB_s$. The $Z \in H$ the process h is unique because for $h, h' \int_0^\infty h_s \, dB_s = \int_0^\infty h'_s \, dB_s$ a.s. Then $\int_0^\infty (h_s - h'_s) \, dB_s = 0$ a.s. and by Itô's isometry

$$0 = \mathbb{E}\left[\left(\int_0^\infty (h_s - h'_s) \, dB_s\right)^2\right]$$
$$= \mathbb{E}\left[\int_0^\infty (h_s - h'_s)^2 \, ds\right].$$

Thus $h_s = h'_s$ a.s. for almost all s. (indistinguishable?) Moreover, for $Z \in H$ we have

$$\mathbb{E}\left[Z^2\right] = \mathbb{E}\left[\left(\mathbb{E}\left[Z\right] + \int_0^\infty h_s \, dB_s\right)^2\right] = \left(\mathbb{E}\left[Z\right]\right)^2 + \int_0^\infty \mathbb{E}\left[h_s^2\right] \, ds + 2 \cdot 0.$$

Using this formula for $\mathbb{E}[Z^2]$ we obtain directly that a sequence (Z_n) in H converging to $Z \in L^2$ has corresponding processes (h_n) which form a Cauchy sequence with respect to

 $\|h\|^2 = \int_0^\infty \mathbb{E}[h_s^2] \, ds$. Then by the construction of the stochastisc integral this implies that $\int_0^\infty h_n \, dB_s$ converges in L^2 (Itô isometry on $[0,\infty)$). Since also $\mathbb{E}[Z_n] \to \mathbb{E}[Z]$ holds, we have

$$Z = \mathbb{E}\left[Z\right] + \int_0^\infty h_s \, dB_s,$$

where $h_s = \lim_{n \to \infty} h_{n,s}$. That's why *H* is closed. Now let us write $f(s) = \sum_{j=1}^n \lambda_j \mathbf{1}_{(t_{j-1},t_j]}(s)$ and consider

$$\mathcal{E}_t^f = \exp\left(i\underbrace{\int_0^t f(s) \, dB_s}_{=:X_t} + \frac{1}{2}\int_0^t f^2(s) \, ds\right).$$

By Itô's formula we get

$$\mathcal{E}_t^f = \mathcal{E}_0^f + \int_0^t i\mathcal{E}_s^f f(s) \, dB_s,$$

because the quadratic variation terms cancel (see proof of Theorem 3.16). Then

$$\exp\left(i\sum_{j=1}^{n}\lambda_{j}\left(B_{t_{j}}-B_{t_{j-1}}\right)+\frac{1}{2}\sum_{j=1}^{n}\lambda_{j}^{2}(t_{j}-t_{j-1})\right)=1+\int_{0}^{\infty}\mathcal{E}_{s}^{f}f(s)\,dB_{s}$$

and both the left-hand side and therefore also $\exp(i \sum_{j=1}^{n} \lambda_j (B_{t_j} - B_{t_{j-1}}))$ is in H. By the lemma, linear combinations of the latter random variables are dense in L^2 . Therefore H is dense in L^2 . Since H is closed, we must have $H = L^2$.

For the second part we know by the martingale convergence theorem (reference?)(e.g. from Stochastic processes I) that if M is an L^2 -bounded martingale, then there exists an \mathcal{F}_{∞} measurable random variable M_{∞} such that $M_t \xrightarrow{L^2, a.s.} M_{\infty}$. From the first part we therefore find $h \in \mathscr{L}(B)$ with $M_{\infty} = \mathbb{E}[M_{\infty}] + \int_0^{\infty} h_s dB_s$ and thus for all $t \geq 0$ we have $M_t = \mathbb{E}[M_{\infty}|\mathcal{F}_t] = \mathbb{E}[M_{\infty}] + \int_0^t h_s dB_s$, a.s. In particular, M has a continuous version (namely the right-hand side of this equality).

If M is only a local martingale, but continuous, with associated stopping times (τ_n) , then the stopped processes $N = M^{\tau_n}$ are uniformly integrable martingales. By the martingale convergence theorem (reference?) there exists an \mathcal{F}_{∞} -measurable random variable $M_{\infty} \in L^1$. Since L^2 is dense in L^1 , we find \mathcal{F}_{∞} -measurable random variables $M_{\infty}^{(n)} \in L^2$ such that $M_{\infty}^{(n)} \xrightarrow{L^1} M_{\infty}$ as $n \to \infty$. By the first part we can associate with each $M_{\infty}^{(n)}$ a continuous L^2 -bounded martingale $M_t^{(n)} = \mathbb{E}[M_{\infty}^{(n)}] + \int_0^t h_s^{(n)} dB_s$ for processes $h^{(n)} \in \mathscr{L}(B)$. By Doob's maximal inequality we find then for $\varepsilon > 0$ that

$$\mathbb{P}\left(\sup_{0\leq t\leq\infty}\left|M_t-M_t^{(n)}\right|\right)$$

define further stopping times $\sigma_n = \tau_n \wedge \inf \{t \ge 0 : |M_t| \ge n\}$. Since M_0 is \mathcal{F}_0 -measurable, we have that M_0 is constant a.s. $(\sigma(B_0) = \{\emptyset, \Omega\})$. Then there exist processes $h_n \in \mathscr{L}(B)$ such that $M_{t \land \sigma_n} = M_0 + \int_0^t h_{n,s} dB_s, t \ge 0$. By uniqueness of h_n , we have $h_{m,s} = h_{n,s} \cdot \mathbf{1}_{[0,\sigma_m]}(s)$ for m < n (\mathbb{P} -a.s., λ -a.e.). So, since $\sigma_n \to \infty$ a.s. we can define a process h_s such that $h_{m,s} = h_s \mathbf{1}_{[0,\sigma_m]}(s)$ for all $m \ge 1$. Hence, we have a.s.

$$M_t = \lim_{n \to \infty} M_{t \wedge \sigma_n} = M_0 + \lim_{n \to \infty} \int_0^{t \wedge \sigma_n} h_s \, dB_s = M_0 + \int_0^t h_s \, dB_s.$$

Corollary 3.23. Every local martingale with respect to $(\mathcal{F}_t)_{t\geq 0}$ as above has a continuous version.

