Humboldt-Universität zu Berlin

Prof. Dr. Nicolas Perkowski Dr. Achref Bachouch Stochastic analysis Summer semester 2016 Exercise sheet 7

Exercises

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ be a filtered probability space, where $(\mathcal{F}_t)_{t\geq 0}$ is a filtration satisfying the usual conditions. Recall that \mathcal{M}_{loc} (respectively \mathcal{M}) denotes the set of all continuous local martingales (respectively the set of all continuous uniformly integrable martingales) on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$.

Exercise 7.1 (3+3+3+3 Points) Let $M \in \mathcal{M}_{loc}$.

- a) Show that if M is positive, then M is a supermartingale.
- b) Show that M is a uniformly integrable martingale if and only if the set

 $\{M_{\tau}: \tau \text{ is a finite stopping time}\}\$

is uniformly integrable.

Let $\langle M \rangle$ be the quadratic variation of M. Now assume in addition that $M_0 = 0$.

- c) Show that M is a martingale and $\mathbb{E}[M_t^2] < \infty$ for every $t \ge 0$ if and only if $\mathbb{E}[\langle M \rangle_t] < \infty$ for every $t \ge 0$.
- d) Show that $M \in \mathcal{M}$ and M is L^2 -bounded (i.e. $\sup_{t>0} \mathbb{E}[M_t^2] < \infty$) if and only if $\mathbb{E}[\langle M \rangle_{\infty}] < \infty$.

Exercise 7.2 (4+4 Points)

Let $M \in \mathcal{M}$, with $\mathbb{E}[M_{\infty}^2] < \infty$, let $(T_k)_{k \in \mathbb{N}}$ be an increasing sequence of stopping times with $\lim_{k\to\infty} T_k = \infty$, and let C > 0 be such that for every k the random variable H_{T_k} is \mathcal{F}_{T_k} -measurable and satisfies $|H_{T_k}| \leq C$. Then for $H_t = \sum_{k=0}^{\infty} H_{T_k} \mathbb{1}_{[T_k, T_{k+1})}(t)$, $t \geq 0$, we define the stochastic integral

$$(H \cdot M)_t := \sum_{k=0}^{\infty} H_{T_k} (M_{T_{k+1} \wedge t} - M_{T_k \wedge t}), \ t \ge 0.$$

Show that:

- a) The process $(H \cdot M)$ is a martingale in \mathcal{M} .
- b) $\mathbb{E}[\sup_{t \ge 0} |(H \cdot M)_t|^2] \le 4C^2(\mathbb{E}[M_{\infty}^2] \mathbb{E}[M_0^2])$.

Due date: June 8, 2016. You may submit your solutions in groups of two.