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Introduction

Stochastic analysis is the study of continous time stochastic processes. In Stochastics II we
have encountered discrete time processes and have seen how they can be constructed and
used to model different phenomena that evolve in discrete time steps and undergo random
influences. Since physical time is continuous, it is the natural next question how to extend
this to model continuous time phenomena. Naturally, this is more complex because now it
does not suffice any more to describe how the system transitions “from one step to the next”.
We will only consider stochastic processes with values in the Euclidean space Rd, but many
of the tools we develop are useful also in more complex situations. And in fact the Euclidean
case is already complicated and interesting enough in its own right.

To motivate the tools and results that we develop in the lecture, let us look at some
examples.

Example 0.1 We all know the pictures of stock price trajectories and that they look very
irregular, bouncing up and down constantly. We will see that a reasonable first model for
the evolution of stock prices is a (time-changed) Brownian motion. Recall that a Brownian
motion is a continuous time stochastic process (Bt)t>0 with continuous trajectories, such that
Bt ∼ N (0, t) for all t > 0, where N (0, t) is the normal distribution with mean 0 and variance
t, and such that Bt+s − Bt is independent of (Br)06r6t. We will see later in the lecture how
to construct such a process and that the description above characterizes it uniquely. And we
will study some basic path properties of the Brownian motion to see that it indeed behaves
quite wildly (PLOT). For example it has no isolated zeros, meaning that if Bt = 0 for some
t, then in any small interval [t− ε, t+ ε] there are infinitely many s with Bs = 0. We will also
see that B is nowhere differentiable and behaves roughly speaking like

Bt+dt −Bt '
√

dt.

Of course, this is not a mathematical statement and part of the work will be to find a suitable
mathematical statement that we can actually prove.

Example 0.2 From Stochastics II discrete time processes are familiar. An example for a
discrete time evolution is the difference equation

Xn+1 = Xn + b(Xn) + f(Xn, Yn),

where Yn is random influence, “noise”.
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A concrete example would be the Malthusian population growth model, where

Xn+1 = Xn + bXn +XnYn,

with b describing the deterministic growth rate and (Yn)n∈N being a centered family of inde-
pendent and identically distributed (i.i.d.) random variables that models randomly occurring
deviations from the deterministic growth rate.

If we assume that the random influence Yn is small, we can apply Taylor’s theorem to get

Xn+1 ' Xn + b(Xn) + f(Xn, 0) + ∂yf(Xn, 0)Yn.

If we assume again that the (Yn)n∈N are a centered family of (i.i.d.) random variables with
finite variance, then we know from Stochastics II that Sn =

∑n
k=1 Yk can be rescaled so that

it converges to a Brownian motion. When performing this scaling limit we say that S is
evolving in discrete time steps, but the steps are essentially infinitely small so that we can
approximate them by continuous time steps.

It then seems reasonable to expect (and indeed it can be shown under suitable assump-
tions) that if X is evolving in very small time steps, then it can be rescaled in such a way
that it converges to a process (Zt)t>0 satisfying for t > 0 and h > 0

Zt+h = Zt + (b(Zt) + f(Zt, 0))h+ ∂yf(Zt, 0)(Bt+h −Bt),

where B is a Brownian motion. Bringing Zt to the left hand side, dividing by h and letting
h→ 0, we get formally

∂tZt = b(Zt) + f(Zt, 0) + ∂yf(Zt, 0)∂tBt.

But the problem is that B is not differentiable, so it is not clear how to interpret this equation!
To make sense of such “stochastic differential equations” will be one of the main goals of the
lecture.

Example 0.3 Another situation where stochastic differential equations appear is the follow-
ing: Applied scientists are often able to derive an ordinary differential equation (ODE)

Ẋt = b(Xt)

to describe the time evolution of a given system. However, in reality the system will not
be isolated from its environment, so the environment will influence the system. Now we
have two choices. Either we increase the dimension of our system by attempting to also
model the entire environment, which ultimately leads to an infinite-dimensional system and
is actually unfeasible because nature is just too complex. Or we try to model the influence of
the environment as “random”. Under suitable assumptions we should be able to invoke the
central limit theorem, so that these random influences should be centered Gaussians. In many
situations it is also reasonable to assume that they are stationary in time, and independent
for different times. So formally we end up with an equation

Ẋt = b(Xt) + ξt,

where (ξt)t>0 is an i.i.d. family of centered Gaussian variables. It turns out that this equa-
tion does not make sense, because it is not possible to construct “a version” of ξ that has
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measurable trajectories and then it is not clear how to interpret the equation. The solution
to this problem is to formally assume that ξ(t) has infinite variance for fixed times. We will
see how to make this rigorous and how to model an ODE forced by a “white noise” (which
turns out to be the time derivative of Brownian motion).

Example 0.4 A more concrete version of this example is a particle in a double well potential.
Assume that we take x : [0,∞)→ R and b(x) = U ′(x) for U(x) = 1

4x
4 − 1

2x
2. One can easily

verify that there are two stable fixpoints for the dynamics, {−1, 1} (PLOT, imagine a ball
rolling down, except damping at the bottom), and one unstable fixpoint {0}. So if we start in
x < 0 we will converge to −1 for t→∞, and if we start in x > 0 we will converge to 1. Such
a simple system can be already used to model the qualitative behavior of earth’s climate:
Assume −1 represents an ice age and +1 a warm period. These two states are relatively
stable for the climate, after all we are not constantly switching between ice ages and warm
periods. But from time to time there are transitions, and in the deterministic model we wrote
down we will never see them. But if we add a very small random forcing of white noise type,
as described above, then the forcing can “kick” the solution over the hill into the domain of
attraction of the other stable fixpoint. It is then for example interesting to calculate how long
this should take.

Example 0.5 Observe that if B is a Brownian motion, then for t > 0 the random variable
Bt has the density

p(t, x) =
1√
2πt

exp

(
−x

2

2t

)
.

Now it is a simple exercise to verify that p solves the heat equation:

∂tp(t, x) =
1

2
∂2
xxp(t, x)

for all t > 0 and x ∈ R. As a consequence, we get that if ϕ is a nice function, then

u(t, x) = E[ϕ(x+Bt)]

solves

∂tu(t, x) = ∂t

∫
R

ϕ(x+ y)p(t, y)dy =

∫
R

ϕ(x+ y)
1

2
∂2
yyp(t, y)dy (1)

=

∫
R

1

2
∂2
yyϕ(x+ y)p(t, y)dy =

∫
R

1

2
∂2
xxϕ(x+ y)p(t, y)dy =

1

2
∂2
xxu(t, x), (2)

where we applied integration by parts to shift ∂2
yy from p to ϕ. Moreover, obviously

u(0, x) = ϕ(x), so that we found a solution to the equation

∂tu = ∂2
xxu, u(0) = ϕ.

This suggests a link between stochastic processes and partial differential equations, and in
fact this link is quite deep and powerful. For example if for x ∈ R the process Xx solves the
stochastic differential equation

∂tX
x
t = b(Xx

t ) + σ(Xx
t )∂tBt, X0 = x,
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then u(t, x) = E[ϕ(Xx
t )] solves the partial differential equation (PDE)

∂tu(t, x) = b(x)∂xu(t, x) +
1

2
σ2(x)∂2

xxu(t, x), u(0) = ϕ,

and conversely the PDE can be used to characterize the law of Xx.

Hopefully these examples show that there are many interesting questions to be asked and
problems to be studied. We will now start to develop the basic tools and methods of stochastic
analysis. The notes are based mainly on Le Gall’s notes and on those of Jacod.

Notation and conventions

N = {1, 2, . . .}, N0 = N ∪ {0}, R+ = [0,∞). Inner product on Rd is x · y =
∑d

j=1 xjyj .

Transpose is denoted with AT . The Borel sigma algebra of a topological space E is B(E). If
we do not specify it, we always assume an underlying probability space (Ω,F ,P) as given.
a . b means there exists some C > 0, independent of the variables under consideration, such
that a 6 Cb.

1 Gaussian processes

1.1 Quick recap on Gaussian random variables

Definition 1.1 A random variable X is called standard Gaussian (or standard normal) if X
has the density

pX(x) =
1√
2π

exp

(
−x

2

2

)
with respect to Lebesgue measure.

Definition 1.2 Let m ∈ R and σ > 0. A random variable Y has the Gaussian distribution
N (m,σ2) if there exists a standard normal variable X such that

Y = m+ σX. (3)

Equivalently, Y ∼ N (m,σ2) if

E[eiuY ] = eium−σ
2u2/2, u ∈ R. (4)

A random variable Y is (centered) Gaussian if it has distribution N (m,σ2) for some m ∈ R
(m = 0), σ > 0.

Remark 1.3

i. Let σ > 0 and m ∈ R. Then Y ∼ N (m,σ2) if and only if Y has the density

pY (y) =
1√

2πσ2
exp

(
−(y −m)2

2σ2

)
.

For σ = 0 we have Y ∼ N (m,σ2) if and only if Y = m almost surely.
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ii. If Y ∼ N (m,σ2) and Ỹ ∼ N (m̃, σ̃2) are independent Gaussian random variables, then
(4) immediately yields that Y + Ỹ ∼ N (m+ m̃, σ2 + σ̃2).

Lemma 1.4 Let (Xn)n∈N be a sequence of Gaussian random variables such that Xn ∼
N (mn, σ

2
n). Then Xn converges in distribution if and only if there exist m ∈ R and σ > 0

such that mn → m and σn → σ. In that case the limit in distribution X of the (Xn) satisfies
X ∼ N (m,σ2).

Definition 1.5 Let d ∈ N and let X be a random variable with values in Rd. Then we say
that X is Gaussian if for every u ∈ Rd the random variable

u ·X =
d∑
j=1

ujXj

is Gaussian.

Lemma 1.6 If X is Gaussian, then there exists m ∈ Rd and a symmetric positive semi-
definite matrix C ∈ Rd×d such that for all u ∈ Rd

E[u ·X] = u ·m, var(u ·X) = uTCu.

In particular, the characteristic function of X is given by

E[eiu·X ] = eiu·m−(uTCu)/2, u ∈ Rd,

and m and C determine the law of X uniquely. We therefore also write X ∼ N (m,C). If
m = 0 we say that X is centered.

Corollary 1.7 Let m ∈ Rd, let C ∈ Rd×d be a symmetric and positive semi-definite matrix,
and let X ∼ N (m,C). Then X has a density pX with respect to the d-dimensional Lebesgue
measure if and only if C is invertible. In that case

pX(x) =
1

(2π)d/2(det(C))1/2
exp

(
−1

2
(x−m)TC−1(x−m)

)
. (5)

Corollary 1.8 Let m ∈ Rd, let C ∈ Rd×d be a symmetric and positive semi-definite matrix,
and let X ∼ N (m,C). Then the coordinates (X1, . . . , Xd) are independent if and only if C is
a diagonal matrix.

Remark 1.9 If X1 and X2 are Gaussian random variables with cov(X1, X2) = 0, then it is
not necessarily true that X1 and X2 are independent. For Corollary 1.8 we need that (X1, X2)
is a two-dimensional Gaussian vector, which implies that X1 and X2 are Gaussian random
variables but is stronger than that.

Corollary 1.10 Let m ∈ Rd, let C ∈ Rd×d be a symmetric and positive semi-definite matrix,
and let X ∼ N (m,C). Let Y ∼ N (0, I) where I is the identity matrix in Rd×d. Then X has
the same distribution as

m+
√
CY,

where
√
C is a symmetric square root of C, that is a symmetric and positive semi-definite

matrix such that
√
C
√
C = C. In particular, for every m ∈ Rd and every symmetric and

positive semi-definite C ∈ Rd×d there exists a random variable with distribution N (m,C).
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1.2 Stochastic processes

Definition 1.11 Let (E, E) be a measurable space and let T be an index set. A stochastic
process (Xt)t∈T (indexed by T) with values in E is a family of random variables with values
in E. If we do not specify (E, E), then we usually mean E = R and E = B(R). The maps

T 3 t 7→ Xt(ω) ∈ E, ω ∈ Ω,

are called the trajectories of X.

Definition 1.12 Let (E, E) be a measurable space and let T be an index set. The Kolmogorov
sigma algebra on ET is defined as the smallest sigma algebra with respect to which the maps

ET 3 x 7→ x(t) ∈ E, t ∈ T,

are measurable. We denote it with E⊗T.

Lemma 1.13 Let (E, E) be a measurable space and let T be an index set. Given I ∈ T let
us write G(I) for the sigma algebra generated by (x(t))t∈I , that is the smallest sigma algebra
with respect to which the maps

ET 3 x 7→ x(t) ∈ E, t ∈ I,

are measurable. In particular G(T) = E⊗T. Then

G(T) =
∨
I⊂T
G(I) =

∨
I⊂T:|I|<∞

G(I) =
∨
t∈T
G({t}). (6)

Moreover, G0 =
⋃
I⊂T:|I|<∞ G(I) is an algebra (but in general not a sigma algebra).

Definition 1.14 The law of X is the probability measure law(X) = P ◦X−1 on (ET, E⊗T).

