Stochastik-Praktikum Simulation stochastischer Prozesse

Peter Frentrup

Humboldt-Universität zu Berlin

27. November 2017

Übersicht

Random Walk

2 Brownsche Bewegung

3 Diffusionen und Stochastische DGL

Vorbemerkungen

Ein stochastischer Prozess $X = (X_t)_{t \in \mathcal{T}}$ ist eine indizierte Kollektion von Zufallsgrößen.

Sei \mathcal{T} geoordnet (Zeit, z.B. \mathcal{N} , [0,T]). Für fixiertes $\omega^* \in \Omega$ heißt $X(\omega^*,\cdot)$ ein Pfad des stochastischen Prozesses X. Filtration $(\mathcal{F}_t)_{t \in \mathcal{T}}$: wachsende Familie von Sub- σ -Algebren von \mathcal{F} auf \mathcal{X} $(\mathcal{X},\mathcal{F},(\mathcal{F}_t)_{t \in \mathcal{T}},\mathbb{P})$ heißt filtrierter Wahrscheinlichkeitsraum.

Random Walk

Definition

Es seien Z_i , $i \in \{1, ..., n\}$, i.i.d. Zufallsvariablen mit

$$\mathbb{P}[Z_i = 1] = p = 1 - \mathbb{P}[Z_i = -1].$$

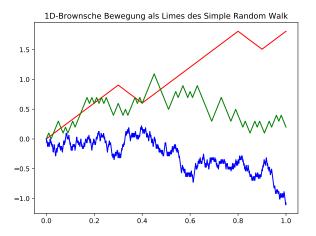
Die Zufallsvariable $S_n := \sum_{i=1}^n Z_i$ beschreibt eine (eindimensionale) Irrfahrt (random walk) in \mathbb{Z} .

Für p = 1/2 ist dies die so genannte symmetrische Irrfahrt.

 S_n nimmt Werte in [-n, n] an. $\forall n$: $\mathbb{E}[S_n] = 0$ und $\mathbb{V}ar(S_n) = n$. Reskaliert konvergiert die Irrfahrt in Verteilung gegen die Brownsche Bewegung (ZGWS bzw. Donsker):

$$\dfrac{S_{\lfloor n\,t \rfloor}}{\sqrt{n}} \overset{\mathcal{D}}{\longrightarrow} B_t$$
 bzw. allgemeiner $\dfrac{S_{\lfloor n\,\cdot \rfloor}}{\sqrt{n}} \overset{\mathcal{D}}{\longrightarrow} B_t$

Reskalierter symmetrischer Random Walk



Python: Random Walk

```
simpleScaledRandomWalk(n, T):
    Perform a random walk of 'n' steps on [0, 'T'] with spacial
    scaling factor 'sqrt(T/n)'.
    ts = np.linspace(0, T, n+1)
    coins = np.random.uniform(size=n+1)
    dxs = (2.0 * (coins > 0.5) - 1) * np.sqrt(float(T) / n)
    dxs[0] = 0.0
    xs = np.cumsum(dxs)
    return ts, xs
ts, xs = simpleScaledRandomWalk(10, 1)
plt.plot(ts, xs, 'r-')
```

Übersicht

Random Walk

2 Brownsche Bewegung

Oiffusionen und Stochastische DGL

Brownsche Bewegung

Definition

Sei (\mathcal{F}_t) eine Filtration. Ein (\mathcal{F}_t) -adaptierter stochastischer Prozess $(B_t)_{t\geq 0}$ auf $(\Omega,\mathcal{F},(\mathcal{F}_t),\mathbb{P})$ heißt (Standard-)brownsche Bewegung (oder Wiener-Prozess) bzgl. (\mathcal{F}_t) , falls gilt:

- (BB1) $B_0 = 0$ \mathbb{P} -f.s.,
- (BB2) Für alle $t \geq s$ ist $(B_t B_s)$ unabhängig von \mathcal{F}_s ,
- (BB3) Zuwächse $(B_t B_s)$, $0 \le s \le t$, sind $\mathcal{N}(0, t s)$ -verteilt,
- (BB4) $(B_t)_{t\geq 0}$ hat \mathbb{P} -f.s. stetige Pfade.
- Oft ist z.B. $\mathcal{F}_t := \sigma(B_u : u \leq t)$.

