EXERCISE SHEET 2

GRAPH COMPLEXES, SUMMER 23, HU BERLIN

Please prepare to present your solutions in the exercise session on May 26th.
Exercise 1. Show that $d^{2}=0$ in $G C_{N}, N$ even.
Exercise 2. Express the degree of a graph $|G|_{N}=e_{G}-N h_{G}$ without using its loop number. (Hint: Ask Mr. Euler.) From this, try to come up with an alternative (combinatorial) notion of orientation for N odd.

Exercise 3.

(1) Draw all weighted stable graphs with 3 labeled legs and genus 1 .
(2) Sketch a picture of $\Delta_{1,3}^{0}$ What space is it homeomorphic to? (If you can't "see" it, compute its cellular homology.)

Exercise 4.

(1) The moduli space of (normalized metric, unweighted) holocolored graphs with 3 labeled legs and 1 loop is defined as
$M H G_{1,3}^{0}=\left\{\begin{array}{l|l}(G, \lambda, w, c) & \begin{array}{l}\mathrm{G} \text { stable with 3 legs, } h_{G}=1, w=0 \\ \operatorname{vol}(\lambda)=1, c: E_{G} \rightarrow\{1,2,3\} \text { injective }\end{array}\end{array}\right\} / \sim$
where \sim is the equivalence relation introduced in the lecture. (in words, repeat the construction of $\Delta_{1,3}^{0}$ but now consider graphs with their edges distinctly colored by three colors $1,2,3$.). What space is it homeomorphic to?
(2) What happens if we drop the requirement of distinct coloring, i.e., consider

What is $H_{2}\left(M C G_{1,3 ; 2}^{0} ; \mathbb{Q}\right)$?
(3) For the case of m-colored 1 loop graphs with 2 legs compute $H_{k}\left(M C G_{1,2 ; m}^{0} ; \mathbb{Q}\right)$.

Exercise 5. Another way to think about $\Delta_{1, n}^{0}$ is to view its points as specifying configurations of n marked points on a circle S^{1}. If we fix the first one, say at $1 \in \mathbb{C}$, then the other $n-1$ points are described by a vector of angles $\left(\theta_{1}, \ldots, \theta_{n-1}\right)$.
(1) Which familiar space X is this "set of angles" homeomorphic to?
(2) Which configurations describe isomorphic graphs? That is, find a group G such that $\Delta_{1, n}^{0} \cong X / G$.
(3) From this compute $H_{k}\left(\Delta_{1, n}^{0} ; \mathbb{Q}\right)$ for all $k, n \in \mathbb{N}$.