Definition 1.15 The family of finite-dimensional distributions of a stochastic process X in-
dexed by T is the family of probability measures (µI : I ⊂ T, |I| < ∞), where we write for
I ⊂ T

µI = P ◦ (Xt)
−1
t∈I ,

so that µI is a probability measure on (EI , E⊗I). If µ is a probability measure on (ET, E⊗T),
then we define the finite dimensional distributions of µ as those of the canonical process on
ET.

Lemma 1.16 If µ and µ̃ are two probability measures on (ET, E⊗T) that have the same finite
dimensional distributions, that is µI = µ̃I for all I ⊂ T with |I| <∞, then µ = µ̃.

Theorem 1.17 (Kolmogorov’s extension theorem)
Let E be a Polish space (complete separable metric space) and let E be the Borel sigma

algebra of E. Let T be an index set and assume that for every I ⊂ T with |I| < ∞ we
are given a probability measure µI on (EI , E⊗I). Then there exists a stochastic process X
with finite dimensional distributions (µI : I ⊂ T, |I| < ∞) if and only if the (µI) satisfy the
Kolmogorov consistency relation

µI∪{t}(A× E) = µI(A), A ∈ E⊗I ,

for all I ⊂ T finite and all t ∈ T.
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1.3 Gaussian proceses

Definition 1.18 Let T be an index set. A real-valued stochastic process X = (Xt)t∈T is called
a (centered) Gaussian process if for every finite subset I ⊂ T and for every (αt)t∈I ∈ RI the
random variable

∑
t∈I αtXt is (centered) Gaussian.

Theorem 1.19 Let T be an index set, let m : T→ R, and let Γ be a symmetric and positive
semi-definite function. Then there exists a Gaussian process X with mean m and covariance
Γ, and the law of X is uniquely determined by m and Γ.

Example 1.20 Let (E, E , µ) be a sigma-finite measure space. Then there exists a (unique-
in-law) centered Gaussian process (ξ(f) : f ∈ L2(E,µ)) such that

cov(ξ(f), ξ(g)) = E[ξ(f)ξ(g)] =

∫
E
f(x)g(x)µ(dx) =: 〈f, g〉L2(E,µ), f, g ∈ L2(E,µ).

The process ξ is called Gaussian measure with intensity µ. We have for f, g ∈ L2(E,µ)

E[|ξ(f + g)− (ξ(f) + ξ(g))|2] = E[ξ(f + g)2] +E[ξ(f)2] +E[ξ(g)2] (7)

−2E[ξ(f + g)ξ(f)]− 2E[ξ(f + g)ξ(g)] + 2E[ξ(f)ξ(g)] (8)

= 〈f + g, f + g〉L2(E,µ) + 〈f, f〉L2(E,µ) + 〈g, g〉L2(E,µ) (9)

−2〈f + g, f〉L2(E,µ) − 2〈f + g, g〉L2(E,µ) + 2〈f, g〉L2(E,µ) (10)

= 2〈f, f〉L2(E,µ) + 2〈g, g〉L2(E,µ) + 2〈f, g〉L2(E,µ) (11)

−〈f, f〉L2(E,µ) − 2〈g, g〉L2(E,µ) − 2〈f, g〉L2(E,µ) = 0, (12)

so that ξ(f + g) = ξ(f) + ξ(g) almost surely and therefore ξ is a linear map from L2(E,µ)
to L2(Ω,P). In combination with E[ξ(f)2] = ‖f‖2L2(E,µ), we deduce that ξ is an isometry

from L2(E,µ) to L2(Ω,P).

Remark 1.21 Let ξ be a Gaussian measure with intensity µ and define the set function
G(A) = ξ(IA) for all A ∈ E with µ(A) < ∞. Then we have G(∅) = 0 almost surely. If
(An)n∈N is a disjoint family of sets in E with µ(∪nAn) <∞, then

∑
n IAn converges to I∪nAn

in L2(E,µ). So since ξ is an isometry, we obtain

G(∪nAn) = ξ(I∪nAn) =
∑
n

ξ(IAn) =
∑
n

G(An),

where the equality holds almost surely and the right hand side converges in L2(Ω,P). This
suggests that G might be a (signed) measure. However, this is nearly always false because we
have to be careful with the position of “almost surely”: It is in general not possible to isolate
one null set N such that for ω ∈ Ω \ {0} and for every sequence (An)n∈N of disjoint sets in E
the indentity

G(∪nAn)(ω) =
∑
n

G(An)(ω) (13)

holds. Instead, the null set where (13) fails depends on the sequence (An) and of course in
general there are uncountably many sequences of disjoint sets.
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Example 1.22 The Gaussian measure on (R+,B(R+)) with Lebesgue measure as density is
called white noise. If ξ is a white noise, then

Bt = ξ(I[0,t]), t > 0,

is a centered Gaussian process with covariance

cov(Bs, Bt) = E[BsBt] = E[ξ(I[0,t])ξ(I[0,s])] =

∫
R+

I[0,t](x)I[0,s](x)dx = s ∧ t,

where we write s∧ t = min{s, t}. The centered Gaussian process with this covariance is called
pre-Brownian motion.

Remark 1.23 Physicists usually say that the white noise is the centered Gaussian process
with covariance E[ξ(x)ξ(y)] = δ(x − y) for x, y ∈ R, where δ is the Dirac delta in 0. This
does not make sense rigorously, but let us see how to relate it to our definition: If ξ has this
covariance, then we formally have

E[ξ(f)ξ(g)] = E

[∫
R+

f(x)ξ(x)dx

∫
R+

g(y)ξ(y)dy

]
=

∫
R+×R+

f(x)g(y)E[ξ(x)ξ(y)]dxdy

(14)

=

∫
R+×R+

f(x)g(y)δ(x− y)dxdy =

∫
R+

f(x)g(x)dx, (15)

so ξ is a white noise. So formally we obtain that a white noise is a family (ξ(x))x∈R+ of
independent centered Gaussian variables, such that var(ξ(x)) = δ(0) =∞ for all x ∈ R+. Of
course all of these manipulations are only allowed for physicists and not for mathematicians,
and in particular we cannot evaluate a white noise in a single point but only test it against
L2(R+,dx) functions!

Lemma 1.24 Let (Bt)t>0 be a real valued stochastic process. Then B is a pre-Brownian
motion if and only if the following conditions are satisfied:

i. B0 = 0 almost surely;

ii. for all 0 6 s < t the random variable Bt −Bs is independent of the variables (Br)06r6s;

iii. for all 0 6 s < t we have Bt −Bs ∼ N (0, t− s).

2 The Brownian motion

2.1 Continuity of stochastic processes

We say that a stochastic process X = (Xt)t>0 with values in Rd is continuous if all of its
trajectories are continuous.

Definition 2.1 A stochastic process (Bt)t>0 is called a Brownian motion if it is a continuous
pre-Brownian motion. Such a process is also referred to as Wiener process.
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Example 2.2 Let X be a continuous stochastic process with values in R, and let T be a
random variable which is uniformly distributed on [0, 1]. Then

X̃t = Xt + I{T}(t), t > 0,

is discontinuous for all ω and satisfies P(X̃t = Xt) = 1 for all t > 0. In particular, X̃ and X
have the same finite-dimensional distributions and thus the same law by Lemma 1.16.

Definition 2.3 Let X = (Xt)t∈T and X̃ = (X̃t)t∈T be two stochastic processes with values
in E.

i. We say that X̃ is a modification of X if P(Xt = X̃t) = 1 for all t ∈ T;

ii. if outside of a null set we have Xt = X̃t for all t ∈ T, then X and X̃ are called indistin-
guishable.

Definition 2.4 Define the Haar mother function χ : [0, 1]→ R as

χ(t) = I[0,1/2)(t)− I[1/2,1)(t).

For n ∈ N0 and 0 6 k < 2n we set

χn,k(t) = 2n/2χ(2nt− k) = 2n/2(I[2−nk,2−n−1(2k+1))(t)− I[2−n−1(2k+1),2−n(k+1))(t)).

We also define χ−1,0(t) = I[0,1)(t). The functions (χn,k : n > −1, 0 6 k < 2n) are called

the Haar wavelets. By definition, all χn,k satisfy
∫ 1

0 |χn,k(t)|
2dt and it is not hard to see

that
∫ 1

0 χn,k(t)χm,`(t)dt = δn,mδk,`. As an exercise you may use that the indicator functions
(I[k2−n,(k+1)2−n), n ∈ N0, 0 6 k < 2n) are dense in L2([0, 1], dt) to show that the Haar wavelets
form an orthonormal basis of L2([0, 1],dt).

The integrated Haar functions will play an important role in what follows, so let us
introduce the notation

ϕn,k(t) =

∫ t

0
χn,k(s)ds,

and we call (ϕn,k : n > −1, 0 6 k < 2n) the Schauder functions. Observe that for n > 0 and
0 6 k < 2n

〈f ′, χn,k〉L2([0,1],dt) = 2n/2(2f(2−n−1(2k + 1))− f(2−nk)− f(2−n(k + 1))),

which makes sense for any function f and does not require differentiability.

Definition 2.5 For α ∈ (0, 1) and T > 0 the space of α-Hölder continuous functions is
defined as

Cα([0, T ],R) = {f : [0, T ]→ R, ‖f‖α <∞}, where ‖f‖α =
|f(t)− f(s)|
|t− s|α

.

Lemma 2.6 (Ciesielski)
Let α ∈ (0, 1) and let (fn,k : n > −1, 0 6 k < 2n) be real numbers such that

sup
n>−1

max
06k<2n

2n(α−1/2)|fn,k| = C <∞. (16)
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Then the series
∑

n,k fn,kϕn,k converges uniformly and absolutely, and the limit f is α-Hölder
continuous and satisfies ‖f‖α . C.

Conversely, if f ∈ Cα([0, 1],R) and fn,k := 〈f ′, χn,k〉L2([0,1],dt), then

sup
n>−1

max
06k<2n

2n(α−1/2)|〈f ′, χn,k〉L2([0,1],dt)| . ‖f‖α.

Remark 2.7 Since Ciesielski’s result, the relationship between many function spaces and
(wavelet) bases has been explored in countless works. For an overview see Triebel.

Lemma 2.8 Let α ∈ R and p ∈ [1,∞] and let (fn,k : n > −1, 0 6 k < 2n) be real numbers.
Then we define

‖(fn,k)‖Bαp :=

(∑
n

2np(α−1/2−1/p)

(∑
k

|fn,k|p
))1/p

= ‖(2n(α−1/2−1/p)‖(fn,k)k‖`p)n‖`p (17)

with the usual interpretation as supremum norm if p = ∞. Then we get for all 1 6 p 6
q 6∞

‖(fn,k)‖Bα−(1/p−1/q)
q

6 ‖(fn,k)‖Bαp .

Theorem 2.9 (Kolmogorov’s continuity criterion)
Let T > 0 and let (X̃t)t∈[0,T ] be a real valued stochastic process such that there exists

p ∈ [1,∞), α ∈ (1/p, 1] and M > 0 with

E[|X̃t − X̃s|p]1/p 6M |t− s|α. (18)

Then there exists a continuous modification X of X̃ such that for every β ∈ (0, α−1/p) there
exists a constant C = C(α, β, T ) > 0 with

E[‖X‖pβ]1/p 6 CM.

Remark 2.10 Actually we never used that X̃ was real valued, Kolmogorov’s continuity
criterion also works if X̃ takes values in a Banach space. But to simplify the presentation we
restrict ourselves to real-valued processes here.

Corollary 2.11 The Brownian motion B exists and if T > 0, then (Bt)t∈[0,T ] is almost surely
in Cα([0, T ],R) whenever α < 1/2 and we even have

E[‖B‖pCα([0,T ],R)] <∞, p ∈ [1,∞).

Remark 2.12 Paul Lévy’s original construction of the Brownian motion was exactly the
same as ours, except written in a slightly different language. Translated into our terminology,
he considered a sequence (Zn,k) of independent standard normal variables and defined Bt =∑

n,k Zn,kϕn,k(t). Note that the (Zn,k) have to be independent because if B is a Brownian
motion, then (〈B′, χn,k〉L2([0,1],dt))n,k is a centered Gaussian process with

E[〈B′, χn,k〉L2([0,1],dt)〈B′, χm,`〉L2([0,1],dt)] = E[ξ(χn,k)ξ(χm,`)] = δn,mδk,`,

where ξ is a white noise, we used the construction Bt = ξ(I[0,t]) of a pre-Brownian motion,
and also that (χn,k) is an orthonormal basis of L2([0, 1],dt)
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Remark 2.13 The Brownian motion is only Hölder-continuous on compact intervals, but not
on R+: The variables (Bn+1 − Bn)n∈N0 are independent standard Gaussians, and therefore
their supremum is almost surely infinite: For any C ∈ R

P( sup
n∈N0

(Bn+1 −Bn) 6 C) = P

 ⋂
n∈N0

{Bn+1 −Bn 6 C}

 =
∏
n∈N0

P(Bn+1 −Bn 6 C),

and since P(Bn+1 −Bn 6 C) = P(B1 −B0 6 C) < 1, the infinite product on the right hand
side is 0. In particular we have almost surely

sup
06s<t<∞

|Bt −Bs|
|t− s|α

> sup
n∈N0

|Bn+1 −Bn|
1α

=∞,

independently of α ∈ R.