(i)
$$B^1 := -B$$

(ii) Für festes
$$s \ge 0$$
: $B_t^2 := B_{s+t} - B_s$, $t \ge 0$ (Zeithomogenität)

(iii) Für festes
$$c>0$$
: $B_t^3:=c^{-1}B_{c^2t},\quad t\geq 0$ (Skalierung)

(iv) Für festes
$$T>0$$
: $B_t^4:=B_T-B_{T-t}, \quad 0\leq t\leq T$ (Zeitinversion)

(i)
$$B^1 := -B$$
 (Spiegelungsprinzip)

(ii) Für festes
$$s \ge 0$$
: $B_t^2 := B_{s+t} - B_s$, $t \ge 0$ (Zeithomogenität)

(iii) Für festes
$$c > 0$$
: $B_t^3 := c^{-1}B_{c^2t}$, $t \ge 0$ (Skalierung)

(iv) Für festes
$$T > 0$$
: $B_t^4 := B_T - B_{T-t}$, $0 \le t \le T$ (Zeitinversion)

(i)
$$B^1 := -B$$
 (Spiegelungsprinzip)

(ii) Für festes
$$s \ge 0$$
: $B_t^2 := B_{s+t} - B_s$, $t \ge 0$ (Zeithomogenität)

(iii) Für festes
$$c > 0$$
: $B_t^3 := c^{-1}B_{c^2t}$, $t \ge 0$ (Skalierung)

(iv) Für festes
$$T > 0$$
: $B_t^4 := B_T - B_{T-t}$, $0 \le t \le T$ (Zeitinversion)

$$\text{(v)} \quad B_t^5 := \begin{cases} tB_{1/t}, & t > 0, \\ 0, & t = 0. \end{cases}$$
 (Inversion)

(i)
$$B^1 := -B$$
 (Spiegelungsprinzip)

(ii) Für festes
$$s \ge 0$$
: $B_t^2 := B_{s+t} - B_s$, $t \ge 0$ (Zeithomogenität)

(iii) Für festes
$$c > 0$$
: $B_t^3 := c^{-1}B_{c^2t}$, $t \ge 0$ (Skalierung)

(iv) Für festes
$$T>0$$
: $B_t^4:=B_T-B_{T-t}, \quad 0\leq t\leq T$ (Zeitinversion)

(i)
$$B^1 := -B$$
 (Spiegelungsprinzip)

(ii) Für festes
$$s \ge 0$$
: $B_t^2 := B_{s+t} - B_s$, $t \ge 0$ (Zeithomogenität)

(iii) Für festes
$$c > 0$$
: $B_t^3 := c^{-1}B_{c^2t}$, $t \ge 0$ (Skalierung)

(iv) Für festes
$$T>0$$
: $B_t^4:=B_T-B_{T-t}, \quad 0\leq t\leq T$ (Zeitinversion)

$$\text{(v)} \quad B_t^5 := \begin{cases} tB_{1/t}, & t > 0, \\ 0, & t = 0. \end{cases}$$
 (Inversion)

Markov-Eigenschaft und Simulation

Korollar

Aus den Eigenschaften der brownschen Bewegung und dem vorangehenden Satz folgt die Markov-Eigenschaft:

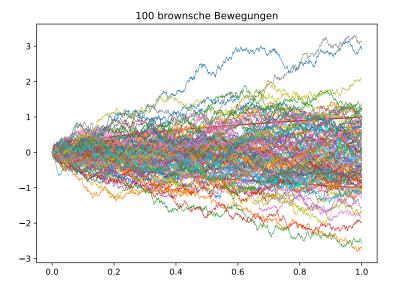
$$\tilde{B}_t := B_{t+s} - B_s, \quad t \ge 0$$

ist eine brownsche Bewegung und unabhängig von \mathcal{F}_s . Die bedingte (reguäre) Verteilung von B_{t+s} gegeben \mathcal{F}_s ist also die Normalverteilung $\mathcal{N}(B_s,t)$ und hängt nur von B_s und t ab.

Exakte zeitdiskrete Simulation als gaußscher Random Walk!

Python: Brownsche Bewegung auf Zeitgitter

```
def standardBrownianMotion(n, T):
    Simulate a 1D standard Brownian motion on [0, 'T'] with 'n'
    Brownian increments
    ts = np.linspace(0, T, n+1)
    dxs = np.random.normal(
            loc=0, scale=np.sqrt(float(T) / n), size=(n+1)
    dxs[0] = 0.0
    xs = np.cumsum(dxs)
    return ts, xs
ts = np.linspace(0, 1, 100)
xs = np.sqrt(ts)
plt.plot(ts, xs, 'r-', ts, -xs, 'r-')
for i in range (0, 100):
   ts, Bs = standardBrownianMotion(1000, 1)
    plt.plot(ts, Bs, linewidth = 0.1)
```