Proof. $t \mapsto \int_0^t h_s dB_s$ is continuous such that $M_t = C + \int_0^t h_s dB_s$ a.s. and the right-hand side is a.s. continuous in t.

Corollary 3.24. $(\mathcal{F}_t)_{t\geq 0}$, the completion of the canonical Brownian filtration, is rightcontinuous, i.e. $\mathcal{F}_t = \mathcal{F}_{t+} = \bigcap_{s>t} \mathcal{F}_s, t \geq 0.$

Proof. Let Z be an \mathcal{F}_{t+} -measurable bounded random variable. Then there is an h such that $Z = \mathbb{E}[Z] + \int_0^\infty h_s \, dB_s$ by the theorem. Since Z is $\mathcal{F}_{t+\varepsilon}$ -measurable for any $\varepsilon > 0$, we have

$$Z = \mathbb{E}\left[\left.Z\right|\mathcal{F}_{t+\varepsilon}\right] = \mathbb{E}\left[Z\right] + \int_{0}^{t+\varepsilon} h_s \, dB_s$$

By uniqueness of h, we derive that $h_s = 0$ a.s. for *a.a.* $s \in [t + \varepsilon, \infty)$. Use $\varepsilon_n \to 0$ such that $h = h \mathbf{1}_{[0,t]}$ up to indistinguishability and $Z = \mathbb{E}[Z] + \int_0^t h_s \, dB_s$ is \mathcal{F}_t -measurable. Therefore $\mathcal{F}_{t+} = \mathcal{F}_t$.

Theorem 3.25. If M is a continuous local martingale, then there exists a Brownian motion B and a family of stopping times τ_t such that $M_t = B_{\tau_t}$ (="random change of Brownian motion").

3.4 The Girsanov theorem

3.4.1 Motivation

Let \mathbb{P}^W be the Wiener measure (i.e. the law of Brownian motion) on $(C([0,1]), \mathscr{B}_{C([0,1])})$. Which probability measures \mathbb{Q} on the same space are equivalent/absolutely continuous with respect to \mathbb{P}^W (i.e. $\mathbb{Q} \sim \mathbb{P}^W$, $\mathbb{Q} \ll \mathbb{P}^W$) and what are the corresponding Radon-Nikodym densities? As motivation consider first the finite-dimensional case, i.e. let $X_1, \ldots, X_n \sim$ N(0,1) be iid random variables and let \mathbb{P}_n be the law on $(\mathbb{R}^n, \mathscr{B}_{\mathbb{R}^n})$. We realize X_1, \ldots, X_n as the coordinate projections on \mathbb{R}^n . Consider

$$Z_n(x_1,...,x_n) = \exp\left(\sum_{k=1}^n \mu_k x_k - \frac{1}{2} \sum_{k=1}^n \mu_k^2\right)$$

for some $\mu_k \in \mathbb{R}$. Then by independence

$$\mathbb{E}\left[Z_n(X_1,\dots,X_n)\right] = \mathbb{E}\left[\exp\left(\sum_{k=1}^n \mu_k X_k\right)\right] e^{-\frac{1}{2}\sum_{k=1}^n \mu_k^2}$$
$$= \left(\prod_{k=1}^n \mathbb{E}\left[\exp\left(\mu_k X_k\right)\right]\right) e^{-\frac{1}{2}\sum_{k=1}^n \mu_k^2}$$
$$= \left(\prod_{k=1}^n e^{\mu_k^2/2}\right) e^{-\frac{1}{2}\sum_{k=1}^n \mu_k^2}$$
$$= 1.$$

This means that $\int_{\mathbb{R}^n} Z_n(x_1, \ldots, x_n) d\mathbb{P}_n(x_1, \ldots, x_n) = 1$ and we have $Z_n > 0$. This means Z_n is a density with respect to \mathbb{P}_n . Hence, we can define a probability measure \mathbb{Q}_n on $(\mathbb{R}^n, \mathscr{B}_{\mathbb{R}^n})$ via $\frac{d\mathbb{Q}_n}{d\mathbb{P}_n} = Z_n$, i.e. $\mathbb{Q}_n(A) = \int_A Z_n d\mathbb{P}_n$, $A \in \mathscr{B}_{\mathbb{R}^n}$. What is the law of the coordinate

projections X_1, \ldots, X_n under \mathbb{Q}_n ? With λ_n denoting the *n*-dimensional Lebesgue-measure, we have

$$\frac{d\mathbb{Q}_n}{d\lambda_n}(x) = \frac{d\mathbb{Q}_n}{d\mathbb{P}_n}(x) \cdot \frac{d\mathbb{P}_n}{d\lambda_n}(x) = Z_n(x) \cdot (2\pi)^{-n/2} e^{-|x|^2/2}
= (2\pi)^{-n/2} \exp\left(\sum_{k=1}^n \mu_k x_k - \frac{1}{2} \sum_{k=1}^n \mu_k^2 - \frac{1}{2} \sum_{k=1}^n x_k^2\right)
= (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \sum_{k=1}^n (\mu_k - x_k)^2\right).$$

