EXERCISE SHEET 3

GRAPH COMPLEXES, SUMMER 23, HU BERLIN

Please prepare to present your solutions in the exercise session on June 16th.

Exercise 1. Finish the proof of Theorem $4(i)$.

Exercise 2. Show that the n-cube $[0,1]^{n}$ can be triangulated into n ! n-simplices. (If you need a hint, check page 112 in Hatcher's book 'Algebraic Topology'.)

Exercise 3. Prove the following lemma from the third lecture

Lemma. Let S^{n} denote the n-sphere, D^{n} denote the n-disk. Let Γ be a finite linear group acting on S^{n} by permuting the coordinates of \mathbb{R}^{n+1}. Then

$$
H_{\bullet}\left(S^{n} / \Gamma ; \mathbb{Q}\right)= \begin{cases}H_{\bullet}\left(D^{n} ; \mathbb{Q}\right) & \text { action induces orient.-reversing homeomorphisms } \\ H_{\bullet}\left(S^{n} ; \mathbb{Q}\right) & \text { else. }\end{cases}
$$

Exercise 4. Find the dimensions of $\Delta_{g, n}, \Delta_{g, n}^{>0}, \Delta_{g, n}^{0}$, and $S_{g, n}$.