Weitere Eigenschaften der brownschen Bewegung

Satz

Es sei $B = (B_t)_{t \ge 0}$ eine brownsche Bewegung. Dann gilt:

- Die Pfade von B sind fast sicher nirgends differenzierbar.
- ② Die Pfade von B sind auf jedem Intervall fast sicher von unbeschränkter Variation.
- Oas Wachstumsverhalten lässt sich durch das Gesetz vom iterierten Logarithmus beschreiben:

$$\limsup_{t \to \infty} \frac{B_t(\omega)}{\sqrt{2t \log(\log(t))}} = 1 \quad \textit{für} \quad \mathbb{P} - \textit{fast alle } \omega \in \Omega.$$

• Eine brownsche Bewegung ist stetiger zentrierter Gauß-Prozess mit $Cov(B_s, B_t) = s \wedge t \ \forall s \ , t \geq 0 \ (g.d.w.)$.

Fast-sichere-Konvergenz: Lévy-Konstruktion der B.B.

Konstruktion mit pfadweise f.s.-Konvergenz (statt Verteilungskonvergenz wie bei Donsker):

Sei $n \in \mathbb{N}_0$, $D_n := \{k/2^n : k \in \mathbb{N}, 0 \le k \le 2^n\}$ und $D := \bigcup_{n=1}^{\infty} D_n$. $(Z_t)_{t \in D}$ seien unabh. standardnormalverteilte Zufallsvariablen. Funktionenfolge $F_n : [0,1] \to \mathbb{R}$ definiert durch $F_0(t) := tZ_1$ und

$$F_n(t) := egin{cases} rac{\mathcal{Z}_t}{\sqrt{2^{n+1}}}, & t \in D_n \setminus D_{n-1}, \\ 0, & t \in D_{n-1}, \\ ext{linear interpoliert,} & ext{sonst.} \end{cases}$$

Dann ist $B_t := \text{f.s.-lim}_N \sum_{0}^{N} F_n(t)$ eine brownsche Bewegung auf [0,1].

Fast-sichere-Konvergenz: Lévy-Konstruktion der B.B.

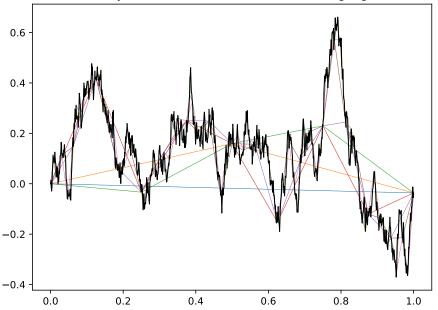
Dann ist $B_t := \text{f.s.-lim}_N \sum_0^N F_n(t)$ eine brownsche Bewegung auf [0,1]. Dabei ist $B_0 = 0$, $B_1 = Z_1$ und $B_t = \frac{B_t^- + B_t^+}{2} + \frac{Z_t}{\sqrt{2^{n+1}}}$, wobei B_t^+ den rechten und B_t^- den linken Nachbarpunkt nach einer Intervallhalbierung bezeichnen.

Konkret gilt z.B. für die ersten Schritte

$$B_{1/2} = rac{B_0 + B_1}{2} + rac{Z_{1/2}}{2},$$
 $B_{1/4} = rac{B_0 + B_{1/2}}{2} + rac{Z_{1/4}}{\sqrt{8}} \quad ext{und} \quad B_{3/4} = rac{B_{1/2} + B_1}{2} + rac{Z_{3/4}}{\sqrt{8}}$...

Der entstehende Prozess hat zu jeder Zeit t die Varianz t.

Lévy-Konstruktion der brownschen Bewegung

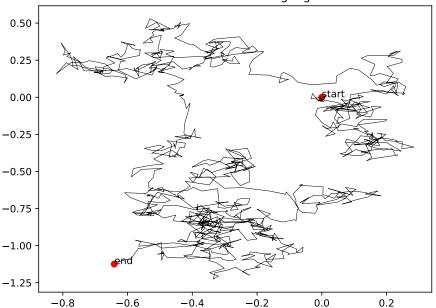


Zweidimensionale Brownschen Bewegung

Definition

Ein stochastischer Prozess $(\mathbf{B}_t)_{t\geq 0}$ mit Werten im \mathbb{R}^d heißt d-dimensionale brownsche Bewegung, falls die Koordinaten $(B_i)_t$, $i\in\{1,\ldots,d\}$, stochastisch unabhängige eindimensionale brownsche Bewegungen sind.