Thus, (X_1, \ldots, X_n) are independent under \mathbb{Q}_n and each X_k is $N(\mu_k, 1)$ -distributed. In particular, $(\bar{X}_1, \ldots, \bar{X}_n)$ with $\bar{X}_k = X_k - \mu_k$ is iid N(0, 1)-distributed under \mathbb{Q}_n . This is also true if (X_1, \ldots, X_n) is defined on some abstract probability space $(\Omega, \mathcal{F}, \mathbb{P}_n)$ (not only on $\Omega = \mathbb{R}^n$). We shall exploit this to obtain an infinite-dimensional analogue. Suppose $h : [0, 1] \to \mathbb{R}$ is given such that $h(t) = \int_0^t g(s) \, ds$ for some function $g \in L^2([0, 1])$. Let $B = (B_t, t \ge 0)$ be a Brownian motion on $(\Omega, \mathcal{F}, \mathbb{P})$. Then $X_k := \sqrt{n}(B_{k/n} - B_{(k-1)/n}) \stackrel{iid}{\sim} N(0, 1), k = 1, \ldots, n$. Putting $\mu_k = \sqrt{n}(h(\frac{k}{n}) - h(\frac{k-1}{n}))$ and

$$Z_n(\omega) = \exp\left(\sum_{k=1}^n \sqrt{n} \left(h\left(\frac{k}{n}\right) - h\left(\frac{k-1}{n}\right)\right) \sqrt{n} \left(B_{\frac{k}{n}}(\omega) - B_{\frac{k-1}{n}}(\omega)\right) - \frac{1}{2} \sum_{k=1}^n n \left(h\left(\frac{k}{n}\right) - h\left(\frac{k-1}{n}\right)\right)^2$$

we define as above \mathbb{Q}_n on (Ω, \mathcal{F}) via $\frac{d\mathbb{Q}_n}{d\mathbb{P}} = Z_n$. Then we also have

$$\bar{X}_{k} = \sqrt{n} \left(B_{\frac{k}{n}} - B_{\frac{k-1}{n}} \right) - \sqrt{n} \left(h\left(\frac{k}{n}\right) - h\left(\frac{k-1}{n}\right) \right)$$
$$= \sqrt{n} \left(\left(B_{\frac{k}{n}} - h\left(\frac{k}{n}\right) \right) - \left(B_{\frac{k-1}{n}} - h\left(\frac{k-1}{n}\right) \right) \right)$$

and $(\bar{X}_1, \ldots, \bar{X}_n) \sim N(0, E_n)$ under \mathbb{Q}_n , where E_n is the *n*-dimensional unit matrix. Under \mathbb{Q}_n we have that $\bar{X}_1, \ldots, \bar{X}_n$ is distributed like the increments of Brownian motion at k/n. We want to study now the asymptotic behaviour of \mathbb{Q}_n . For this take the dyadic grid with $n = 2^j, j \to \infty$. Let $\mathcal{F}_j = \sigma(B_{k2^{-j}}, k = 0, \ldots, 2^j), j \ge 1$, be a filtration on (Ω, \mathcal{F}) . Then $(Z_{2^j})_{j\ge 1}$ is an $(\mathcal{F}_j)_{j\ge 1}$ -martingale (cf. exercises). We use $h(t) = \int_0^t g(s) \, ds$ to obtain

$$Z_n = \exp\left(\sum_{k=1}^n \left(n \int_{\frac{k-1}{n}}^{\frac{k}{n}} g(s) \, ds\right) \left(B_{\frac{k}{n}} - B_{\frac{k-1}{n}}\right) - \frac{1}{2} \sum_{k=1}^n \left(n \int_{\frac{k-1}{n}}^{\frac{k}{n}} g(s) \, ds\right)^2 \frac{1}{n}\right).$$

Since $g_n(t) = \sum_{k=1}^n \left(n \int_{\frac{k-1}{n}}^{\frac{k}{n}} g(s) ds \right) \mathbf{1}_{\left[\frac{k-1}{n}, \frac{k}{n}\right]}(t)$ (Haar approximation) converges to g a.e. and in $L^2([0,1])$ we have

$$Z_n = \exp\left(\underbrace{\int_0^1 g_n(s) \, dB_s}_{\stackrel{\underline{L^2(\mathbb{P})}}{\longrightarrow} \int_0^1 g(s) \, dB_s} - \frac{1}{2} \underbrace{\int_0^1 g_n^2(s) \, ds}_{\stackrel{\xrightarrow{\rightarrow}}{\rightarrow} \int_0^1 g^2(s) \, ds}\right)$$
$$\stackrel{\mathbb{P}}{\longrightarrow} Z_\infty = \exp\left(\int_0^1 g(s) \, dB_s - \frac{1}{2} \int_0^1 g^2(s) \, ds\right)$$

