Exercises

Let $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$ be a filtered probability space, where $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ is a filtration satisfying the usual conditions, and let B be an $\left(\mathcal{F}_{t}\right)$-Brownian motion.

Exercise 12.1 (2+2 Points)
Let $a, \sigma>0$.
a) Show that the process X , given by $X_{t}=x_{0} e^{-a t}+\sigma \int_{0}^{t} e^{-a(t-s)} d B_{s}, t \geq 0$, solves the SDE: $d X_{t}=-a X_{t} d t+\sigma d B_{t}, X_{0}=x_{0} \in \mathbb{R}$.
b) Find the explicit solution to the SDE: $d X_{t}=\left(-a X_{t}+\beta\right) d t+\sigma d B_{t}, X_{0}=x_{0} \in \mathbb{R}$, where $\beta>0$.

Exercise 12.2 (10 Points)
Let μ, σ and $r>0$. Consider the SDE: $d S_{t}=S_{t}\left(\mu d t+\sigma d B_{t}\right), S_{0}=1$.
a) Use the Ansatz $S_{t}=f\left(t, B_{t}\right), t \geq 0$, for some $f \in C^{2}\left(\mathbb{R}_{+} \times \mathbb{R}, \mathbb{R}\right)$ to find the explicit solution S.
b) Set $\theta=-\frac{\mu-r}{\sigma}$. Let Q the probability measure defined by $d Q=L_{1} d \mathbb{P}$, with $L_{1}:=\exp \left\{\theta B_{1}-\frac{\theta^{2}}{2}\right\}$. Show that $\left(W_{t}\right)_{t \in[0,1]}$, defined by $W_{t}=B_{t}-\theta t, t \in[0,1]$, is a Q-Brownian motion.
c) Let $\widetilde{\mathbb{P}}$ the probability measure defined by $\widetilde{\mathbb{P}}=Z_{1} d Q$, with $Z_{1}:=\exp \left\{\sigma W_{1}-\frac{\sigma^{2}}{2}\right\}$. Show that: $d S_{t}=S_{t}\left(\left(r+\sigma^{2}\right) d t+\sigma d \widetilde{B}_{t}\right), t \in[0,1]$, where $\left(\widetilde{B}_{t}\right)_{t \in[0,1]}$ is $\widetilde{\mathbb{P}}$-Brownian motion.
d) Consider $\left(P_{t}\right)_{t \in[0,1]}$ defined by $P_{t}=e^{r t}, t \in[0,1]$. Show that $\left(\frac{S_{t}}{P_{t}}\right)_{t \in[0,1]}$ is a Q-martingale.
e) Show that $\left(\frac{P_{t}}{S_{t}}\right)_{t \in[0,1]}$ is a $\widetilde{\mathbb{P}}$-martingale.

Exercise 12.3 (4 Points)

Let $S^{d-1}=\left\{x \in \mathbb{R}^{d}:|x|=1\right\}$ be the unit sphere in \mathbb{R}^{d}, and let $K=\left\{x \in \mathbb{R}^{d}:|x|<1\right\}$ be the open unit ball. Let $f: S^{d-1} \rightarrow \mathbb{R}$ be continuous. Assume h is a solution of the Dirichlet problem on K with boundary condition f, that is $h \in C^{2}(\bar{K}, \mathbb{R})$ and h satisfies

$$
\begin{array}{cl}
\Delta h(x)=0, & x \in K \\
h(x)=f(x), & x \in S^{d-1}
\end{array}
$$

Here $\bar{K}=K \cup S^{d-1}$ is the closure of K and Δ is the Laplace operator. Show that if $\left(W_{t}^{x}\right)_{t \geq 0}$ is a d-dimensional Brownian motion started in x, and if $\tau_{K}=\inf \left\{t \geq 0: W_{t}^{x} \in K^{c}\right\}$ is the exit time from K, then $h(x)=\mathbb{E}\left[f\left(W_{\tau_{K}}^{x}\right)\right]$.

Exercise 12.4 (4 Points)

Let now (Ω, \mathcal{F}) be a new measurable space and let $\left(B_{t}\right)_{t \geq 0}$ be a continuous stochastic process with $B_{0}=0$. Let \mathbb{P} and \mathbb{Q} be probability measures on \mathcal{F} such that B is a Brownian motion under \mathbb{P}, and such that $\tilde{B}_{t}=B_{t}-t, t \geq 0$, is a Brownian motion under \mathbb{Q}. Show that \mathbb{P} and \mathbb{Q} are mutually singular.

Hint: Consider the behavior of B_{t} for $t \rightarrow \infty$ under \mathbb{P} and under \mathbb{Q}.

Due date: July 13, 2016. You may submit your solutions in groups of two.

