Exercises

Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$ be a filtered probability space, where $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is a filtration satisfying the usual conditions, and let B be an $\left(\mathcal{F}_{t}\right)$-Brownian motion.

Exercise 11.1 (2 Points)
Let M be an adapted and integrable càdlàg process such that $\mathbb{E}\left[M_{T}\right]=\mathbb{E}\left[M_{0}\right]$ for every bounded stopping time T. Show that M is a martingale.

Exercise 11.2 (5 Points)

Let $D \in \mathcal{M}_{\text {loc }}$ be such that $D_{t}>0$ for all $t \geq 0$. Show that there exists a unique $L \in \mathcal{M}_{\text {loc }}$ such that $D_{t}=\exp \left\{L_{t}-\frac{1}{2}\langle L, L\rangle_{t}\right\}$, for all $t \geq 0$, and that L satisfies: for all $t \geq 0, L_{t}=\log D_{0}+\int_{0}^{t} D_{s}^{-1} d D_{s}$.

Exercise 11.3 (5 Points)

Let $B^{i}, i=1,2,3$ three Brownian motions, such that B^{1} and B^{2} are independent. Show that it is impossible to have $\sigma\left(B_{s}^{3}: 0 \leq s \leq t\right)=\sigma\left(B_{s}^{1}, B_{s}^{2}: 0 \leq s \leq t\right)$.

Exercise 11.4 (5 Points)
Let $M_{t}:=\int_{0}^{t} \mathbb{1}_{B_{s}>0} d B_{s}$, for $t \geq 0$.
a) Justify that M is martingale.
b) Find an increasing process A such that $\left(M_{t}^{2}-A_{t}\right)_{t \geq 0}$ is a martingale.
c) We admit that there exists an increasing process C such that $A(C(t))=t$, for all $t \geq 0$. Prove that $\left(M_{C_{t}}\right)_{t \geq 0}$ is a $\left(\mathcal{G}_{t}\right)$-martingale where $\left(\mathcal{G}_{t}\right)_{t \geq 0}$ is a filtration to specify.

Exercise $11.5(2+2+2$ Points)

Let X be an Itô process, that is $X=X_{0}+\int_{0} a_{s} d s+\int_{0}^{\dot{p}} b_{s} d B_{s}$, where X_{0} is \mathcal{F}_{0}-measurable and a and b are progressively measurable processes such that $\int_{0}^{t}\left|b_{s}\right|^{2} d s<\infty$ and $\int_{0}^{t}\left|a_{s}\right| d s<\infty$ for all $t \geq 0$. We assume that X has the following (Itô) representations

$$
\begin{aligned}
X & =X_{0}^{(1)}+\int_{0} a_{s}^{(1)} d s+\int_{0} b_{s}^{(1)} d B_{s} \\
& =X_{0}^{(2)}+\int_{0} a_{s}^{(2)} d s+\int_{0} b_{s}^{(2)} d B_{s}
\end{aligned}
$$

a) Show that almost surely $X_{0}^{(1)}=X_{0}^{(2)}$ and $\mathbb{P} \otimes \lambda$-almost everywhere $a^{(1)}=a^{(2)}$ and $b^{(1)}=b^{(2)}$, where λ denotes the Lebesgue measure.
b) Show that X is deterministic if and only if $b^{(1)} \equiv 0$ and $a^{(1)}$ and $X_{0}^{(1)}$ are deterministic.
c) Show that if $a^{(1)} \equiv 0, X_{0}^{(1)}=0$ and $\langle X, X\rangle$ is deterministic, then X is a Gaussian process and a local martingale.

Due date: July 06, 2016. You may submit your solutions in groups of two.