One can show $Z_{2^j} \xrightarrow{j \to \infty} Z_{\infty}$ holds even in L^1 . This is easily checked by showing $\mathbb{E}[Z_{\infty}|\mathcal{F}_j] = Z_{2^j}$, i.e. $(Z_{2^j}, j \ge 1)$ is a closable martingale (to be done precisely, see below). This implies in particular $\mathbb{E}_{\mathbb{P}}[Z_{\infty}] = \mathbb{E}_{\mathbb{P}}[Z_{2^j}] = 1$. Define \mathbb{Q}_{∞} on (Ω, \mathcal{F})

via $\frac{d\mathbb{Q}_{\infty}}{d\mathbb{P}} = Z_{\infty}$. From exercises we obtain for any $n = 2^j$ that $\frac{1}{\sqrt{n}} \left(\bar{X}_1, \ldots, \bar{X}_n \right) = \left(\left(B_{\frac{1}{n}} - h\left(\frac{1}{n}\right) \right) - \left(B_0 - h(0) \right), \ldots, \left(B_1 - h(1) \right) - \left(B_{\frac{n-1}{n}} - h\left(\frac{n-1}{n}\right) \right) \right)$ has law $N(0, \frac{1}{n}E_n)$ under \mathbb{Q}_{∞} , i.e. the law of the increments of Brownian motion $\left(B_{\frac{1}{n}} - B_0, \ldots, B_1 - B_{\frac{n-1}{n}} \right)$ under \mathbb{P} . Since $\mathscr{B}_{C([0,1])} = \sigma(\mathcal{F}_j, j \ge 1)$ holds and $\left(B_t - h(t), 0 \le t \le 1 \right)$ is continuous. This implies $\left(B_{\frac{k}{n}} - h(\frac{k}{n}), k = 0, \ldots, n \right)$ under \mathbb{Q}_{∞} is thus distributed like $\left(B_{\frac{k}{n}}, k = 0, \ldots, n \right)$ under \mathbb{P} and $\bar{B}_t := B_t - h(t)$ is a Brownian motion under \mathbb{Q}_{∞} using that $\mathscr{B}_{C([0,1])} = \sigma(\mathcal{F}_j, j \ge 1)$ and the definition of Brownian motion. This is the Cameron-Martin theorem.

3.4.2 The Girsanov and the Cameron-Martin theorem

Lemma 3.26. Suppose $(Z_t, 0 \le t \le T)$ is a non-negative martingale on $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ with $\mathbb{E}[Z_T] = 1$. Define \mathbb{Q}_T on (Ω, \mathcal{F}_T) via $\frac{d\mathbb{Q}_T}{d\mathbb{P}} = Z_T$. Then for any $Y \in L^1(\mathbb{Q}_T)$ we have for all $0 \le s \le t \le T$

$$\mathbb{E}_{\mathbb{Q}_{T}}\left[Y|\mathcal{F}_{s}\right] = \frac{1}{Z_{s}} \mathbb{E}_{\mathbb{P}}\left[YZ_{t}|\mathcal{F}_{t}\right], \quad \mathbb{P}\text{-}a.s., \quad \mathbb{Q}_{T}-a.s.$$

Proof. See exercises.

Corollary 3.27. If $(\bar{M}_t Z_t, 0 \leq t \leq T)$ is a martingale on $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$ for some \mathcal{F}_t adapted process \bar{M} , then $\bar{M} = (\bar{M}_t, 0 \leq t \leq T)$ is a martingale on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{Q}_T)$ (with the notation from above).

Proof. See exercises.

Now let us recall the stochastic exponential

$$Z_t = \exp\left(\int_0^t X_s \, dB_s - \frac{1}{2} \int_0^t X_s^2 \, ds\right), \ t \ge 0,$$

for some $X \in \mathscr{L}_{loc}(B)$. This is a non-negative local martingale due to Itô's formula:

$$Z_t = 1 + \int_0^t Z_s X_s \, dB_s + \frac{1}{2} \int_0^t Z_s X_s^2 \, ds - \frac{1}{2} \int_0^t Z_s X_s^2 \, ds$$
$$= 1 + \int_0^t Z_s X_s \, dB_s.$$

We have that $(Z_t, 0 \le t \le T)$ is a martingale if (and only if) $\mathbb{E}[Z_T] = 1$.

Theorem 3.28 (Girsanov, 1960). If $(Z_t, 0 \le t \le T)$ with $Z_t = \exp(\int_0^t X_s \, dB_s - \frac{1}{2} \int_0^t X_s^2 \, ds)$ is a martingale on $(\Omega, \mathcal{F}_T, (\mathcal{F}_t), \mathbb{P})$, then

$$\bar{B}_t := B_t - \int_0^t X_s \, ds, \quad 0 \le t \le T,$$

defines a Brownian motion with respect to $(\Omega, \mathcal{F}_T, (\mathcal{F}_t)_{0 \le t \le T}, \mathbb{Q}_T)$ with $\frac{d\mathbb{Q}_T}{d\mathbb{P}} := Z_T$.

Proof. The key idea is to apply Levy's characterisation of Brownian motion (Theorem 3.16). 1. $(\bar{B}_t Z_t, 0 \leq t \leq T)$ is a continuous local \mathbb{P} -martingale. Integration by parts (under \mathbb{P}) yields indeed:

$$\bar{B}_t Z_t = \bar{B}_0 Z_0 + \int_0^t B_s \, dZ_s + \int_0^t Z_s \, d\bar{B}_s + \left\langle \bar{B}, Z \right\rangle_t$$

$$= 0 + \int_0^t \bar{B}_s Z_s X_s \, d\bar{B}_s + \int_0^t Z_s \, d\bar{B}_s - \int_0^t Z_s X_s \, ds + \int_0^t 1 \cdot Z_s X_s \, ds$$

$$= \int_0^t (\bar{B}_s X_s + 1) Z_s \, dB_s$$

which is a continuous local \mathbb{P} -martingale.