2.2 Path properties of the Brownian motion

Proposition 2.14

i. (−Bt)t>0 is a Brownian motion;

ii. more generally (λ−1Bλ2t)t>0 for λ ∈ R \ {0} is a Brownian motion;

iii. (Bt+s−Bs)t>0 for s > 0 is a Brownian motion, and is independent of (Br)r∈[0,s] (Markov
property);

iv. (tB1/t)t>0 where we set 0B1/0 := 0 is indistinguishable from a Brownian motion.

Theorem 2.15 With probability 1 there exists no t > 0 at which B is differentiable.

Exercise 2.16 Adapt the proof of Theorem 2.15 to show that if α > 1/2, then with probability 1
there exists no t > 0 with

lim sup
s→t

|Bs −Bt|
|s− t|α

<∞.

Why does the same argument not work for α = 1/2?

Exercise 2.17 Indeed it is not true that the Brownian motion is nowhere 1/2-Hölder continuous:
there are so-called “slow points” where the Brownian motion shows an exceptional behavior. This is
beyond the scope of our lecture. But show that if t > 0 is fixed, then almost surely

lim sup
s→t

|Bs −Bt|
|s− t|1/2

=∞.

Conclude that almost surely there exists no interval [S, T ] with 0 6 S < T on which the Brownian
motion is 1/2-Hölder continuous.

Hint: The argumentation in Remark 2.13 might be helpful.

Corollary 2.18 With probability 1 we have for any α > 1/2

0 = lim sup
t→∞

|Bt|
tα

< lim sup
t→∞

|Bt|
t1/2

=∞.
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Proposition 2.19 (Quadratic variation)
Let t > 0 and let 0 = tn0 < tn1 < . . . < tnkn = t be a sequence of partitions of [0, t] with

max06i<kn |tni+1 − tni | converging to zero as n→∞. Then

lim
n→∞

kn−1∑
i=0

(Btni+1
−Btni )2 = t,

where the convergence takes place in L2(Ω,P).

3 Filtrations and stopping times

3.1 Filtrations and stopping times

Definition 3.1 A filtration is an increasing family F = (Ft)t>0 of sub sigma algebras of F ,
i.e. such that Fs ⊆ Ft ⊆ F whenever 0 6 s 6 t. In that case we write

F∞ =
∨
t>0

Ft and Ft+ =
⋂
s>t

Fs, t > 0.

A filtration is called right-continuous if Ft+ = Ft for all t > 0. If F is a filtration we write
F+ = (F+

t )t>0 for the smallest right-continuous filtration containing F, given by

F+
t =

⋂
s>t

Fs = Ft+, t > 0.

Note that (F+)+ = F+ for every filtration.

Example 3.2 An important example is Ft = σ(Xs : s 6 t), where X is a stochastic process.
In that case we write (Ft)t>0 = FX and we call FX the canonical filtration of X. We also
write FX+ = (FX)+. In general we have FX+ 6= FX , even if X is continuous and real valued:
For example we have

A := {ω : X(ω) has a right derivative in t} ∈ FX+
t ,

but in general A 6∈ FXt .

Definition 3.3 A stochastic process (Xt)t>0 is called adapted to a given filtration F if Xt is
Ft-measurable for all t > 0.

Definition 3.4 Let F be a filtration. An F-stopping time (or simply stopping time if there
is no ambiguity about the filtration) is a map T : Ω→ [0,∞] such that

{T 6 t} ∈ Ft

for all t > 0. If T is a F-stopping time, then we write

FT = {A ∈ F : A ∩ {T 6 t} ∈ Ft for all t > 0} (19)

for the sigma algebra of events determined until T .
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Exercise 3.5 Let F be a filtration and T a stopping time.

i. Show that FT defined in (19) is indeed a sigma algebra.

ii. Show that if S(ω) = t for all ω, where t ∈ [0,∞] is fixed, then S is a stopping time and Ft = FS
where FS is defined in (19). So our definitions are conistent.

iii. Show that T + t is a stopping time whenever t ∈ [0,∞]. We write FT+ =
⋂
t>0 FT+t. Is the same

true for T − t?

iv. Show that S is a F+-stopping time if and only if {S < t} ∈ Ft for all t > 0.

v. Show that
F+
T = {A ∈ F : A ∩ {T < t} ∈ Ft for all t > 0} .

vi. Show that T is FT measurable.

vii. Show that FT+ = F+
T , where FT+ =

⋂
t>0 FT+t.

viii. Show that if S is a stopping time with S(ω) 6 T (ω) for all ω ∈ Ω, then FS ⊆ FT .

ix. Show that if S is a stopping time, then S ∨T and S ∧T are stopping times and FS∧T = FS ∩FT .

Hint: Use iv. and that A ∩ {S ∧ T 6 t} = (A ∩ {S 6 t}) ∪ (A ∩ {T 6 t}).

x. Show that if (Tn)n∈N is a sequence of F-stopping times, then supn Tn is a F-stopping time and
infn Tn is a F+-stopping time. Moreover, F(infn Tn)+ =

⋂
n FTn+.

xi. Show that if S is a F+ stopping time, then there exists a sequence of F-stopping times (Sn)n∈N
with limn→∞ Sn(ω) = S(ω) for all ω ∈ Ω, such that every Sn only takes finitely many values, we
have Sn+1(ω) 6 Sn(ω) for all n ∈ N and ω ∈ Ω, and Sn(ω) > S(ω) for all ω ∈ Ω with S(ω) <∞
and all n ∈ N.

Hint: Take for example Sn = (k+ 1)2−n on the set {S ∈ [k2−n, (k+ 1)2−n)}, k = 0, . . . , n2n − 1,
and Sn =∞ on the set {S > n}.

Definition 3.6 Let X = (Xt)t>0 be a stochastic process taking values in a measurable space
(E, E). For A ∈ E we define the entrance time of X into A as

TA(ω) = inf{t > 0 : Xt(ω) ∈ A},

with inf ∅ =∞.

Proposition 3.7 Let E be a metric space and E be its Borel sigma algebra, and let X be
adapted to the filtration F.

i. If A ⊂ E is open and X is right-continuous or left-continuous, then TA is an F+-stopping
time.

ii. If A ⊂ E is closed and X is continuous, then TA is an F-stopping time.

iii. If E = R, A = [K,∞), and X is right-continuous and increasing, then TA is an F-
stopping time.

Definition 3.8 A stochastic process X = (Xt)t>0 with values in E is called measurable if the
map

Ω×R+ 3 (ω, t) 7→ Xt(ω) ∈ E

is F ⊗ B(R+)− E measurable.

13



It is called progressively measurable if for all t > 0 the map

Ω× [0, t] 3 (ω, s) 7→ Xs(ω) ∈ E

is Ft⊗B([0, t])−E measurable. The progressive sigma algebra consists of all A ∈ F ⊗B(R+)
for which the process IA is progressively measurable.

Lemma 3.9 Let (Xt)t>0 be a stochastic process with values in E.

i. If X is progressively measurable, then it is adapted and the map t 7→ Xt(ω) is B(R+)−E
measurable for all ω ∈ Ω.

ii. If E is a topological space and X is right-continuous and adapted, then X is progressively
measurable.

Remark 3.10 IfX is left-continuous and adapted, then a simple adaptation of the arguments
gives the same result as in ii.

Corollary 3.11 If T is a stopping time and Y with values in Rd is FT -measurable, then the
following processes are progressively measurable:

(Y I{T6t})t>0, (Y I{T<t})t>0, (Y I{T=t})t>0.

Lemma 3.12 Let X be a progressively measurable process and let T be a stopping time. Then
ω 7→ XT (ω) is FT − E measurable.

Corollary 3.13 If X is progressively measurable and T is a stopping time, then the stopped
process

XT
t := Xt∧T = XtI{t6T} +XT I{t>T}

is progressively measurable.

Definition 3.14 A filtration F satisfies the usual conditions if F is right-continuous and for
all t > 0 the sigma algebra Ft contains all P-negligible sets (with respect to F).

Given a filtration F, we construct an enlargement F+,P of F that satisfies the usual
conditions as follows: Write NP for the P-negligible sets (with respect to F), and set

F+,P
t = σ(F+

t ,NP), t > 0.

One can show that C ⊂ Ω is in F+,P
t if and only if there exists A ∈ F+

t such that A∆B =
(A \B)∪ (B \A) ∈ NP. One can also show that F+,P is the smallest right-continuous sigma
algebra containing FP, where FPt = σ(Ft,NP) for t > 0.

Theorem 3.15 (“Debut theorem”)
Assume that F satisfies the usual conditions, let X be a measurable process with values in

a measurable space (E, E), and let A ∈ E. Then the entrance time TA is a stopping time.

Proposition 3.16 Let P be a probability measure on (Ω,F) and let T be a F+,P-stopping
time. Then there exists a F+-stopping time TP such that the set {T 6= TP} is P-negligible.
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3.2 Applications to Brownian motion

Definition 3.17 A d-dimensional Brownian motion is a stochastic process B = (B1, . . . , Bd)
consisting of independent (1-dimensional) Brownian motions Bj, j = 1, . . . , d.

Definition 3.18 Let F be a filtration. A (d-dimensional) F-Brownian motion is a continuous
stochastic process that is adapted to F, and such that for all s, t > 0 the vector Bt+s − Bt is
independent of Ft and has law N (0, (t− s)I) (where I denotes the identity matrix on Rd).

Theorem 3.19 (Strong Markov property)
Let F be a filtration and let B be a d-dimensional F-Brownian motion. Then for any finite

stopping time T the process B(T ) = (BT+t−BT )t>0 is a d-dimensional Brownian motion and
independent of FT+.

Remark 3.20 Let T be a not necessarily finite stopping time with P(T < ∞) > 0. Then
the proof of Theorem 3.19 still shows that

E[IA∩{T<∞}G(B(T ))] = P(A ∩ {T <∞})E[G(B)]

for all A ∈ FT+. Dividing both sides by P(T <∞), we deduce that

E[IAG(B(T ))|T <∞] = P(A|T <∞)E[G(B)],

which shows that under the conditional probability measure P(·|T <∞) the process (BT+t−
BT )t>0 (defined as 0 on the set T =∞) is a Brownian motion independent of FT+.

Corollary 3.21 (Blumenthal’s 0-1 law)
Let B be a (d-dimensional) Brownian motion and let A ∈ FB0+. Then P(A) = 0.

Corollary 3.22 Let B be a one-dimensional Brownian motion. Then with probability 1 we
have for all ε > 0

sup
s∈[0,ε]

Bs > 0, inf
s∈[0,ε]

Bs < 0.

Moreover, if for a ∈ R we set Ta = inf{t > 0 : Bt = a}, then Ta < ∞ for all a ∈ R with
probability 1, so that in particular

lim inf
t→∞

Bt = −∞ <∞ = lim sup
t→∞

Bt.

Remark 3.23 It is a priori not obvious whether sups∈[0,ε]Bs is measurable. To see this
recall that B is continuous, and therefore sups∈[0,ε]Bs = sups∈[0,ε]∩QBs. In the following we
will often implicitly use this kind of argument when dealing with continuous (or right- or
left-continuous) processes.

Theorem 3.24 Let B be a one-dimensional Brownian motion. Then almost surely the set

Zeros = {t > 0 : Bt = 0}

is closed and has no isolated points (such a set is called perfect). Moreover, Zeros has Lebesgue
measure zero and it is unbounded (not contained in [0, n] for any n ∈ N).
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Exercise 3.25 Show that the complement of Zeros consist of countably many open intervals.

Exercise 3.26 Let B be a one-dimensional Brownian motion and write St = sups∈[0,t]Bs. Show that
for all a > 0 and b 6 a we have

P(St > a,Bt 6 b) = P(Bt > 2a− b).

Deduce that
P(St > a) = 2P(Bt > a) = P(|Bt| > a),

so in particular St has the same distribution as |Bt|.
Hint: Consider the stopping time Ta = inf{t > 0 : Bt = a} and apply the strong Markov property.

4 Continuous time martingales

4.1 Path regularity

Throughout this section we fix a probability space (Ω,F ,P) equipped with a filtration F. A
stochastic process X is called integrable if E[|Xt|] <∞ for all t > 0. If p > 0, then we call X
p-integrable if E[|Xt|p] <∞ for all t > 0.

Definition 4.1 An adapted real-valued and integrable process X = (Xt)t>0 is called a

i. martingale if E[Xt|Fs] = Xs for all 0 6 s 6 t;

ii. supermartingale if E[Xt|Fs] 6 Xs for all 0 6 s 6 t;

iii. submartingale if E[Xt|Fs] > Xs for all 0 6 s 6 t.

If X is a submartingale, then obviously −X is a supermartingale. For that reason we
state some of the following results only for submartingales, although they also hold for su-
permartingales.

