Humboldt-Universität zu Berlin

Prof. Dr. Nicolas Perkowski Dr. Achref Bachouch Stochastic analysis Summer semester 2016 Exercise sheet 9

Exercises

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})$ be a filtered probability space, where $(\mathcal{F}_t)_{t \geq 0}$ is a filtration satisfying the usual conditions, and let B be an (\mathcal{F}_t) -Brownian motion. We recall that \mathcal{H}_c^2 denotes the set of continuous martingales M such that $M_0 = 0$ and $\sup_{t \geq 0} \mathbb{E}[M_t^2] < \infty$.

Exercise 9.1 (5 Points)

Prove that \mathcal{H}_c^2 is a Hilbert space for the scalar product $(.,.)_{\mathcal{H}_c^2} := \mathbb{E}[\langle .,. \rangle_{\infty}].$

Exercise 9.2 (3+4 Points)

This exercise is to solve without using neither Itô's formula nor Integration by parts.

a) Show that for every $t \ge 0$: $\int_0^t s dB_s = tB_t - \int_0^t B_s ds$.

Hint: $tB_t = \sum_{k=0}^{n-1} (t_{k+1}B_{t_{k+1}} - t_k B_{t_k})$ for $t_k = kt/n, k = 0, \dots, n$.

b) Show that for every $t \ge 0$: $\int_0^t B_s^2 dB_s = \frac{1}{3}B_t^3 - \int_0^t B_s ds$.

Hint: Writing B_t^3 as telescope sum might be helpful, as well as using a Taylor expansion of x^3 .

Exercise 9.3 (3+3+3 Points)

Let $(B_t^x)_{t\geq 0}$ be a three-dimensional Brownian motion, started in $x \in \mathbb{R}^3 \setminus \{0\}$ (i.e. $B_t^x = x + B_t$, and $B_t = (B_t^1, B_t^2, B_t^3)^{\top}$, where the B^i are independent Brownian motions on \mathbb{R}). We define the process Y by: for $t \geq 0$,

$$Y_t := 0$$
, if $B_t^x = 0$ and $Y_t := 1/|B_t^x|$ otherwise.

Show that:

- a) The process Y is a local martingale and almost surely continuous.
- b) Y is not a martingale. **Hint**: Show that $\lim_{t\to\infty} \mathbb{E}[Y_t] = 0$.
- c) Y is bounded in L^2 (i.e. $\sup_{t\geq 0} \mathbb{E}[|Y_t|^2] < \infty$), and therefore in particular uniformly integrable.