2. $(\bar{B}_t, 0 \leq t \leq T)$ is a local \mathbb{Q}_T -martingale. Let $(\bar{B}Z)_{t\wedge\tau_n}$, $0 \leq t \leq T$, be \mathbb{P} -martingales for suitable stopping times $\tau_n \to \infty$. By the first step and Corollary 3.27 we see that $\bar{B}_{t\wedge\tau_n}$ is a continuous \mathbb{Q}_T -martingale with respect to $(\mathcal{F}_{t\wedge\tau_n})_{0\leq t\leq T}$ and thus $(\bar{B}_t, 0 \leq t \leq T)$ is a continuous local martingale with respect to \mathbb{Q}_T .

3. \bar{B} has quadratic variation $\langle \bar{B} \rangle_t = t$ under \mathbb{Q}_T . We need to show that $(\bar{B}_t^2 - t, 0 \le t \le T)$ is a continuous local martingale under \mathbb{Q}_T . Equivalently (see below) it is enough to show that $(Z_t(\bar{B}_t^2 - t), 0 \le t \le T)$ is a continuous local martingale under \mathbb{P} . Continuity is obvious. Use (under $\mathbb{P})$ $\langle \bar{B} \rangle_t = \langle B - \int_0^{\cdot} X_s \, ds \rangle_t = \langle B \rangle_t = t$ such that

$$\bar{B}_{t}^{2} = 2 \int_{0}^{t} \bar{B}_{t} \, d\bar{B}_{t} + \left\langle \bar{B} \right\rangle_{t} = 2 \int_{0}^{t} \bar{B}_{t} \, d\bar{B}_{t} + t$$

and by partial integration

$$Z_t(\bar{B}_t^2 - t) = \int_0^t Z_s 2\bar{B}_s \, d\bar{B}_s + \int_0^t (\bar{B}_s^2 - s) Z_s X_s \, dB_s + \int_0^t Z_s X_s 2\bar{B}_s \, ds$$
$$= 2 \int_0^t (Z_s \bar{B}_s + (\bar{B}_s^2 - s) Z_s X_s \, dB_s)$$

which is a local \mathbb{P} -martingale. This yields directly the claim.

We are now interested in the support of Wiener measure \mathbb{P}^W on $(C([0,1]), \mathscr{B}_{C([0,1])})$. Trivial question: Suppose $U \sim U([0,1])$. Which of the outcomes U = 0.5, U = 0, U = -1 is typical? We can argue that 0 and 0.5 are typical outcomes, because any open interval around 0 and 0.5 has positive probability while this is not true for -1.

Definition 3.29. The support of a probability measure \mathbb{P} on a metric space S equipped with its Borel- σ -algebra is the smallest closed set A such that $\mathbb{P}(A) = 1$ holds, i.e. $A = \bigcap_{F \text{ closed}, \mathbb{P}(F)=1}$. The set

$$\mathscr{H} = \left\{ f \in C([0,1]) : \exists g \in L^2([0,1]) \,\forall t \in [0,1] \, f(t) = \int_0^t g(s) \, ds \right\}$$

is called Cameron-Martin space.

Remark. \mathscr{H} is the space of all weakly differentiable (= absolutely continuous) functions f with $f(0) = 0, f' \in L^2$, i.e. $\mathscr{H} = H^1 \cap \{f \in C([0, 1]) : f(0) = 0\}$ with the L^2 -Sobolev space H^1 .

The Girsanov theorem yields a very interesting shift property of Wiener measure.

Proposition 3.30. For all $h \in \mathscr{H}$ the laws of Brownian motion $(B_t, t \in [0, 1])$ and Brownian motion with drift h, i.e. $(B_t + h(t), t \in [0, 1])$, are equivalent on $(C([0, 1]), \mathscr{B}_{C([0, 1])})$.

Proof. For $g \in L^2([0,1])$ with $h(t) = \int_0^t g(s) \, ds$ we consider $Z_t = \exp(\int_0^t g(s) \, dB_s - \frac{1}{2} \int_0^t g(s)^2 \, ds), 0 \le t \le 1$. Since $g \in L^2$ is deterministic, $g \in \mathscr{L}(B)$ and Z_t is well-defined. We have that $\int_0^1 g(s) \, dB_s$ is normally distributed (via Gaussian approximations, cf. exercises) with $\mathbb{E}[\int_0^1 g(s) \, dB_s] = 0$, $\mathbb{E}[(\int_0^1 g(s) \, dB_s)^2] = \int_0^1 g^2(s) \, ds$, i.e. $\int_0^1 g(s) \, dB_s \sim \|g\|_{L^2}^2 U$, where $U \sim N(0, 1)$. Z is a martingale, because

$$\mathbb{E}\left[Z_{1}\right] = \mathbb{E}\left[e^{\int_{0}^{1} g(s) \, dB_{s}}\right] e^{-\frac{1}{2}\int_{0}^{1} g^{2} \, ds} = e^{\frac{1}{2}\|g\|_{L^{2}}^{2} - \frac{1}{2}\|g\|_{L^{2}}^{2}} = 1.$$

By Girsanov $\bar{B}_t = B_t - \int_0^t g(s) \, ds = B_t - h(t)$ is a \mathbb{Q}_1 -Brownian motion with $\frac{d\mathbb{Q}_1}{d\mathbb{P}} = Z_1$ on \mathcal{F}_1 such that $B_t = \bar{B}_t + h(t)$ is a Brownian motion with drift under \mathbb{Q}_1 . Since by definition