Example 4.2 Let B be a d-dimensional F-Brownian motion. Then

i. All components Bj are martingales for j = 1, . . . , d:

E[Bj
t |Fs] = E[Bj

t −Bj
s |Fs] +Bj

s = E[Bj
t −Bj

s ] +Bj
s = 0.

ii. Xt = (Bj
t )

2 − t, t > 0, is a martingale:

E[Xt|Fs] = E[(Bj
t −Bj

s)
2 + 2(Bj

t −Bj
s)B

j
s + (Bj

s)
2|Fs]− t = (t− s) + (Bj

s)
2 − t = Xs.

iii. Yt = Bi
tB

j
t , t > 0, is a martingale if i 6= j:

E[Yt|Fs] = E[(Bi
t −Bi

s)(B
j
t −Bj

s) + (Bi
t −Bi

s)B
j
s +Bi

s(B
j
t −Bj

s) +Bi
sB

j
s |Fs] = Ys.

iv. Zt = eλB
j
t−λ2t/2, t > 0, is a martingale:

E[Zt|Fs] = E[eλ(Bjt−B
j
s)|Fs]eλB

j
s−λ2t/2 (20)

= E[eλ(Bjt−B
j
s)]eλB

j
s−λ2t/2eλ

2(t−s)/2eλB
j
s−λ2t/2 = Zs, (21)

by the formula E[eλU ] = eλ
2σ2/2 for the Laplace transform of a N (0, σ2) variable U .
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Example 4.3 Let ξ be a white noise and f ∈ L2(R+) and define Xt = ξ(I[0,t]f), t > 0. Then
X is a martingale in the filtration Ft = σ(Xs : s 6 t): By orthogonality and Gaussianity we
get that ξ(I[s,t]f) is independent of Fs, and therefore

E[Xt|Fs] = E[ξ(I[0,s]f) + ξ(I[s,t]f)|Fs] = Xs +E[ξ(I[s,t]f)] = Xs.

Example 4.4 Let N be a process with independent increments, such that N0 = 0 and for
all 0 6 s 6 t the increment Nt−Ns is Poisson distributed with parameter λ(t− s) for a fixed
λ > 0. Then (Nt − λt)t>0 is a martingale in the filtration (Ft)t>0 generated by N :

E[Nt − λt|Fs] = E[Nt −Ns|Fs] +Ns − λt = λ(t− s) +Ns − λt = Ns − λs.

The process N is called Poisson process. One can show that it has a modification which is
an increasing right-continuous step function with jumps of size 1.

Remark 4.5 If X is a martingale and f is convex and such that E[|f(Xt)|] <∞ for all t > 0,
then f(X) is a submartingale. If X is a submartingale and f is convex and increasing and such
that E[|f(Xt)|] < ∞ for all t > 0, then f(X) is a submartingale. Both of these statements
follow by a simple application of Jensen’s inequality. In particular, |X|p is a submartingale if
X is a p-integrable martingale and p > 1, and X+ is a submartingale if X is a submartingale.

Definition 4.6 Let I be an index set and f : I → R. For a < b, the number of downcrossings
of f across the interval [a, b] in I is the supremum over all n for which there exist times
sk, tk ∈ I, k = 1, . . . , n, such that s1 < t1 < s2 < t2 < . . . < sn < tn with f(sk) > b and
f(tk) 6 a for all k = 1, . . . , n. We denote it with

D([a, b]; I; f).

Lemma 4.7 (Doob’s downcrossing lemma)
Let X be a submartingale defined on a finite index set I ⊂ R+ and let T = max{t : t ∈ I}.

Then for all a < b

E[D([a, b]; I;X)] 6
1

b− a
E[(XT − b)+].

Let us introduce the notation

lim
s↓↓t

f(s) = lim
s→ t
s > t

f(s), lim
s↑↑t

f(s) = lim
s→ t
s < t

f(s)

and similarly lim sups↓↓t f(s), lim infs↑↑t f(s), etc.

Definition 4.8 A function f : R+ → R is called càdlàg if it is right-continuous and at every
t > 0 the limit lims↑↑t f(s) exists (but it is not necessarily equal to f(t)).

The acronym càdlàg comes from French and stands for “continue à droite, limite à
gauche”, that is “continuous from the right, limits from the left”.

Exercise 4.9 Let f : Q+ → R, where Q+ = Q ∩R+, be such that for all k ∈ N and for all a, b ∈ Q
with a < b we have

D([a, b]; [0, k] ∩Q+; f) <∞ and sup
s∈[0,k]∩Q+

|f(s)| <∞.
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Then the limit from the right
f(t+) = lim

s↓↓t,s∈Q+

f(s)

exists for all t > 0 and the limit from the left

f(t−) = lim
s↑↑t,s∈Q+

f(s)

exists for all t > 0. Moreover, the function t 7→ f(t+), t > 0, is càdlàg.

Lemma 4.10 Let X be a submartingale defined on a finite index set I ⊂ R+ and let T =
max{t : t ∈ I}. Then for all λ > 0

λP(sup
t∈I
|Xt| > λ) 6 2E[X+

T ]−E[X0].

Lemma 4.11 Let X be a submartingale. Then there exists a null set N such that for all
ω ∈ Ω \N the function (Xr(ω))r∈Q+ has a right limit Xt+(ω) at every t > 0 and a left limit
Xt−(ω) at every t > 0, and the function t 7→ Xt+(ω) is càdlàg.

Lemma 4.12 Let X be a submartingale and (tn)n∈N a decreasing sequence of positive num-
bers. Then the family (Xtn)n∈N is uniformly integrable.

Definition 4.13 Let (Gn)n∈−N0 be a family of sigma algebras with Gn−1 ⊂ Gn for all n ∈
−N0 = {0,−1,−2, . . .}. An integrable process (Yn)n∈−N0 which is adapted to (Gn) is called a

i. backward martingale if E[Yn|Gn−1] = Yn−1 for all n ∈ −N0;

ii. backward submartingale if E[Yn|Gn−1] > Yn−1 for all n ∈ −N0.

Lemma 4.14 Let (Yn)n∈−N0 be a backward submartingale with limn→−∞E[Yn] > −∞. Then
(Yn) is uniformly integrable.

Theorem 4.15 Let X be a submartingale in a right-continuous filtration F. We define

Yt(ω) =

{
Xt+(ω), lims↓↓t,s∈Q+ Xs(ω) exists,
0, else.

Then

i. Y is a submartingale and almost surely càdlàg;

ii. there exists a modification Ỹ of Y which is adapted to FP and for which all trajectories
are càdlàg; moreover Ỹ is a FP-submartingale;

iii. for all t > 0 we have Xt 6 Yt almost surely;

iv. Y is a modification of X if and only if the map t 7→ E[Xt] is right-continuous (in partic-
ular if X is a martingale because then E[Xt] = E[X0] is constant in t).
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4.2 The stopping theorem

Proposition 4.16 (Doob)

i. If X is a right-continuous submartingale, then we have for all T > 0 and λ > 0

P( sup
t∈[0,T ]

Xt > λ) 6
1

λ
E[X+

T ], P(sup
t>0

Xt > λ) 6
1

λ
sup
t>0
E[X+

t ].

ii. If X is a right-continuous martingale, then we have for all T > 0 and λ > 0

P( sup
t∈[0,T ]

|Xt| > λ) 6
1

λ
E[|XT |], P(sup

t>0
|Xt| > λ) 6

1

λ
sup
t>0
E[|Xt|],

and for all p > 1

E[ sup
t∈[0,T ]

|Xt|p] 6
(

p

p− 1

)p
E[|XT |p], E[sup

t>0
|Xt|p] 6

(
p

p− 1

)p
sup
t>0
E[|Xt|p].

Proposition 4.17 Let X be a right-continuous submartingale with supt>0E[X+
t ] <∞. Then

there exists a random variable X∞ ∈ L1 with limt→∞Xt = X∞ almost surely.

Example 4.18 Without having a condition like supt>0E[X+
t ] <∞ convergence can fail: For

example the Brownian motion does not converge because

−∞ = lim inf
t→∞

Bt < lim sup
t→∞

Bt =∞.

If X is a martingale that converges, then we do not have in general E[X∞] = E[X0]. Consider
for example Xt = exp(Bt − t/2), which is a positive martingale and therefore almost surely
converges. But we know from Corollary ?? that given α ∈ (1/2, 1), for almost every ω ∈ Ω
there exists C(ω) > 0 with |Bt(ω)| 6 C(ω)tα for all t > 0, so

lim
t→∞

Xt 6 lim sup
t→∞

exp(C(ω)tα − t/2) = 0,

and of course 0 6= 1 = E[Xt] for all t > 0.

Proposition 4.19 For a right-continuous martingale X the following conditions are equiva-
lent:

a) The family (Xt)t>0 is uniformly integrable (we say X is a uniformly integrable martingale);

b) Xt converges almost surely and in L1 to a limit X∞ as t→∞;

c) there exists Y ∈ L1 with Xt = E[Y |Ft] for all t > 0.

In that case we can always take Y = X∞.

Corollary 4.20 Let X be a right-continuous martingale and p > 1 such that

sup
t>0
E[|Xt|p] <∞.

The we call X bounded in Lp, and X is uniformly integrable and

E[sup
t>0
|Xt|p] 6

(
p

p− 1

)p
E[|X∞|p] =

(
p

p− 1

)p
sup
t>0
E[|Xt|p] <∞.
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If T is a stopping time and X a right-continuous submartingale with supt>0E[X+
t ] < ∞

(which is in particular the case if X is a uniformly integrable martingale), then we define

XT (ω) := I{T (ω)<∞}XT (ω)(ω) + I{T (ω)=∞}X∞(ω).

Theorem 4.21 (Stopping theorem for u.i. martingales)
Let X be a right-continuous uniformly integrable martingale and let S and T be stopping

times with S 6 T . Then XS and XT are in L1 and we have

E[XT |FS ] = XS .

Corollary 4.22 (Stopping theorem with bounded stopping times)
Let X be a martingale and let S, T be stopping times with S 6 T 6 K for some K ∈ R.

Then XS , XT ∈ L1 and
E[XT |FS ] = XS .

Corollary 4.23 Let X be a right-continuous martingale and T be a stopping time. Then the
stopped process

XT
t = Xt∧T , t > 0,

is a martingale. If X is uniformly integrable, then XT is as well and we have

XT
t = Xt∧T = E[XT |Ft], t > 0.

Theorem 4.24 (Stopping theorem for positive supermartingales)
Let X be a right-continuous positive supermartingale. Then

i. there exists a random variable X∞ ∈ L1 with limt→∞Xt = X∞ almost surely;

ii. if S 6 T are stopping times, then

E[XT |FS ] 6 XS ;

iii. the process XT
t = Xt∧T , t > 0, is a supermartingale.

Exercise 4.25 LetX be a positive supermartingale. Show thatX is a uniformly integrable martingale
if and only if E[X∞] = E[X0].

Proposition 4.26 Let B be a Brownian motion and write Tx = inf{t > 0 : Bt = x} for
x ∈ R. Let a, b > 0. Then

P(T−a < Tb) =
b

a+ b
, P(T−a > Tb) =

a

a+ b
.

5 Continuous semimartingales

Throughout this section we assume that our filtration F satisfies the usual conditions. By
being careful, it is possible to develop the entire theory that follows without this assumption,
but doing so would complicate the presentation and as the material is already technical enough
as it is, we prefer to work under the usual conditions..
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5.1 Processes of finite variation

Definition 5.1 Let 0 6 s < t < ∞. A continuous function a : [s, t] → R is of bounded
variation on [s, t] if there exist two increasing functions a(+) and a(−) such that a = a(+)−
a(−). A continuous function a : R+ → R is of finite variation if a(0) = 0 and a|[0,T ] is of
bounded variation whenever 0 6 T <∞.

If a : [0, T ]→ R with a(0) = 0 is of bounded variation, then a(+) and a(−) are of course
not unique: we can add any increasing function to both of them. But there is a minimal
decomposition that is unique: First note that a(+) and a(−) are the “distribution functions”
of two measures, determined via

µ+([0, t]) = a(+)(t) and µ−([0, t]) = a(−)(t).

So µ = µ+−µ− is a signed measure on ([0, T ],B([0, T ])), i.e. a set function µ : B([0, T ])→ R

such that µ(∅) = 0 and µ(∪nAn) =
∑

n µ(An) with absolutely converging series on the right
hand side whenever (An)n is a sequence of disjoint sets in B([0, T ]). Therefore, there exists
a unique Jordan decomposition of µ, denoted by abuse of notation again by µ = µ+ − µ−,
where µ+ and µ− are still positive measures, but now they are also mutually singular (there
exists B+ ∈ B([0, T ]) with µ+ = µ+(· ∩B+) and µ− = µ−(· ∩Bc

+)).

Definition 5.2 Let a be of finite variation and let µ be the signed measure associated to it.
The total variation of µ is the measure

|µ| = µ+ + µ−,

where (µ+, µ−) is the Jordan decomposition of µ. We also call

V (a)(t) = µ+([0, t]) + µ−([0, t])

the total variation of a, and we write a(+)(t) = µ+([0, t]) and a(−)(t) = µ−([0, t]). Then
a(+) and a(−) are increasing functions with a = a(+)− a(−), and if f and g are increasing
functions with a = f − g, then a(+) 6 f and a(−) 6 g.

