Humboldt-Universität zu Berlin

Prof. Dr. Nicolas Perkowski Dr. Achref Bachouch Stochastic processes II: Continuous time Summer semester 2016 Exercise sheet 4

Exercises

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a measure space, let *B* be a Brownian motion and write $\mathbb{F}^B := (\mathcal{F}^B_t)_{t \geq 0}$ for its canonical filtration.

Exercise 4.1 (4 Points)

Define for $a \ge 0$ the stopping time $T_a := \inf\{t \ge 0 : B_t = a\}$. Show that $(T_a)_{a\ge 0}$ has stationary and independent increments, that is for $0 \le a \le b$ the random variable $T_b - T_a$ is independent of $(T_c)_{0\le c\le a}$ and has the same distribution as T_{b-a} .

Exercise 4.2 (5 Points)

Set $Zeros = \{t \ge 0 : B_t = 0\}$. Show that the complement of Zeros consists of countably many open intervals.

Exercise 4.3 (4+2 Points) For all $t \ge 0$, set $S_t := \sup_{s \in [0,t]} B_s$. Show that:

a) For all $a \ge 0, b \le a$ and $t \ge 0$

$$\mathbb{P}(S_t \ge a, B_t \le b) = \mathbb{P}(B_t \ge 2a - b).$$

Hint: Apply the strong Markov property to $T_a := \inf\{t \ge 0 : B_t = a\}$.

b) For all $t \ge 0$, S_t has the same distribution as $|B_t|$.

Exercise 4.4 (5 Points)

Let $\mathbb{G} = (\mathcal{G}_t)_{t\geq 0}$ be a filtration smaller than \mathbb{F}^B (that is $\mathcal{G}_t \subseteq \mathcal{F}_t^B$ for all $t \geq 0$). For all $t \geq 0$, set $\hat{B}_t := \mathbb{E}[B_t|\mathcal{G}_t]$. Show that if \hat{B} is a pre-Brownian motion, then for all $t \geq 0$, $\hat{B}_t = B_t$ almost surely.

Hint: Use the tower property of the conditional expectation.

Due date: May 18, 2016. You may submit your solutions in groups of two.