 $\mathbb{Q}_1 \ll \mathbb{P}$ on (Ω, \mathcal{F}_1) and the density Z_1 is strictly positive, \mathbb{Q}_1 and \mathbb{P} are equivalent measures and so are their image measures \mathbb{Q}_1^B , \mathbb{P}^B under B on $(C([0,1]), \mathscr{B}_{C([0,1])})$. Hence, the law of Brownian motion \mathbb{P}^B and the law of Brownian motion \mathbb{P}^B and the law of Brownian motion with drift $h \mathbb{Q}_1^B$ are equivalent. \Box

Corollary 3.31. The support of \mathbb{P}^W on $(C([0,1]), \mathscr{B}_{C([0,1])})$ is given by $\overline{\mathscr{H}} = \{f \in C([0,1]) : f(0) = 0\}.$

Proof. For any $h \in \mathscr{H}$, $\varepsilon > 0$, we have $(||f||_{\infty} = \sup_{0 \le t \le 1} |f(t)|)$

$$\begin{split} \mathbb{P}\left(\|B+h\|_{\infty} \leq \varepsilon\right) &= \mathbb{E}_{\mathbb{P}}\left[\mathbf{1}_{\{\|B+h\|_{\infty} \leq \varepsilon\}}\right] \\ &= \mathbb{E}_{\mathbb{Q}_{1}}\left[\mathbf{1}_{\{\|\bar{B}+h\|_{\infty} \leq \varepsilon\}}\right] \\ &= \mathbb{E}_{\mathbb{Q}_{1}}\left[\mathbf{1}_{\{\|B\|_{\infty} \leq \varepsilon\}}\right] \\ &= \mathbb{E}_{\mathbb{P}}\left[\mathbf{1}_{\{\|B\|_{\infty} \leq \varepsilon\}}Z_{1}\right] \\ &> 0, \end{split}$$

because $Z_1 > 0$ P-a.s. and $\mathbb{P}(||B||_{\infty} \leq \varepsilon) > 0$ such that $\mathbf{1}_{\{||B||_{\infty} \leq \varepsilon\}} Z_1 > 0$ on a set of positive P-measure (note: we have proved

$$\mathbb{P}\left(\sup_{0 \le t \le 1} B_t \le \varepsilon\right) = \mathbb{P}\left(|Z| \le \varepsilon\right) = \int_{-\varepsilon}^{\varepsilon} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \, dx > 0$$

for all $\varepsilon > 0$; it is also possible to show that $\mathbb{P}(\sup_{0 \le t \le 1} |B_t| \le \varepsilon) > 0$ for all $\varepsilon > 0$ ("small ball property of Brownian motion")). This means all $\|\cdot\|_{\infty}$ -balls around $h \in \mathscr{H}$ of radius $\varepsilon > 0$ are *charged* (i.e. have positive probability) by \mathbb{P}^W . For any open set O with $O \cap \mathscr{H} \neq \emptyset$ we have $\mathbb{P}^W(O) > 0$. Hence, O open with $\mathbb{P}^W(O) = 0$ must satisfy $O \cap \mathscr{H} = \emptyset$, i.e. $O \subseteq \mathscr{H}^c$ such that $\bigcup_{O \text{ open}, \mathbb{P}^W(0)=0} O \subseteq \mathscr{H}^c$. Taking complements this means the support of \mathbb{P}^W contains \mathscr{H} and thus $\widetilde{\mathscr{H}}$. Because $B_0 = 0$ a.s. the support of \mathbb{P}^W is exactly $\overline{\mathscr{H}}$.

So far it remained open how to check in general whether $Z_t = \exp\left(\int_0^t X_s \, dB_s - \frac{1}{2} \int_0^t X_s^2 \, ds\right)$ is a martingale. There are two useful sufficient conditions for that, namely the *Kazamaki* and the *Novikov* condition, see. e.g. Revuz and Yor (1999). Here we merely prove an ε -weaker version of Novikov's condition.

Theorem 3.32 (Weak Novikov condition). Let M be a continuous local martingale, $M_0 = 0$ and $Z_t = e^{M_t - \frac{1}{2} \langle M \rangle_t}$. Then $\mathbb{E}[Z_T] = 1$ holds (and $(Z_t, 0 \leq t \leq T)$ is a martingale) if for some $\varepsilon > 0$

$$\mathbb{E}\left[\exp\left(\left(\frac{1}{2}+\varepsilon\right)\langle M\rangle_T\right)\right]<\infty.$$

Proof. Suppose $\tau_n \to \infty$ are stopping times such that $(Z_{t \wedge \tau_n}, 0 \leq t \leq T)$ are martingales (cf. exercises). We show that $(Z_{T \wedge \tau_n})_{n \geq 1}$ are uniformly integrable. Then

$$\mathbb{E}[Z_T] = \lim_{n \to \infty} \underbrace{\mathbb{E}[Z_T \land \tau_n]}_{=\mathbb{E}[Z_0]} = 1.$$