Note that
|µ(B)| = |µ+(B)− µ−(B)| 6 µ+(B) + µ−(B) = |µ|(B)

for all B ∈ B([0, T ]). Since a is continuous, also V (a) is continuous because µ({t}) = µ+({t})−
µ−({t}) = 0 for all t > 0, which by the mutual singularity of µ+ and µ− yields µ+({t}) =
µ−({t}) = 0 for all t > 0. Similarly we get V (a)(0) = 0.

Proposition 5.3 Let a be of finite variation. Then we have for all t > 0

V (a)(t) = sup


n−1∑
j=0

|a(tj+1)− a(tj)| : n ∈ N, 0 = t0 < . . . < tn = t

 = lim
n→∞

V n(a)(t),

where
V n(a)(t) =

∑
k:(k+1)/n6t

|a((k + 1)/n)− a(k/n)|.
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Definition 5.4 If h : R+ → R is measurable and satisfies
∫ T

0 |h(t)||µ|(dt) <∞ for all T > 0,
then we set∫ t

0
h(s)da(s) :=

∫
R+

I[0,t](s)h(s)µ(ds) =

∫
R+

I[0,t](s)h(s)µ+(ds)−
∫
R+

I[0,t](s)h(s)µ−(ds),

t > 0, and ∫ t

0
h(s)dV (a)(s) :=

∫
R+

I[0,t](s)h(s)|µ|(ds).

Both
∫ ·

0 h(s)da(s) and
∫ ·

0 h(s)dV (a)(s) are of finite variation and the associated measures are
h(s)µ(ds) and h(s)|µ|(ds).

Example 5.5 If a ∈ C1(R+,R), then a is of bounded variation and we have for t > 0∫ t

0
h(s)da(s) =

∫ t

0
h(s)a′(s)ds,

∫ t

0
h(s)dV (a)(s) =

∫ t

0
h(s)|a′(s)|ds.

Indeed it suffices to note that the measures a′(s)ds and µ assign the same value
∫ v
u a
′(s)ds to

any interval (u, v] ⊂ R+.

Lemma 5.6 Let a be of bounded variation on [0, T ], let h : [0, T ] → R be left-continuous
and bounded and let 0 = tn0 < . . . < tnNn = T be a sequence of partitions of [0, T ] with
maxk<Nn |tnk+1 − tnk | → 0 for n→∞. Then∫ T

0
h(t)da(t) = lim

n→∞

Nn−1∑
k=0

h(tj)(a(tj+1)− a(tj)).

Definition 5.7 A stochastic process A = (At)t>0 is a process of finite variation if it is adapted
and the function A(ω) is of finite variation for all ω ∈ Ω. In that case we write A ∈ A. If
furthermore A(ω) is increasing for all ω ∈ Ω, we write A ∈ A+.

Proposition 5.8 Let A ∈ A and let H be a progressively measurable process such that for
all ω ∈ Ω and all t > 0 ∫ t

0
|Hs|(ω)dV (A)s(ω) <∞.

Then

(H ·A)t(ω) :=

∫ t

0
Hs(ω)dAs(ω)

defines a process of finite variation.

Remark 5.9

i. We will often only have the condition
∫ t

0 |Hs|dV (A)s <∞ satisfied outside a null set. In
that case we set{ ∫ t

0 Hs(ω)dAs(ω),
∫ T

0 |Hs|(ω)dV (A)s(ω) <∞ for all T > 0,
0, else,

which still defines a finite variation process because we assumed our filtration F to satisfy
the usual conditions, so altering a process on a null set does not change its adaptedness
properties.
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ii. If almost surely
∫ t

0 |Hs|dV (A)s <∞ and
∫ t

0 |GsHs|dV (A)s <∞, then we have

G · (H ·A) = (GH) ·A,

which holds because (H ·A) is a finite variation process associated to the measure Hsdµ,
where µ is the measure associated to A.

5.2 Local martingales and their quadratic variation

Definition 5.10 An adapted continuous process M is called a local martingale if there exists
an increasing sequence of stopping times (Tn) with limn→∞ Tn = ∞ almost surely, such that
all of the stopped processes MTn are martingales. In that case we write M ∈ Mloc and call
(Tn) a localizing sequence for M .

Any increasing sequence of stopping times (Sn) with limn→ Sn =∞ almost surely is called
a localizing sequence. We also write M for the set of all continuous uniformly integrable
martingales.

Remark 5.11

i. We do not require that local martingales are integrable.

ii. Every continuous martingale is a local martingale. It suffices to take Tn ≡ ∞.

iii. If M ∈Mloc (respectively M ∈M) and T is a stopping time, then MT ∈Mloc (respec-
tively M ∈M): apply the stopping theorem and note that (MT )Tn = (MTn)T .

iv. If M ∈ Mloc is localized by (Tn) and (Sn) is a sequence of stopping times with Sn 6 Tn
for all n ∈ N and limn→∞ Sn = ∞ almost surely, then (Sn) is also a localizing sequence
for M (apply the stopping theorem).

v. For every M ∈ Mloc there exists a localizing sequence of stopping times (Tn) such that
MTn ∈M for all n ∈ N. (Take Tn = Sn ∧ n for a localizing sequence (Sn) for M).

Proposition 5.12 Let M ∈Mloc.

i. If M is positive, then it is a supermartingale.

ii. If there exists Z ∈ L1 with Mt 6 Z for all t > 0, then M ∈M.

iii. If M0 = 0, then Tn = inf{t > 0 : |Mt| > n}, n ∈ N, is a localizing sequence for M .

Remark 5.13 Given point ii. one might be lead to believe that a local martingale M for
which (Mt)t>0 is uniformly integrable is always a martingale. This is false, as Exercise ... will
show!

Lemma 5.14 Let M ∈ A ∩Mloc. Then almost surely Mt = 0 for all t > 0.

Remark 5.15 This lemma shows that any nontrivial continuous martingale is almost surely
of infinite variation. For discontinuous martingales this is not at all true: Recall for example
the compensated Poisson process of Example 4.4.
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Theorem 5.16 Let M ∈ Mloc. Then there exists an increasing process 〈M,M〉 ∈ A+,
unique up to indistinguishability, such that M2 −M2

0 − 〈M,M〉 ∈ Mloc. We call 〈M,M〉 the
quadratic variation of M .

Remark 5.17 We will later see that if (Tnk : n, k ∈ N0) is a family of stopping times with
0 = Tn0 < Tn1 < Tn2 < . . . and limk→∞ T

n
k = ∞ for all n and such that for all ε,K > 0 we

have
lim
n→∞

P(∃k : |Tnk+1 − Tnk | > ε, Tnk+1 < K) = 0,

then

〈M,M〉t = lim
n→∞

∞∑
k=0

(MTnk+1∧t −MTnk ∧t)
2, (22)

where the convergence is in probability, uniformly in t on any compact set. A typical example
of stopping times Tnk that satisfy these assumptions are the deterministic times Tnk = k/n.

Lemma 5.18 Let M ∈ M with E[M2
∞] < ∞, let (Tk)k∈N be an increasing sequence of

stopping times with limk→∞ Tk = ∞, and let C > 0 be such that for every k the random
variable HTk is FTk-measurable and satisfies |HTk | 6 C. Then for

Ht =
∞∑
k=0

HTkI[Tk,Tk+1)(t), t > 0,

we define

(H ·M)t :=
∞∑
k=0

HTk(MTk+1∧t −MTk∧t), t > 0,

which is a martingale in M that satisfies

E[sup
t>0
|(H ·M)t|2] 6 4C2(E[M2

∞]−E[M2
0 ]).

Remark 5.19 In the proof we showed that whenever T is a stopping time, then

〈MT ,MT 〉 = 〈M,M〉T

by the uniqueness of the quadratic variation. Moreover, we have

〈M,M〉 = 〈M −M0,M −M0〉.

Theorem 5.20 Let M ∈Mloc with M0 = 0.

i. The following conditions are equivalent:

a) M ∈M and M is L2-bounded;

b) E[〈M,M〉∞] <∞.

In that case M2 − 〈M,M〉 ∈ M and in particular E[M2
∞] = E[〈M,M〉∞].

ii. The following conditions are equivalent:

a) M is a martingale and E[M2
t ] <∞ for all t > 0;
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b) E[〈M,M〉t] <∞ for all t > 0.

Proposition 5.21 Let M ∈ Mloc be such that 〈M,M〉 is indistinguishable from 0. Then
Mt = M0 almost surely for all t > 0.

Definition 5.22 Let M,N ∈Mloc. Then we define

〈M,N〉 =
1

4
(〈M +N,M +N〉 − 〈M −N,M −N〉) ∈ A

and call 〈M,N〉 the quadratic covariation of M and N .

The definition of 〈M,N〉 is in analogy to the formula

< x, y >=
1

4
(< x+ y, x+ y > − < x− y, x− y >) =

1

4
(‖x+ y‖2 − ‖x− y‖2)

which links the inner product and the norm on a Hilbert space. Note that once we proved
the convergence (22) for all local martingales, it will follow directly that

〈M,N〉t = lim
n→∞

∞∑
k=0

(MTnk+1∧t −MTnk ∧t)(NTnk+1∧t −NTnk ∧t).

Proposition 5.23 Let M,N ∈Mloc.

i. 〈M,N〉 is the unique (up to indistinguishability) process in A for such that MN−M0N0−
〈M,N〉 is a local martingale.

ii. The map (M,N) 7→ 〈M,N〉 is bilinear and symmetric.

iii. If T is a stopping time we have 〈M,N〉T = 〈MT , NT 〉 = 〈MT , N〉.

iv. 〈M,N〉 = 〈M −M0, N −N0〉.

v. If M and N are L2-bounded martingales, then MN − M0N0 − 〈M,N〉 ∈ M, and in
particular 〈M,N〉∞ = limt→∞〈M,N〉t exists and satisfies

E[〈M,N〉∞] = E[M∞N∞]−E[M0N0].

Example 5.24 If B1 and B2 are independent Brownian motions we have seen that B1B2 is
a martingale, so we must have 〈B1, B2〉 ≡ 0.

6 Stochastic integration

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space, where (Ft)t≥0 is a filtration satisfying
the usual conditions, and let B be an (Ft)-Brownian motion. We want to define the integral∫ t

0 φsdBs for a suitable class of processes φ. The Brownian motion is not of finite variation,
we cannot define it path by path.

6.1 Integration against Brownian motion

Before defining the stochastic integral against Brownian motion, we need to introduce the
stochastic integral for elementary processes.
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6.1.1 Stochastic integration for elementary processes

Definition 6.1 An elementary process is a process of the form φt :=
∑n−1

i=0 ui1(ti,ti+1](t),
t ≥ 0, where n ∈ N, ui is a bounded and Fti-measurable random varibale and 0 ≤ t0 < t1 <
. . . < tn.
We denote by E the set of elementary processes. For φ ∈ E and 0 < t ≤ ∞, we define the
stochastic integral of φ against B by:∫ t

0
φsdBs :=

n−1∑
i=0

ui(Bti+1∧t −Bti∧t).

H2
c denotes the set of L2-bounded continuous martingales M such that M0 = 0. The following

proposition gives important properties of the stochastic integral defined above.

Proposition 6.2 Let φ ∈ E. Then

Mt :=

∫ t

0
φsdBs, t ≥ 0, belongs to H2

c and for all t ≥ 0, 〈M,M〉t =

∫ t

0
φ2
sds.

In particular,

E
[ ∫ ∞

0
φsdBs

]
= 0 and E

[
(

∫ ∞
0

φsdBs)
2
]

= E
[ ∫ ∞

0
φ2
sds
]
.

6.1.2 Stochastic integration against Brownian motion

We introduce Λ2 := L2(R+ × Ω,Prog, λ ⊗ P) as the set of progressively measurable real

valued processes (φt)t≥0 such that ‖φ‖Λ2 :=
(
E
[ ∫∞

0 φ2
sds
])1/2

<∞. Note that (Λ2, ‖.‖Λ2) is

a Hilbert space. Since E ⊂ Λ2, the map

I : φ 7−→ I(φ) :=

∫ ∞
0

φsdBs

is a linear isometry on E , then it is uniquely extended to a linear isometry on Ē . In the next
propositon, we identify Ē .

Proposition 6.3 E is dense in (Λ2, ‖.‖Λ2).

Consequently, the linear isometry I is extended to a linear isometry on Λ2, denoted again I.
This is the aim of the following theorem.

Theorem 6.4 There exists a unique linear map I : Λ2 7−→ L2(Ω,F ,P) such that:

i) For all φ ∈ Λ2, ‖I(φ)‖L2(Ω) = ‖φ‖Λ2.

ii) Let s ≤ t. If φ := u1(s,t], where u is an Fs-measurable random variable, then

I(φ) = u(Bt −Bs).

In addition, E[I(φ)] = 0.
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We write I(φ) =
∫∞

0 φsdBs and we call I(φ) the stochastic integral of φ against B on R+.

