Humboldt-Universität zu Berlin

Prof. Dr. Nicolas Perkowski Dr. Achref Bachouch Stochastic processes II: Continuous time Summer semester 2016 Exercise sheet 6

Exercises

Let $(B_t)_{t\geq 0}$ be a Brownian motion. For $x \in \mathbb{R}$, define $T_x := \inf\{t \geq 0 : B_t = x\}$, where $\inf \emptyset := \infty$.

Exercise 6.1 (2+2+3 Points) For all $a \in \mathbb{R} \setminus \{0\}$, show that:

a) $\mathbb{P}(T_a < \infty) = 1;$ b) $\mathbb{E}[T_a] = \infty;$ c) $\mathbb{E}[\exp(-\lambda T_a)] = \exp(-|a|\sqrt{2\lambda}), \lambda \ge 0.$

Hint: For question b) recall from the lecture that $(B_t^2 - t)_{t\geq 0}$ is a martingale and if a > 0 first compute $\mathbb{E}[T_a \wedge T_{-n}]$ for $n \in \mathbb{N}$. For question c) consider the martingale $(e^{\alpha B_t - \alpha^2 t/2})_{t\geq 0}$ for suitable $\alpha \in \mathbb{R}$.

Exercise 6.2 (3+3 Points)The process X defined by

$$X_t = \mu t + \sigma B_t, \qquad t \ge 0$$

is called Brownian motion with drift $\mu \in \mathbb{R}$ and variance $\sigma^2 > 0$.

a) For -a < 0 < b calculate the probability of X hitting b before hitting -a.

Hint: For $\mu \neq 0$ choose α so that $(\exp(\alpha X_t))_{t>0}$ is a martingale.

b) Show that if $\mu < 0$, then $Y := \sup_{t \ge 0} X_t$ is almost surely finite and exponentially distributed with parameter $\lambda = -2\mu/\sigma^2$.

Exercise 6.3 (3 Points)

Set $I := -\inf_{s \leq T_1} B_s$. Compute the cumulative distribution function of I.

Exercise 6.4 (2+2 Points)

Let a > 0 and M be a continuous positive martingale such that

$$M_0 = a$$
 and $\lim_{t \to \infty} M_t = 0.$

- a) Show that for y > a, $\mathbb{E}[M_{T_y \wedge t}] = a$, for all $t \ge 0$.
- b) Prove that the random variable $\sup_{t\geq 0} M_t$ has the same distribution as the random variable $\frac{a}{U}$, where U is a uniformly distributed random variable on (0, 1).

Hint: Note that $\mathbb{P}(T_y < \infty) = \mathbb{P}(\sup_{t>0} M_t \ge y)$ whenever y > a.

Due date: June 1st, 2016. You may submit your solutions in groups of two.