For this we prove that $\sup_{n\geq 1} \mathbb{E}[Z^r_{T\wedge\tau_n}] < \infty$ for some r > 1. For any p > 1 we have

$$Z_t^r = \exp\left(rM_t - \frac{1}{2}r\langle M \rangle_t\right)$$
$$= \exp\left(rM_t - \frac{p}{2}\langle rM \rangle_t + \frac{1}{2}\left(pr^2 - r\right)\langle M \rangle_t\right)$$

such that by Hölder-inequality

$$\mathbb{E}\left[Z_{T\wedge\tau_{n}}^{r}\right] \leq \underbrace{\mathbb{E}\left[\exp\left(prM_{T\wedge\tau_{n}} - \frac{p^{2}}{2}\left\langle rM\right\rangle_{T\wedge\tau_{n}}\right)\right]^{1/p}}_{=\mathbb{E}\left[\exp\left(prM_{T\wedge\tau_{n}} - \frac{1}{2}\left\langle prM\right\rangle_{T\wedge\tau_{n}}\right)\right]^{1/p}} \mathbb{E}\left[\exp\left(\frac{q}{2}\left(pr^{2} - r\right)\left\langle M\right\rangle_{T\wedge\tau_{n}}\right)\right]^{1/q}\right]$$

Observe that prM_t is a local martingale such that $\exp(\ldots)$ is a stopped non-negative local martingale and, in particular, a submartingale. Hence, by Fatou's lemma and because $\langle M \rangle_{T \wedge \tau_n} \leq \langle M \rangle_T$

$$\mathbb{E}\left[Z_{T\wedge\tau_n}^r\right] \le 1^{1/p} \mathbb{E}\left[\exp\left(\frac{p}{2(p-1)}\left(pr^2 - r\right)\langle M\rangle_T\right)\right]^{1/q}$$

where we use that $q = \frac{p}{p-1}$ by Hölder inequality. This is finite if $\frac{p}{2(p-1)}(pr^2 - r) \leq \frac{1}{2} + \varepsilon$. The left-hand side for $r \to 1$ converges to $\frac{p}{2}$ which for $p \to 1$ in turn converges to $\frac{1}{2}$. By continuity there are r, p > 1 such that it is smaller than $\frac{1}{2} + \varepsilon$.

Corollary 3.33. The previous proposition still holds if there are times $0 = t_0 < t_1 < \cdots < t_n = T$ such that

$$\mathbb{E}\left[\exp\left(\left(\frac{1}{2}+\varepsilon\right)\langle M\rangle_{t_{k}}-\langle M\rangle_{t_{k-1}}\right)\right]<\infty$$

holds for $k = 1, \ldots, n$.

Proof. We have

$$\mathbb{E}\left[Z_{T}\right] = \mathbb{E}\left[\mathbb{E}\left[\exp\left(M_{T} - \frac{1}{2}\langle M \rangle_{T}\right) \middle| \mathcal{F}_{t_{n-1}}\right]\right] \\ = \mathbb{E}\left[\exp\left(M_{t_{n-1}} - \frac{1}{2}\langle M \rangle_{t_{n-1}}\right) \mathbb{E}\left[\exp\left(\left(M_{t_{n}} - M_{t_{n-1}}\right) - \frac{1}{2}\left(\langle M \rangle_{t_{n}} - \langle M \rangle_{t_{n-1}}\right)\right) \middle| \mathcal{F}_{t_{n-1}}\right]\right].$$

Now $(M_t - M_{t_{n-1}}, t \in [t_{n-1}, t_n])$ is also a continuous local martingale starting at $t = t_{n-1}$ in zero with quadratic variation $\langle M \rangle_t - \langle M \rangle_{t_{n-1}}$. Thus, the previous argument (for Novikov's condition) applied to $(M_t - M_{t_{n-1}}, t \in [t_{n-1}, t_n])$ and conditional on $\mathcal{F}_{t_{n-1}}$ yields that $\mathbb{E}[\exp(M_{t_n} - M_{t_{n-1}} - \frac{1}{2}(\langle M \rangle_{t_n} - \langle M \rangle_{t_{n-1}})|\mathcal{F}_{t_{n-1}}] = 1$, using $\mathbb{E}[\exp((\frac{1}{2} + \varepsilon)(\langle M \rangle_{t_n} - \langle M \rangle_{t_{n-1}})] < \infty$. We obtain the claim by applying this argument for t_{n-1}, t_{n-2}, \ldots yields $\mathbb{E}[Z_T] = 1$.

Remark 3.34. A different proof is given in Karatzas (1991) using a multi-dimensional version of Novikov's condition.

3.4.3 Maximum-Likelihood estimation for Ornstein-Uhlenbeck processes

Consider the Ornstein-Uhlenbeck-process X solving the SDE $dX_t = -aX_t dt + dB_t$, $X_0 = 0$, where $a \in \mathbb{R}$ is a parameter. A solution is given by $X_t = \int_0^t e^{-a(t-s)} dB_s$. a = 0 corresponds to Brownian motion. Our aim is to estimate $a \in \mathbb{R}$ from the observation of one trajectory $(X_t, t \in [0, T])$. The Maximum-Likelihood approach is then the following, first in a more general setting: Suppose we observe Y, a random variable (even function valued), with density p_a where $a \in A$, the parameter set, is an unknown parameter. Here, we assume that all densities p_a are taken with respect to one dominating measure (e.g. Lebesgue-measure or the Wiener-measure). Then the Maximum-Likelihood estimator \hat{a} is the value of a which maximises $p_a(y)$ over $a \in A$ where y is a realisation of Y. Formally, $\hat{a} = \arg \max_{a \in A} p_a(y)$. Here, we shall use the Girsanov Theorem to determine the density of $(X_t, t \in [0, T])$ with respect to the Wiener measure on $C([0,T], \mathscr{B}_{C([0,T])})$. We want that $(X_t, t \in [0,T])$ is an Ornstein-Uhlenbeck-process with parameter a under $\mathbb{Q}^{(a)}$. For this write $dX_t = -aX_t + d\bar{B}_t$, $X_0 = 0$ with a $\mathbb{Q}^{(a)}$ -Brownian motion \bar{B} , whereas under $\mathbb{Q}^{(0)} = \mathbb{P} X$ should be just a Brownian motion. So, we have $\bar{B}_t = X_t - \left(-a\int_0^t X_s \, ds\right)$, which is indeed a $\mathbb{Q}^{(a)}$ -Brownian motion for