For t > 0, we set Λ2(t) := L2([0, t] × Ω,Prog, λ|[0,t] ⊗ P). Then, we define
∫ t

0 φsdBs as
follows:

If φ ∈ Λ2(t), the process (1[0,t](s)φ)s belongs to Λ2, and we define∫ t

0
φsdBs :=

∫ ∞
0
1[0,t](s)φsdBs.

In this case, we have the following.

iii) E
[ ∫ t

0 φsdBs

]
= 0 and E

[( ∫ t
0 φsdBs

)2]
= E

[ ∫ t
0 φ

2
sds
]
.

iv) If φ, ψ ∈ Λ2(t), then E
[ ∫ t

0
φsdBs

∫ t

0
ψsdBs

]
= E

[ ∫ t

0
φsψsds

]
.

For φ ∈ Λ2 and t ≥ 0, Mt :=
∫ t

0 φsdBs is a class of L2 (since it is defined up to an equivalence).
Thus, a natural question is to find a continuous version of M . This is the aim of the next
theorem.

Theorem 6.5 For all φ ∈ Λ2, there exists M ∈ H2
c such that for all t, Mt =

∫ t
0 φsdBs almost

surely and M2
t −

∫ t
0 φ

2
sds is a martingale.

From now on, for φ ∈ Λ2,
( ∫ t

0 φsdBs

)
t

will denote the continuous martingale M such that

for all t, Mt =
∫ t

0 φsdBs almost surely. M is called the stochastic integral of φ. Its main
properties are given in the following corollary.

Corollary 6.6 Let φ and ψ ∈ Λ2. For t ≥ 0, set Mt :=
∫ t

0 φsdBs and Nt :=
∫ t

0 ψsdBs.

a) 〈M,N〉t =
∫ t

0 φsψsds and MtNt − 〈M,N〉t is a martingale.

b) If T is a stopping time, then E
[
MT
t N

T
t

]
= E

[ ∫ t∧T
0 φsψsds

]
.

6.2 Stochastic integration against general local martingales

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space, where (Ft)t≥0 is a filtration satisfying
the usual conditions.

6.2.1 Stochastic integration against L2-bounded martingales

By Theorem 5.20, if M ∈ H2
c , then E[〈M,M〉∞] < ∞. Thus, for M,N ∈ H2

c , we have
E[〈M,M〉∞] <∞ using Theorem 6.7. Consequently, we can define a scalar product on H2

c by
setting (M,N)H2

c
:= E[〈M,M〉∞]. We can easily check that ‖.‖H2

c
is a norm since by using

Lemma 5.14 (and identifying indistinguishable processes), we have that ‖M‖H2
c

= 0 if and
only if M = 0.

Now, we give an important inequality which is a generalization of Cauchy-Schwarz in-
equality to integrals against the quadratic covariation of local martingales.

Theorem 6.7 (Kunita-Watanabe inequality)
Let M,N ∈Mloc and let H and K be measurable processes. Then

27



∣∣∣∣∫ ∞
0

HtKtd〈M,N〉t
∣∣∣∣ 6 ∫ ∞

0
|HtKt|dV (〈M,N〉)t (23)

6

(∫ ∞
0
|Ht|2d〈M,M〉t

)1/2(∫ ∞
0
|Kt|2d〈N,N〉t

)1/2

. (24)

Now, we are in position to define the stochastic integrals against L2-bounded martingales.

Definition 6.8 For M ∈ H2
c , we set L2(M) := L2(R+ × Ω,Prog, dPd〈M,M〉), the space of

progressively measurable processes H satisfying the condition E
[ ∫∞

0 H2
sd〈M,M〉s

]
<∞.

First, note that L2(M) is a Hilbert space for the canonical scalar product defined be (H,K)L2(M) :=

E
[ ∫∞

0 HsKsd〈M,M〉s
]
. Then, we give a density result which will be a key tool in the con-

struction of the stochastic integral against L2-bounded martingales. We recall that E denotes
the set of elementary processes.

Proposition 6.9 For all M ∈ H2
c , E is dense in (L2(M), ‖.‖L2(M)).

Now we define the stochastic integral for an elementary process H against M ∈ H2
c .

Definition
Let M ∈ H2

c . For all H ∈ E i.e. of the form H :=
∑p−1

i=0 Hi1(ti,ti+1], we define the stochastic
integral of H against M by

(H ·M)t :=

p−1∑
i=0

Hi(Mti+1∧t −Mti∧t), t > 0,

Proposition 6.10 For M ∈ H2
c and H ∈ E, we have

i) H ·M ∈ H2
c .

ii) For all N ∈ H2
c ,

〈H ·M,N〉 =

∫ t

0
Hsd〈M,N〉s = H · 〈M,N〉.

Theorem 6.11 Let M ∈ H2
c . The map H ∈ E 7−→ H ·M is uniquely extended to a linear

isometry on L2(M) with values in H2
c . In addition,

i) H ·M is characterized by the equality:

For all N ∈ H2
c , 〈H ·M,N〉 = H · 〈M,N〉.

ii) If T is a stopping time we have

(H1[0,T ]) ·M = (H ·M)T = H ·MT .

With the integral notation, we write:

For all t ≥ 0,

∫ t

0
H1[0,T ])dM =

∫ t∧T

0
HdM =

∫ t

0
HdMT .
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Proposition 6.12 Let M ∈ H2
c and K ∈ L2(M), H ∈ L2((K ·M)). Then HK ∈ L2(M)

and
((HK) ·M) = (H · (K ·M)).

We should read this formally as∫ ·
0
HsKsdMs =

∫ ·
0
Hsd

(∫ ·
0
KrdMr

)
s

.

Remark 6.13 Let M,N ∈ H2
c and H ∈ L2(M), K ∈ L2(N). Then for all t ∈ [0,∞]

E[(H ·M)t] = 0, E[(H ·M)t(K ·N)t] = E

[∫ t

0
HsKsd〈M,N〉s

]
,

so in particular

E[(H ·M)2
t ] = E

[∫ t

0
H2
sd〈M,M〉s

]
.

6.2.2 Stochastic integration against general local martingales

Definition 6.14 For M ∈ Mloc with M0 = 0, L2(M)loc denotes the set of progressively
measurable processes H such that for all t ≤ 0,

∫ t
0 H

2
sd〈M,M〉s <∞ almost surely.

Theorem 6.15 (Localization of the stochastic integral)
Let M ∈ Mloc with M0 = 0 and let H ∈ L2

loc(M). Then there exists a unique process
H ·M =

∫ ·
0 HsdMs ∈Mloc such that (H ·M)0 = 0 and for all N ∈Mloc

〈H ·M,N〉 = H · 〈M,N〉.

If T is a stopping time we have

(H1[0,T ]) ·M = (H ·M)T = (H ·MT ).

If K ∈ L2
loc and H ∈ L2

loc(K ·M), then HK ∈ L2
loc(M) and

H · (K ·M) = (HK) ·M.

If M ∈ H2
c and H ∈ L2(M), then H ·M is the same process that we constructed in Theorem

6.11.

Remark 6.16 Let M ∈ Mloc and H ∈ L2
loc(M). If E

[∫ t
0 H

2
sd〈M,M〉s

]
< ∞ for all t > 0,

then H ·M is a martingale and

E[(H ·M)t] = 0, E[(H ·M)2
t ] = E

[∫ t

0
H2
sd〈M,M〉s

]
, t > 0.

If even E
[∫∞

0 H2
sd〈M,M〉s

]
<∞, then H ·M ∈ H2

c . This follows from Theorem 5.20.
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6.3 Itô’s formula

6.3.1 Continuous semimartingales

Definition 6.17 Recall that a continuous semimartingale X is an adapted process

X = X0 +M +A,

where M ∈ Mloc with M0 = 0 and A ∈ A (so in particular also A0 = 0), and that this
decomposition is unique because A∩Mloc = {0}. If X is a semimartingale and H ∈ L2

loc(M)
is such that almost surely ∫ t

0
|Hs|dV (A)s <∞

for all t > 0, then we define

(H ·X) :=

∫ ·
0
HsdXs := (H ·M) + (H ·A).

In that case we write H ∈ L(X).

Remark 6.18 Let Hs(ω) =
∑p−1

i=0 Hi(ω)I(ti,ti+1](s) with Fti-measurable Hi. Then H ∈ L(X)
for any continuous semimartingale and

(H ·X)t =

p−1∑
i=0

Hi(Xti+1∧t −Xti∧t).

Indeed it suffices to show the equality for X = M ∈ Mloc because it is obvious for the finite
variation part. Then the only difficulty is that H 6∈ E because we did not assume the Hi to
be bounded. So let Tn := inf{t > 0 : |Ht| > n}. Then HI[0,Tn] ∈ E and

(H ·M)Tn = (HI[0,Tn]) ·M =

p−1∑
i=0

HiI{ti6Tn}(Mti+1∧t −Mti∧t).

Now simply let n→∞.

Proposition 6.19 Let X be a continuous semimartingale and H be adapted and continuous.
Then H ∈ L(X) and if t > 0 and 0 = tn0 < . . . < tnpn = t is a sequence of partitions of [0, t]
with limn→∞max{|tnk+1 − tnk |} = 0 (we say the mesh size of the partition goes to zero), then

lim
n→∞

sup
s6t

∣∣∣∣∣
pn−1∑
k=0

Htnk
(Xtnk+1∧s −Xtnk∧s)−

∫ s

0
HrdXr

∣∣∣∣∣ = 0,

where the convergence is in probability.

Definition 6.20 Let X = X0 +M +A and Y = Y0 +N +B be continuous semimartingales.
Then we define

〈X,Y 〉 := 〈M,N〉.
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Proposition 6.21 Let X,Y be continuous semimartingales. Let t > 0 and 0 = tn0 < . . . <
tnpn = t be a sequence of partitions of [0, t] with limn→∞max{|tnk+1 − tnk |} = 0. Then

lim
n→∞

sup
s6t

∣∣∣∣∣
pn−1∑
k=0

Xtnk∧s,t
n
k+1∧sYt

n
k∧s,t

n
k+1∧s − 〈X,Y 〉s

∣∣∣∣∣ = 0,

where the convergence is in probability. Here we introduced the notation

Zu,v := Zv − Zu.

6.3.2 Itô’s formula

Theorem 6.22 (Itô’s formula)
Let X = (X1, . . . , Xd) be a d-dimensional continuous semimartingale (i.e. every Xi is a

continuous semimartingale) and let F ∈ C2(Rd,R). Then F (X) is a continuous semimartin-
gale and

F (Xt) = F (X0) +
d∑
i=1

∫ t

0
∂iF (Xs)dX

i
s +

1

2

d∑
i,j=1

∫ t

0
∂i∂jF (Xs)d〈Xi, Xj〉s, t > 0. (25)

Remark(for tutorial)
If x ∈ C1([0,∞),R), then the fundamental theorem of calculus gives for f ∈ C1(R,R)

f(xt)− f(x0) =

∫ t

0
∂s(f(xs))ds =

∫ t

0
f ′(xs)∂sxsds =

∫ t

0
f ′(xs)dxs.

The fundamental theorem of calculus is shown by considering telescope sums. So let us try
to mimick the proof say for x replaced by a Brownian motion B. Then formally

f(Bt)− f(B0) =
∑
dt

(f(Bt+dt)− f(Bt)) =
∑
dt

{f ′(Bt)(Bt+dt −Bt) +O((Bt+dt −Bt)2)}.

But now very formally (Bt+dt−Bt)2 = O

((√
dt
)2
)

= O(dt), so we cannot hope the second

contribution to vanish. Instead we need to go one order higher in the Taylor expansion and
get

f(Bt)− f(B0) =
∑
dt

{
f ′(Bt)(Bt+dt −Bt) +

1

2
f ′′(Bt)(Bt+dt −Bt)2 +O((Bt+dt −Bt)3)

}
.

Now the last term should be of order (dt)3/2 and thus its contribution should vanish, and
since

∑
dt(Bt+dt −Bt)2 = 〈B〉t = t, we guess

f(Bt)− f(B0) =

∫ t

0
f ′(Bs)dBs +

1

2

∫ t

0
f ′′(Bs)ds,

which is exactly Itô’s formula which involves the additional second order term compared to
the smooth setting. Now it only remains to make this formal argumentation rigorous in the
general semimartingale setting, which is not much more difficult than what we sketched above.
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Corollary 6.23 (Integration by parts)
If X and Y are continuous semimartingales, then

XtYt = X0Y0 +

∫ t

0
XsdYs +

∫ t

0
YsdXs + 〈X,Y 〉t, t > 0,

and in particular

X2
t = X2

0 + 2

∫ t

0
XsdXs + 〈X,X〉t, t > 0.

If M is a local martingale, we find again that

M2 −M2
0 − 〈M,M〉 = 2

∫ ·
0
MsdMs

is a local martingale.

Remark 6.24 If B is a d-dimensional Brownian motion, then 〈Bi, Bj〉t = δi,jt, and therefore
Itô’s formula applied to F : R+ ×Rd → R and the d-dimensional semimartingale (t, Bt)t>0

gives

F (t, Bt) = F (t, B0) +
d∑
i=1

∫ t

0
∂iF (s,Bs)dB

i
s +

∫ t

0

(
∂sF (s,Xs) +

1

2
∆F (s,Xs)

)
ds, t > 0,

where ∆F (x) =
∑d

i=1 ∂
2
iiF (x) is the Laplacian of F .

