Humboldt-Universität zu Berlin

Prof. Dr. Nicolas Perkowski Dr. Achref Bachouch Stochastic processes II: Continuous time Summer semester 2016 Exercise sheet 5

Exercises

Exercise 5.1 (5 Points)

Let $f : \mathbb{Q}_+ \longrightarrow \mathbb{R}$, where $\mathbb{Q}_+ := \mathbb{Q} \cap \mathbb{R}_+$, be such that for all $k \in \mathbb{N}$ and for all $a, b \in \mathbb{Q}$ with a < b

$$\sup_{s\in[0,k]\cap\mathbb{Q}_+}|f(s)|<\infty \text{ and } D([a,b];[0,k]\cap\mathbb{Q}_+;f)<\infty,$$

where D([a, b]; I; f) denotes the number of downcrossings of $f|_I$ across the interval [a, b].

- a) Show that the limit from the right $f(t_+) = \lim_{s \downarrow t, s \in \mathbb{Q}_+} f(s)$ exits for all $t \ge 0$ and the limit from the left $f(t_-) = \lim_{s \uparrow \uparrow t, s \in \mathbb{Q}_+} f(s)$ exits for all t > 0.
- b) Show that the function $t \mapsto f(t_+), t \ge 0$, is càdlàg.

Exercise 5.2 (10 Points)

Let $(\tau_k)_{k\in\mathbb{N}}$ be a sequence of independent exponentially distributed random variables with parameter $\lambda > 0$. Define $N_t := \sup\{k \ge 1 : \tau_1 + \cdots + \tau_k \le t\}$ for $t \ge 0$, where $\sup \emptyset = 0$. N is called *Poisson* process with parameter λ .

- a) Show that N_t has a Poisson distribution with parameter λt . **Hint**: The Gamma distribution μ with parameters $(k, \theta) \in \mathbb{N} \times (0, \infty)$ has characteristic function $\hat{\mu}(u) = (1 - \theta i u)^{-k}$ and cumulative distribution function $\mu([0, t]) = 1 - e^{-t/\theta} \sum_{l=0}^{k-1} \frac{(t/\theta)^l}{l!}$.
- b) Show that the exponential distribution is memoryless, i.e. $\mathbb{P}(\tau_1 > t | \tau_1 > s) = \mathbb{P}(\tau_1 > t s)$ for any $0 \le s \le t$. Conclude that N has independent and stationary increments, i.e. the increments of N are independent and $N_t - N_s$ is Poisson distributed with parameter $\lambda(t - s)$. **Hint**: First show that for any $k, l \in \mathbb{N}$ and any bounded and measurable $f : \mathbb{R}^k \to \mathbb{R}$ we have

$$\mathbb{E}[f(\tau_1, \dots, \tau_k) \mathbf{1}_{\{N_s = k\}} \mathbf{1}_{\{N_t - N_s = l\}}] = \mathbb{E}[f(\tau_1, \dots, \tau_k) \mathbf{1}_{\{N_s = k\}}] \mathbb{P}(N_{t-s} = l).$$

- c) Conclude that N is a Markov process in the filtration generated by N.
- d) Show that for every $t \ge 0$, N is almost surely continuous in t.
- e) Calculate $\mathbb{P}(N \text{ is continuous on } [0, t])$ for $t \ge 0$.

Exercise 5.3 (5 Points)

Let N be a Poisson process with parameter $\lambda > 0$ and $(Y_k)_{k \in \mathbb{N}}$ be a sequence of i.i.d. random variables, independent of N. Let F be the cumulative distribution function of Y_1 . The process X defined by $X_t := \sum_{k=1}^{N_t} Y_k$ for $t \ge 0$, is called a (λ, F) -compound Poisson process.

- a) Show that X has stationary and independent increments.
- b) Show that if $E[|Y_1|] < \infty$, then $(X_t t\lambda E[Y_1])_{t \ge 0}$ is a martingale in the filtration generated by X.

Due date: May 25, 2016. You may submit your solutions in groups of two.