Humboldt-Universität zu Berlin
Prof. Dr. Nicolas Perkowski
Dr. Achref Bachouch

Stochastic processes II: Continuous time
Summer semester 2016
Exercise sheet 1

Exercises

Exercise 1.1

a) Let $m \in \mathbb{R}^{d}$ and $C \in \mathbb{R}^{d \times d}$ a symmetric and positive semi-definite matrix, and let $X \sim \mathcal{N}(m, C)$. Prove that the coordinates $\left(X_{1}, \ldots, X_{d}\right)$ are independent if and only if C is a diagonal matrix.
b) Give an example of two Gaussian random variables X and Y that are uncorrelated, but not independent. (Of course in that case the couple (X, Y) cannot be Gaussian).

Exercise 1.2

Let B be a pre-Brownian motion. For a step function f on \mathbb{R}_{+}i.e. $f:=\sum_{i=1}^{n} \lambda_{i} \mathbb{1}_{\left[t_{i-1}, t_{i}\right]}$, where $n \in \mathbb{N}, \lambda_{i} \in \mathbb{R}$ and $0=t_{0}<t_{1}<\ldots<t_{n}$, set

$$
\xi(f):=\sum_{i=1}^{n} \lambda_{i}\left(B_{t_{i}}-B_{t_{i-1}}\right)
$$

a) Prove that if f and g are step functions on \mathbb{R}_{+}, then $E[\xi(f) \xi(g)]=\int_{\mathbb{R}_{+}} f(t) g(t) d t$. Conclude that ξ is an isometry on the set of step functions on \mathbb{R}_{+}equipped with the norm of $L^{2}\left(\mathbb{R}_{+}, \mathbb{R}\right)$.
b) Prove that ξ can be uniquely extended to an isometry on $L^{2}\left(\mathbb{R}_{+}, \mathbb{R}\right)$.

Hint: Use the density of continuous compactly supported functions in $L^{2}\left(\mathbb{R}_{+}, \mathbb{R}\right)$.
c) Show that ξ is a white noise on \mathbb{R}_{+}, i.e. a Gaussian measure on $\left(\mathbb{R}_{+}, \mathcal{B}\left(\mathbb{R}_{+}\right)\right)$with Lebesgue measure as density.

Exercise 1.3

Prove that $(a) \Leftrightarrow(b) \Leftrightarrow(c)$, where
(a) B is a pre-Brownian motion.
(b) (i) $B_{0}=0$ a.s.
(ii) $\forall t>s \geq 0$, the random variable $B_{t}-B_{s} \sim \mathcal{N}(0, t-s)$ and is independent of the variables $\left(B_{r}\right)_{r \leq s}$.
(c) (i) B has independent increments,
(ii) B is a centered Gaussian process and for all $t \geq 0, E\left[B_{t}^{2}\right]=t$.

Exercise 1.4

Let $\left(B_{t}\right)_{t \geq 0}$ be a pre-Brownian motion. Show that
a) $\left(-B_{t}\right)_{t \geq 0}$ is a pre-Brownian motion.
b) for any $a \geq 0,\left(B_{t+a}-B_{a}\right)_{t \geq 0}$ is a pre-Brownian motion independent of the variables $\left(B_{r}\right)_{r \leq a}$.
c) for any $c \neq 0,\left(c B_{t / c^{2}}\right)_{t \geq 0}$ is a pre-Brownian motion.

Due date: Wednesday, April $27^{t h}$. You may submit your solutions in groups of two.