In the following we will apply Itô’s formula also to complex valued functions, which can be
done by treating the real and the imaginary part separately. Similarly, a complex valued
continuous stochastic process is a (local) martingale if its real and its imaginary part are both
(local) martingales.

Proposition 6.25 Let M ∈Mloc and λ ∈ C. We set

E(λM)t := exp(λMt − λ2〈M,M〉t/2), t > 0.

Then E(λM) is a local martingale and solves the stochastic differential equation

E(λM)t = eλM0 + λ

∫ t

0
E(λM)sdMs.

For λ = 1 we call E(M) the stochastic exponential of M .

6.3.3 Some applications of Itô’s formula

Theorem 6.26 (Lévy’s characterization of the Brownian motion)
Let X = (X1, . . . , Xd) be a d-dimensional adapted continuous process with Xi

0 = 0 for all
i. Then X is a d-dimensional F-Brownian motion if and only if the following two conditions
hold:

i. All components Xi are local martingales and
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ii. 〈Xi, Xj〉t = δi,jt for all t > 0.

In particular, a continuous local martingale M with M0 = 0 is a Brownian motion if and only
if 〈M,M〉t = t. This is false if M is allowed to jump!

Lemma 6.27 Let M ∈Mloc. Then M and 〈M,M〉 almost surely have the same intervals of
constance. That is, for almost all ω ∈ Ω we have for all 0 6 s < t

Mr(ω) = Ms(ω) for all r ∈ [s, t] ⇔ 〈M,M〉t(ω) = 〈M,M〉s(ω).

Theorem 6.28 (Dambis, Dubins-Schwarz)
Let M ∈ Mloc with M0 = 0 and 〈M,M〉∞ = ∞ almost surely. Then there exists a

Brownian motion β such that almost surely

Mt = β〈M,M〉t, t > 0.

In other words, M is a time-changed Brownian motion.

Remark 6.29 i. The assumption 〈M,M〉∞ =∞ is not necessary, but without it we might
have to enlarge the probability space (think of |Ω| = 1, F = {∅,Ω}, M = 0). See
Revuz-Yor Theorem V.1.7 for a proof.

ii. The Brownian motion β is in general not adapted to our original filtration, but instead
to a “time-changed filtration”, as we will see in the proof.

Theorem 6.30 (Burkholder-Davis-Gundy)
For every p > 0 there exist cp, Cp > 0 such that for all M ∈ Mloc with M0 = 0 and all

stopping times T

cpE[〈M,M〉p/2T ] 6 E[sup
t6T
|Mt|p] 6 CpE[〈M,M〉p/2T ].

Now we will establish that if the filtration on Ω is the natural filtration of the Brownian
motion, then all martingales can be represented as stochastic integrals against this Brownian
motion.

Theorem 6.31 (Martingale represntation theorem)
Assume that (Ft)t≥0 is the natural (completed) filtration of the standard Brownian motion

B. Then, for all random variable Z ∈ L2(Ω,F∞), there exists a (unique) process h ∈ L2(B)
(in particular progressively measurable then adapted) such that:

Z = E[Z] +

∫ ∞
0

hsdBs.

Consequently, for any continuous L2-bounded martingale (respectively for any M ∈ Mloc),
there exists a (unique) process h ∈ L2(B) (respectively h ∈ L2

loc(B)) and a constant C ∈ R
such that:

Mt = C +

∫ t

0
hsdBs.
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Lemma 6.32 Under the assumptions of the previous theorem, the vector space generated by
the random variables

exp i
n∑
j=1

λj(Btj −Btj+1), for 0 = t0 < t1 < . . . < tn and λ1, . . . , λn ∈ R,

is dense in L2
C(Ω,F∞).

6.4 Girsanov’s theorem

Itô’s formula explores how a semimartingale is transformed when we apply a smooth trans-
formation. Girsanov’s theorem study the question how a semimartingale is transformed when
we apply a change of the probability measure P.
Throughout this section, (Ω,F , (Ft)t≥0,P) denotes a filtered probability space, where (Ft)t≥0

is a filtration satisfying the usual conditions.

6.4.1 Stochastic logarithm

The martingale property is related to the probability used: if we change P into Q, a martingale
under P has no reason to be a martingale under Q.
In this section, we study how a semimartingale behaves under a change of measure from P to
Q. We will write X is a P-martingale, or is a (Ft,P)-martingale. We also write EP for any
expectaction under P.
In the sequel, Q << P on F∞. This implies that for all t ≥ 0, Q << P on Ft. We denote by
Dt the Radon-Nikodym derivative of Q w.r.t. P on Ft.

Proposition 6.33 (Radon-Nikodym derivative process)

1) D is an (Ft)-martingale uniformly integrable.

2) D has a càdlàg modification. For this version and for any stopping time T ,

DT =
dQ

dP
|FT .

3) If Q ∼ P on F∞, then almost surely for all t ≥ 0, Dt > 0.

In the sequel, we assume that D has continuous trajectories.

Proposition 6.34 (Stochastic logarithm) Let D ∈ Mloc and positive. Then, there exists a
unique L ∈Mloc, called the stochastic logarithm of D, such that for all t ≥ 0,

for all t ≥ 0, Dt = exp {Lt −
1

2
〈L,L〉t}.

Moreover, L satisfies:

for all t ≥ 0, Lt = logD0 +

∫ t

0
D−1
s dDs

.
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Proposition 6.35 (P-martingale and Q-martingale)
Let Q ∼ P and L be the stochastic logarithm associated to the martingale Dt = dQ

dP |Ft that
we assume to be continuous. Let X be a continuous adapted process and T be a stopping time
such that (XD)T is a P-martingale. Then, XT is a Q-martingale.
In particular, if XD is a P-martingale, X is a Q-martingale.

6.4.2 Girsanov’s theorem

Theorem 6.36 (Girsanov’s theorem)
Let Q ∼ P and L be the stochastic logarithm (assumed continuous) associated to the

martingale

Dt =
dQ

dP
|Ft .

If M is a continuous adapted (Ft −P)-local martingale, then the process

M̃ := M − 〈M,L〉

is a continuous (Ft −P)-local martingale.

Remark 6.37 i) Under the assumptions of the previous theorem and denoting M̃ =
GPQ(M), the map GPQ satifies the following.

– GPQ send the set of continuous P-local martingales into the set of continuous Q-local
martingales.

– GQP ◦GPQ = Id.

– GPQ commutes with the stochastic integral.

ii) A continuous (Ft−P)-local martingale M is a continuous (Ft−Q)-semimartingale, by
the decomposition M = M̃ + 〈M,L〉.

iii) Under the assumptions of the previous theorem , the classes of continuous (Ft − P)-
semimartingales and continuous (Ft −Q)-semimartingales coincide.

iv) Let X and Y be two continuous semimartingales ( with respect to P or Q). Then, the
quadratic covariation 〈X,Y 〉 remainds unchanged under P or Q.

v) Let T > 0 and Ft∈[0,T ] be a given filtration satisfying the usual conditions.
If Q ∼ P, we define as previously the martingale Dt∈[0,T ], and if D has a continous
version, we define the martingale (Lt)t∈[0,T ]. Then, the analogue of the previous theorem
(Girsanov) reminds true for [0, T ].

Corollary 6.38 (The Cameron-Martin formula) Let T > 0, let B be an (Ft −P)-Brownian
motion and f ∈ L2([0, T ]). Then, we have the following.

1) The random variable

DT = exp
{∫ T

0
f(s)dBs −

1

2

∫ T

0
f(s)2ds

}
is a probability density defining a probability measure Q (by dQ = DTdP).
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2) The process

BQ
t := Bt −

∫ t∧T

0
f(s)ds

is a Q-Brownian motion.
That is , under Q, the P-Brownian motion is written as

Bt = BQ
t +

∫ t∧T

0
f(s)ds.

Example 6.39 (The supremum of a drifted Brownian)
To study the distribution of the supremum of B̃t := Bt + bt on [0, T ], it is sufficient to

know the distribution of (BT , supt≤T Bt). Indeed, by the Cameron-Martin formula,

P
[

sup
t≤T

(Bt + bt) ≥ x
]

= EP
[

exp
{
bBT −

1

2
b2T

}
1{supt≤T (Bt)≥x}

]
.

7 Stochastic differential equations (SDEs)

In this chapter, we deal with Brownian Stochastic differential equations (SDEs in short). In
next section, we motivate the study of SDEs as a generalization of

7.1 Introduction and definitions

Standard differential equations rule may deterministic phenomenas. To take into account
random phenomena, we must take into account “Sochastic differentials”, which transforms
Differential equations into SDEs.
Differential equations are of the form

ẋ(t) = a(t, x(t)),

where the unknown is the function t 7→ x(t), satisfying an equation involving ẋ(t) and x(t)
itself.
SDEs are a generalization of the previous equation differential equation, where the determin-
istic dynamic a is disturbed by a random term, generally modeled by a Brownian motion B
and an intensity of the noise σ(t, x):

dXt = a(t,Xt)dt+ σ(t,Xt)dBt.

Note that the previous equation is symbolic since dBt has no sens (B is not differentiable).
We should write this equation under the form

Xt = X0 +

∫ t

0
a(s,Xs)ds+

∫ t

0
σ(s,Xs)dBs.

We generalize this definition to the multidimensional case.

Definition 7.1 (Stochastic diferential equations)
A stochastic diferential equation (SDE) is an equation of the form:

dXt = a(t,Xt)dt+ σ(t,Xt)dBt, (E(a, σ))
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where the unknown is the Rd-valued process X.
(E(a, σ)) is also written

Xi
t = Xi

0 +

∫ t

0
ai(s,Xs)ds+

m∑
j=1

∫ t

0
σij(s,Xs)dB

j
s , 1 ≤ i ≤ d,

where for m, d ∈ N:

- a(t, x) = (ai(t, x))1≤i≤d is an Rd-valued measurable function defined on R+×Rd, called
the drift.

- σ(t, x) = (σi,j(t, x))1≤i≤d,1≤j≤m is an Rd×m-valued measurable function defined on R+×
Rd, called the diffusion coefficient.

- B = (B1, . . . , B1) is a standard m-dimensional Brownian motion.

Definition 7.2 (Solution of an SDE)
A solution of the SDE (E(a, σ)) is

- A filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual conditions,

- An (Ft)-Brownian motion B = (B1, . . . , B1) defined on the given probability space.

- An (Ft)-adapted continuous Rd-valued process X satisfying equation (E(a, σ)).

If in addition X0 = x ∈ Rd, X is said to be solution of the SDE (Ex(a, σ))

Examples

• The Ornstein-Uhlenbeck process: when a(t, x) = −ax, a > 0, and σ(t, x) = σ ∈ R.

• The Geometric Brownian motion: when a(t, x) = ax and σ(t, x) = σx.

7.2 Existence and uniqueness of solutions of SDEs

Definition 7.3 Consider the equation (E(a, σ)). We say that we have:

• Weak existence if: for all x ∈ Rd, there exists a solution of (Ex(a, σ)).

• Weak existence and uniqueness if in addition: x being fixed, all the solututions of
(Ex(a, σ)) have the same distribution.

• Pathwise uniqueness if: when the filtered probability space (Ω,F , (Ft)t≥0,P) and the
Brownian motion B are fixed, any two solutions X ′ and X of (E(a, σ)) such that X ′0 =
X0 almost surely are indistinguishable.

In addition, we say that a solution X of (Ex(a, σ)) is a strong solution if X is adapted to
the natural filtration of B. We have strong uniqueness for (E(a, σ)) if for any Brownian
motion B, any two strong solutions associated to B are indistinguishable.

Remark 7.4 We can have weak existence and uniqueness without having pathwise unique-
ness.
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The next theorem gives the link between these notions. For its proof, see Karatzas-Shreve,
Proposition 3.20.

Theorem 7.5 (Yamada-Watanabe)
Weak existence and pathwise uniqueness imply weak uniqueness. In addition, in this case,

for all filtered probability space (Ω,F , (Ft)t≥0,P) and all (Ft)-Brownian motion B, for any
x ∈ Rd, there exists a (unique) strong solution of (Ex(a, σ)).

In the sequel, we make the following assumptions:
Lipschitz assumptions

The functions a and σ are continuous on R+ × Rd and Lipschitz in x i.e. there exists a
constant K > 0 such that: for all t ≥ 0 and all x and y ∈ Rd,

|a(t, x)− a(t, y)| ≤ K|x− y|,
|σ(t, x)− σ(t, y)| ≤ K|x− y|,

and
∫ T

0 |a(t, 0)|+ |a(t, 0)|dt <∞, for all T > 0.

Theorem 7.6 (Cauchy-Lipschitz for SDEs)
Under the Lipschitz assumptions given above, there is pathwise uniqueness for (E(a, σ)).

Moreover, for all filtered probability space (Ω,F , (Ft)t≥0,P) and all (Ft)-Brownian motion B,
for any x ∈ Rd, there exists a (unique) strong solution of (Ex(a, σ)).