$$\frac{d\mathbb{Q}^{(a)}}{d\mathbb{P}} = Z_T = \exp\left(\int_0^T (-aX_s dX_s - \frac{1}{2}\int_0^T a^2 X_s^2 \, ds\right)$$

by Girsanov's Theorem. In order to apply Girsanov, we must make sure that

$$\mathbb{E}\left[Z_T\right] = \mathbb{E}\left[\exp\left(\int_0^T \left(-aX_s \, dX_s - \frac{1}{2}\int_0^T a^2 X_s^2 \, ds\right)\right] = 1$$

holds. By the corollary to Novikov's condition it suffices to show

$$\mathbb{E}\left[\exp\left(\left(\frac{1}{2}+\varepsilon\right)a^2\int_{t_{k-1}}^{t_k}B_s^2\,ds\right)\right]<\infty$$

for suitable $0 = t_0 < t_1 < \cdots < t_n = T$ (observe for $Z \sim N(0, 1)$ that $\mathbb{E}[e^{cZ^2}] < \infty$ if and only if $c < \frac{1}{2}$). For interval lengths $t_k - t_{k-1}$ such that $(\frac{1}{2} + \varepsilon) a^2 (t_k - t_{k-1})$ this expectation is indeed finite (check!). Hence,

$$\frac{d\mathbb{Q}^{(a)}}{d\mathbb{Q}^{(0)}} = \exp\left(-a\int_0^T X_s \, dX_s - \frac{1}{2}\int_0^T X_s^2 \, ds\right)$$

is the density of the law of the Ornstein-Uhlenbeck-process on [0, T] with respect to the law of Brownian motion. Thus, the Maximum-Likelihood-estimator is given by

$$\hat{a} = \arg \max_{a \in \mathbb{R}} \exp\left(-a \int_{0}^{T} X_{s} \, dX_{s} - \frac{a^{2}}{2} \int_{0}^{T} X_{s}^{2} \, ds\right)$$

$$= \arg \max_{a \in \mathbb{R}} \left(-a \int_{0}^{T} X_{s} \, dX_{s} - \frac{a^{2}}{2} \int_{0}^{T} X_{s}^{2} \, ds\right)$$

$$= \frac{-\int_{0}^{T} X_{s} \, dX_{s}}{\int_{0}^{T} X_{s}^{2} \, ds}$$

$$= \frac{-\frac{1}{2} \left(X_{T}^{2} - T\right)}{\int_{0}^{T} X_{s}^{2} \, ds}.$$

If our observations $(X_t, t \in [0, T])$ are generated under $\mathbb{Q}^{(a_0)}$ for some $a_0 \in \mathbb{R}$, then

$$\hat{a} = \frac{-\int_0^T X_s(-a_0 X_s \, ds + d\bar{B}_s)}{\int_0^T X_s^2 \, ds} = a_0 - \frac{\int_0^T X_s \, d\bar{B}_s}{\int_0^T X_s^2 \, ds} = a_0 - \frac{M_T}{\langle M \rangle_T}$$

for the martingale $M_t = \int_0^t X_s \, d\bar{B}_s$. We always have $\langle M \rangle_T = \int_0^T X_s^2 \, ds \xrightarrow{a.s.} \infty$ for $T \to \infty$ such that the law of large numbers for martinges (cf.) yields $\hat{a}_T \xrightarrow{\mathbb{Q}^{(a)}-a.s.} a_0$ as $T \to \infty$ (consistent estimator). If $a_0 > 0$ ('asymptotically stationary case'), then a central limit theorem holds:

$$\sqrt{T} \left(\hat{a}_T - a_0 \right) \xrightarrow{T \to \infty} N(0, \frac{1}{2a_0})$$

under $\mathbb{Q}^{(a_0)}$. For $a_0 < 0$ we even have an exponentially fast convergence in $e^{cT}(\hat{a}_T - a_0) \xrightarrow{a.s.} 0$ for some c > 0.

Bibliography

- Jacod, J. and P. E. Protter (2003). Probability Essentials. Springer.
- Karatzas, I. (1991). Brownian Motion and Stochastic Calculus. Springer.
- Klenke, A. (2008). Wahrscheinlichkeitstheorie. Springer London, Limited.
- Ø ksendal, B. K. (2010). Stochastic Differential Equations: An Introduction with Applications, Volume 2010. Springer Science & Business.
- Protter, P. E. (2004). Stochastic Integration and Differential Equations: Version 2.1. Applications of Mathematics. Springer.
- Revuz, D. and M. Yor (1999). Continuous Martingales and Brownian Motion. Springer.
- Rogers, L. C. G. and D. Williams (2000a). *Diffusions, Markov Processes, and Martingales: Volume 1, Foundations*, Volume 4. Cambridge University Press.
- Rogers, L. C. G. and D. Williams (2000b). *Diffusions, Markov processes, and martingales. Volume 2.* Cambridge Mathematical Library. Cambridge: Cambridge University Press.
- Steele, J. M. (2001). Stochastic Calculus and Financial Applications. Springer.
- Williams, D. (1991). *Probability with Martingales*. Cambridge mathematical textbooks. Cambridge University Press.