2D brownsche Bewegung



Übersicht

Random Walk

2 Brownsche Bewegung

3 Diffusionen und Stochastische DGL

Diffusionen

Unter einem Diffusionsprozess versteht man z.B. einen Prozess der Form

$$X_t = X_0 + \mu t + \sigma B_t, \quad t \ge 0,$$

mit einer brownschen Bewegung B.

Ein X_t wie oben wird teils als "allgemeine Brownsche Bewegung" mit Drift μ und Volatilität σ bezeichnet.

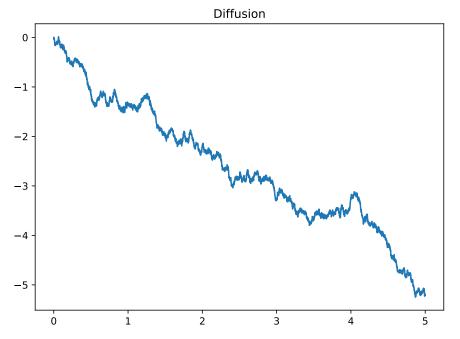
Allgemeiner erfüllt ein Diffusion eine stochastische DGL

$$\mathrm{d}X_t = \mu\,\mathrm{d}t + \sigma\,\mathrm{d}B_t$$

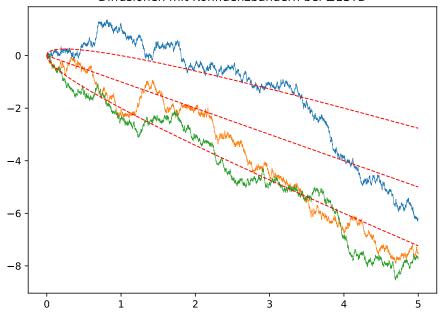
mit Koeffizienten μ, σ , die Funktionen von (t, X_t) sein dürfen (oben: Konstanten).

Python: Diffusion

```
def diffusion (x0, n, T, mu, sigma):
    Simulate dX_{-}t = mu dt + sigma dB_{-}t on [0,T] with X_{-}0 = x0,
    using n increments.
    Return (ts, Xs), time and space coordinates.
    dt = T/n
    ts = np.linspace(0,T,n+1)
    dXs = mu * dt + sigma * np.random.normal(
                               loc=0, scale=np.sqrt(dt), size=n+1)
    dXs[0] = x0
    Xs = np.cumsum(dXs)
    return ts, Xs
ts, Xs = diffusion(0, 10000, 5, -1, 0.5)
plt.plot(ts, Xs)
```



Diffusionen mit Konfidenzbändern bei ±1STD



SDGL Approximation: Das Eulerschema

Was eine Lösung (X_t) einer stochastischen DGL der Form

$$X_0 = x_0,$$
 $dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dB_t$

genau ist, wird erst durch die VL Stochastische Analysis geklärt!

SDGL Approximation: Das Eulerschema

stochastischen DGL

$$X_0 = x_0$$
, $dX_t = \mu(t, X_t) dt + \sigma(t, X_t) dB_t$

Das Eulerschema ist intuitiv plausibel als numerische SDGL-Approximation \widetilde{X}_t entlang eines diskreten Zeitgitters $t_k=k/n$ mit $\Delta t:=1/n$ und $\Delta B_{t_k}:=B_{t_k}-B_{t_{k-1}}$:

$$\widetilde{X}_0 := x_0, \quad \widetilde{X}_{t_k} = \widetilde{X}_{t_{k-1}} + \mu(t, \widetilde{X}_{t_{k-1}}) \Delta t + \sigma(t, \widetilde{X}_{t_{k-1}}) \Delta B_{t_k},$$

wobei die $\Delta B_{t_k} = B_{t_k} - B_{t_{k-1}}$ als i.i.d. $\mathcal{N}(0, \Delta t)$ -verteilte Zufallsvariablen simuliert werden.

Beispiel zum Eulerschema

Die Stochastische Analysis wird zeigen, dass die SDGL

$$X_0 = 1, \qquad \mathrm{d}X_t = X_t \, \mathrm{a} \, \mathrm{d}B_t$$

mit $a \in \mathbb{R}$ als Lösung die geometrische brownsche Bewegung

$$X_t = \exp(aB_t - a^2t/2)$$

hat, das sogenannte "Stochastische Exponential von aB_t ". Das Eulerschema liefert als zeitdiskrete Approximation hierfür

$$\widetilde{X}_0 = 1\,, \qquad \widetilde{X}_{t_k} := \widetilde{X}_{t_{k-1}} + \widetilde{X}_{t_{k-1}} \mathsf{a}\, \Delta B_{t_k}$$