Remark 7.7 The continuity assumption on the variable t can be relaxed, since it is useful
essentially to upper bound supt≤T |σ(t, x)| and supt≤T |a(t, x)| for x fixed:
We can localize the Lipschitz assumption on a and σ and assume only having a constant K
depending on the compact set on which t and x are considered. In this case, we need to keep
the assumption:

|σ(t, x)| ≤ K(1 + |x|), |σ(t, x)| ≤ K(1 + |x|), for all t ≥ 0, x ∈ Rd.

7.3 Flows on the Wiener space

In this section, we interpreat the solution of the SDE (E(a, σ)) as a functional on the Wiener
space

(
C(R+,R

m),B(C(R+,R
m)),W) i.e. space of trajectories of a standard Brownian mo-

tion. Here W denotes the Wiener measure (See J.F. Le Gall lecture notes, section 2.2 for a
reminder on the Wiener measure and the Wiener space).
[x]t := {s 7→ xs : 0 ≤ s ≤ t} will denote the trajectory of a function x on [0, t].

Theorem 7.8 Under the Lipschitz assumptions, for all x ∈ Rd, there exists a measurable
function

Fx : C(R+,R
m)→ C(R+,R

d)

w 7−→ Fx(w)

(when C(R+,R
m) is equipped withe the Borel σ-algebras completed witth theW-null sets)satisfying

the following properties:
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i) For all t ≥ 0, Fx(w)t coincide W(dw)-almost surely with a measurable function of
[w]t = (w(r) : 0 ≤ r ≤ t). We denote it by Fx(t, [B]t).

ii) For all w ∈ C(R+,R
m), the map: Rd → C(R+,R

d), x 7−→ Fx(w) is continuous.

iii) For all x ∈ Rd, for any choice of the filtered probability space (Ω,F , (Ft)t≥0,P) and any
m-dimensional (Ft)-Brownian motion B, the process X defined by Xt = Fx(Bt) is the
unique solution of (Ex(a, σ)).
Moreover, if Z is a F0-measurable random variable, the process FZ(Bt) is the unique
solution with inital value Z.

Remark 7.9 Point iii) of the previous theorem shows in particular that there is weak exstence
for the SDE (E(a, σ)): the solutions of (Ex(a, σ)) are all of the form Fx(B) and then have
the same distribution, image of the Wiener measure W by Fx.

FLow property
We assume always the Lipschitz conditions. Now we consider the general case of an SDE

(E(a, σ)) starting from x at time r i.e. Xr = x. Denote by Xr,x
t that solution at time t ≥ r.

By the previous theorem, one can write

Xr,x
t = F (r, x, t, [B. −Br]t),

where (B.−Br)s+r := Bs+r −Br,s ≥ 0, which is a Brownian motion by the Markov property
of B.

Theorem 7.10 (Flow property)
Under the Lipschitz assumptions, the solution of the SDE (E(a, σ)) with Xr = x

satisfies the flow property: for t0 ≥ r ≥ 0 and t ≥ 0,

F (r, x, t0 + t, [B. −Br]t0+t) = F (t0, X
r,x
t0
, t0 + t, [B. −Br]t0+t)

i.e. Xr,x
t0+t = X

t0,X
r,x
t0

t0+t .

This property is extended to bounded stopping times: let T be a bounded stopping time, then

F (r, x, T + t, [B. −Br]T+t) = F (T,Xr,x
T , T + t, [B. −Br]T+t)

i.e. Xr,x
T+t = X

T,Xr,x
T

T+t .

7.4 Strong Markov property for homogeneous SDEs

In this section, we assume always the Lipschitz assumptions. We also assume that the
coefficients of the SDE do not depend on time i.e. a(t, y) = a(y) and σ(t, y) = σ(y). In this
case, the SDE is said homogeneous.
For any x ∈ Rd, we denote by Px the distribution on C(R+,R

d) of the solutions of (Ex(a, σ)),
since by Theorem 7.8, we have Px = WF−1

x .
The point ii) of Theorem 7.8 shows that x 7→ Px is continuous for the topology of weak
convergence. We deduce by a monotone class argument that for any Borel function φ defined
on C(R+,R

d) with values in R, the map

x 7→ Ex[φ]

is measurable. Here Ex[.] denotes the expectation against the measure Px.
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Theorem 7.11 (Strong Markov property for homogeneous SDEs)
Let X be a solution of (E(a, σ)) on a filtered probability space (Ω,F , (Ft)t≥0,P) and

let T be a stopping time which is finite almost surely. Then, for any Borel function Φ :
C(R+,R

d) −→ R+, we have

E
[
Φ(XT+t : t ≥ 0)|FT

]
= EXT

[
Φ
]

,
that is for any positive FT -measurable random variable U ,

E
[
UΦ(XT+t : t ≥ 0)

]
= E

[
UEXT [Φ]

]
.

In other words, the conditional distribution of (XT+t : t ≥ 0) knowing FT (the past) is
equal to the distribution of (Xt : t ≥ 0) starting from XT (which depends only on the present
at time T ).

Lemma(Change of variable for the stochastic integral)
If h is a continuous adapted process and T is a stopping time which is finite almost surely,
then for all t ≥ 0, ∫ T+t

T
hsdBs =

∫ t

0
hT+sdB

(T )
s ,

where B
(T )
t := BT+t −BT , t ≥ 0.

7.5 Probabilistic representation for solutions to partial differential equa-
tionss

(Ω,F , (Ft)t≥0,P) denotes again a filtered probability space satisfying the usual conditions
and B is a given (Ft)-Brownian motion. We assume that the coefficients do not depend on
time and that the Lipschitz assumptions hold.
We know that there exists a bicontinuous process (Xx

t : t ≥ 0, x ∈ Rd) such that for t ≥ 0,

Xt = x+

∫ t

0
a(Xs)ds+

∫ t

0
σ(Xs)dBs.

Moreover, we have for every p ≥ 0 and all T ≥ 0, E
[

supt≤T |Xx
t |p
]
<∞. We introduce L as

the second order differential operator given by

L :=
d∑
i=1

ai(x)
∂

∂xi
+

1

2

d∑
i,j=1

(σ(x)σ>(x))ij
∂2

∂xi∂xj
.

The main result is the aim of the next theorem.

Theorem 7.12 Let f : Rd −→ R be a Borel function with polynomial growth i.e. there exists
k ≥ 0 such that

|f(x)| . (1 + |x|k), for all x ∈ Rd.

Let u : R+ ×Rd −→ R be a solution of the Cauchy problem:

∂u

∂t
(t, x) = Lu(t, x),
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u(0, x) = f(x).

If there exist a locally integrable function C and k′ ≥ 0 such that for all t ≥ 0 and all x ∈ Rn,

|∇u(t, x)| ≤ C(t)(1 + |x|k′),

then u(t, x) = E[f(Xx
t )].

Last lecture: Regularization by noise
The following is only for entertainment and not exam relevant.
1 - ODEs with more than one solution
Consider the ordinary differential equation for x : [0, T ]→ R

∂tx(t) = b(x(t)), x(0) = x0.

If b : R→ R is Lipschitz-continuous, then we know from analysis (or from the fact that this is
a special case of an SDE) that there exists a unique solution. If b is continuous and bounded,
then one can approximate b by a sequence (bn) of Lipschitz-continuous functions and apply
the Arzela-Ascoli theorem to show that the associated solutions (xn) are relatively compact
in C([0, T ],R), and that any limit point x solves the equation. But in general there is no
uniqueness: Consider for example

b(x) = 2 sign(x)
√
|x|.

Then for x(0) = 0 there are infinitely many solutions: for example

x(t) = t2, x(t) = −t2, x(t) = 0

or more generally
x(t) = ±It>t0(t− t0)2

for all t0 ∈ [0, T ]. Of course this b is unbounded, but this is not why uniqueness fails (indeed
we can replace b by (b ∧ (T 2 + 1)) ∨ (−T 2 − 1) and note that the truncation is never active
on [0, T ]). Uniqueness fails because b is not Lipschitz-continuous in 0. On the other hand if
say x0 > 0, then there exists a unique solution (x(t))t∈[0,T ] to

∂tx(t) = 2 sign(x(t))
√
|x(t)|, x(0) = x0.

Indeed, we have x(t) =
(√
x0 + t

)2
.

2 - Addition of noise restores uniqueness in law
Let us see what happens if we add a Brownian motion to the right hand side of our

equation. We first show that then the law of any solution is unique. So we fix b : R→ R and
we consider a solution X to the equation

dXt = b(Xt)dt+ dBt, X0 = x,

where we assume that b is bounded and measurable. Define a new probability measure Q by

dQ

dP
= exp

(∫ T

0
−b(Xs)dBs −

1

2

∫ T

0
b2(Xs)ds

)
.
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Then under Q the process

Bt +

∫ t

0
b(Xs)ds = Xt − x, t ∈ [0, T ],

is a Brownian motion by Girsanov’s theorem. So let Γ be in the Kolmogorov sigma algebra
B(R)⊗[0,T ]. Then

P(X ∈ Γ) = EQ

[
IX∈Γ

dP

dQ

]
= EQ

[
IX∈Γ

(
dQ

dP

)−1
]

(26)

= EQ

[
IX∈Γ exp

(∫ T

0
b(Xs)dBs +

1

2

∫ T

0
b2(Xs)ds

)]
(27)

= EQ

[
IX∈Γ exp

(∫ T

0
b(Xs)dXs −

1

2

∫ T

0
b2(Xs)ds

)]
, (28)

where in the last step we used that dBs = dXs− b(Xs)ds. But since under Q the process
X − x is a Brownian motion, the right hand side is given by

E

[
Ix+B∈Γ exp

(∫ T

0
b(x+Bs)dBs −

1

2

∫ T

0
b2(x+Bs)ds

)]
,

and does not depend on the specific solution X we started from. So every solution to our
SDE has the same law!

In particular, in the b(x) = 2 sign(x)
√
|x|, X0 = 0 example it cannot happen that one

solution stays almost surely around 0, another one around +t2 and another one around −t2.
On a quite intuitive level the reason is that the Brownian forcing pushes the solution away
from 0 before it is able to note the singularity of b in that point.

Note also that starting from a Brownian motion and performing a change of measure, we
easily get the existence of a weak solution to our SDE (exercise!).

3 - Addition of noise gives pathwise uniqueness
So far we showed that contrary to the deterministic case, the law of the solution (Xt)t∈[0,T ]

to
dXt = b(Xt)dt+ dBt, X0 = x,

is uniquely determined whenever b : R → R is bounded and measurable. Let us next show
that if b is continuous and bounded, then we even have strong uniqueness. For that purpose
consider the solution

s(x) =

∫ x

0
exp

(∫ y

0
−2b(z)dz

)
dy

to

b(x)s′(x) +
1

2
s′′(x) = 0.

Of course there are many solutions to that equation because we did not fix any initial condi-
tions, but this specific one will do. Since

s′(x) = exp

(∫ x

0
−2b(z)dz

)
> 0,
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we know that s is strictly increasing and in particular there exists an inverse function s−1.
Moreover, since b is continuous we have that s ∈ C2(R,R). So by Itô’s formula, the process
s(X) solves

ds(Xt) = s′(Xt)dXt +
1

2
s′′(Xt)d〈X,X〉t =

(
s′(Xt)b(Xt) +

1

2
s′′(Xt)

)
dt+ s′(Xt)dBt (29)

= s′(s−1(s(Xt)))dBt. (30)

In other words, Y = s(X) is a solution to the SDE

dYt = (s′ ◦ s−1)(Yt)dBt, Y0 = s(x). (31)

But the function s′ ◦ s−1 is Lipschitz-continuous: by the inverse function theorem we have

(s′ ◦ s−1)′ =
s′′ ◦ s−1

s′ ◦ s−1
=

(
s′′

s′

)
◦ s−1,

and
s′′(x)

s′(x)
= −2b(x),

which is bounded uniformly in x ∈ R because b is bounded. So the solution Y to (31) is
unique and therefore X = s−1(Y ) is uniquely determined as well, and not just its law. This
observation is due to Zvonkin (1974). Actually the same argument also gives the existence of
X, but existence can anyways be easily obtained (as explained above).

The phenomenon that the addition of noise can restore the uniqueness of solutions to
otherwise ill-posed deterministic equations is called regularization by noise and also today it
is an active research field.

Appendix

A Monotone class theorem

Theorem A.1 (Ethier and Kurtz, Appendix, Corollary 4.4)
Let H be a linear space of bounded functions on Ω such that

− H contains all constant functions;

− if (hn)n∈N ⊂ H and there exists h : Ω → R with supω∈Ω |hn(ω) − h(ω)| → 0, then
h ∈ H;

− if (hn)n∈N ⊂ H is such that −C 6 h1 6 h2 6 . . . 6 C for some C ∈ R and such that
there exists h : Ω→ R with hn(ω)→ h(ω) for all ω ∈ Ω, then h ∈ H.

Let H0 ⊂ H be closed under multiplication (that is fg ∈ H0 whenever f, g ∈ H0). Then H
contains all σ(H0)-measurable functions.
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