Exercises

Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$ be a filtered probability space, where $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is a filtration satisfying the usual conditions, and let B be an $\left(\mathcal{F}_{t}\right)$-Brownian motion.

Exercise 10.1 (5 Points)
Let $\left(\left(B_{t}^{n}\right)_{t \geq 0}\right)_{n \in \mathbb{N}}$ be a sequence of processes such that $t \mapsto B_{t}^{n} \in C^{1}\left(\mathbb{R}_{+}, \mathbb{R}\right)$ for all n, and such that $\lim _{n \rightarrow \infty} \sup _{t \leq T}\left|B_{t}^{n}-B_{t}\right|=0$ for all $T \geq 0$. Let $f \in C(\mathbb{R}, \mathbb{R})$. Show that for all $n \in \mathbb{N}$,

$$
\int_{0}^{t} f\left(B_{s}^{n}\right) d B_{s}^{n}=F\left(B_{t}^{n}\right)-F\left(B_{0}^{n}\right), \quad t \geq 0
$$

where $F(x)=\int_{0}^{x} f(y) d y$. Conclude that there exists a continuous process

$$
\int_{0}^{t} f\left(B_{s}\right) \circ d B_{s}:=\lim _{n \rightarrow \infty} \int_{0}^{t} f\left(B_{s}^{n}\right) d B_{s}^{n}, \quad t \geq 0
$$

which does not depend on the approximating sequence $\left(B^{n}\right)_{n \in \mathbb{N}} \cdot \int_{0}^{\sim} f\left(B_{s}\right) \circ d B_{s}$ is called Stratonovich integral of $f(B)$ with respect to B. Show that if $f \in C^{2}(\mathbb{R}, \mathbb{R})$, then

$$
\int_{0}^{t} f\left(B_{s}\right) \circ d B_{s}=\int_{0}^{t} f\left(B_{s}\right) d B_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime}\left(B_{s}\right) d s=\int_{0}^{t} f\left(B_{s}\right) d B_{s}+\frac{1}{2}\langle f(B), B\rangle_{t}, \quad t \geq 0
$$

Exercise 10.2 (5 Points)

Let $M \in \mathcal{M}_{\text {loc }}$ and let $K \in L_{\text {loc }}^{2}(M)$ and $H \in L_{\text {loc }}^{2}(K \cdot M)$. Show that $H K \in L_{\text {loc }}^{2}(M)$ and

$$
((H K) \cdot M)=(H \cdot(K \cdot M))
$$

Exercise 10.3 ($3+4+3$ Points)

We define for $n \in \mathbb{N}_{0}$ the function $h_{n}(x):=e^{x^{2} / 2}(-1)^{n} \partial_{x}^{n} e^{-x^{2} / 2}, x \in \mathbb{R}$.
a) Show that for $n \geq 1$ the recursion formula

$$
h_{n+1}(x)=x h_{n}-n h_{n-1}(x), \quad x \in \mathbb{R}
$$

holds. Deduce that h_{n} is a polynomial of degree n for all $n \geq 0$ and that $\partial_{x} h_{n}=n h_{n-1}$ for all $n \geq 1 . h_{n}$ is called the n-th Hermite polynomial.

Hint: You may use without proof the generalized Leibniz rule $\partial_{x}^{n}(f g)=\sum_{k=0}^{n}\binom{n}{k} \partial_{x}^{k} f \partial_{x}^{n-k} g$.
b) Define now $H_{n}(x, a):=a^{n / 2} h_{n}(x / \sqrt{a})$ for $a>0$ and $H_{n}(x, 0):=x^{n}$. You may use without proof that $H_{n} \in C^{2}\left(\mathbb{R}, \mathbb{R}_{+}\right)$. Show that $\left(H_{n}\left(B_{t}, t\right)\right)_{t \geq 0}$ is a (local) martingale for $n \geq 1$ and that

$$
H_{n}\left(B_{t}, t\right)=\int_{0}^{t} n H_{n-1}\left(B_{s}, s\right) d B_{s}, \quad t \geq 0
$$

c) Calculate $H_{n}\left(B_{t}, t\right)$ for $n=1,2,3$.

Due date: June 29, 2016. You may submit your solutions in groups of two.

