## Stochastik-Praktikum Markov Chain Monte Carlo

Peter Frentrup

Humboldt-Universität zu Berlin

16. Januar 2018



# Übersicht

Problemstellung

2 Markov Chain Monte Carlo

### Problemstellung

- Zur Untersuchung einer Verteilung  $\mathbb{P}_f$  mit Dichte f ist es i.A. nötig, (viele) Stichproben  $X \sim \mathbb{P}_f$  zu generieren, um so Kenngrößen von  $\mathbb{P}_f$ , wie Erwarrtungswert  $\mathbb{E}_f[X]$ , Varianz  $\mathbb{V}$ ar $_f(X)$ , etc. nach Monte-Carlo-Methode zu approximieren:  $\mathbb{E}_f[h(X)] \sim \frac{1}{N} \sum_{i=1}^N h(X_i)$ .
- Verschiedene Methoden für konkrete f:
  - Inversionsmethode
  - spezielle Methoden (Normalverteilung, diskrete Verteilungen)
  - Verwerfungsmethode

### Verwerfungsmethode

- **Ziel:** Erzeuge  $X \sim \mathbb{P}_f$  mit Wahrscheinlichkeitsdichte f.
- Gegeben: Kandidatendichte g, sodass  $Y \sim \mathbb{P}_g$  leicht zu simulieren ist, mit  $f(x)/g(x) \leq M \ \forall x$  für eine Konstante M.
- Algorithmus:
  - ▶ Schritt 1: Erzeuge  $U \sim \mathcal{U}_{[0,1]}$  und  $Y \sim \mathbb{P}_g$ , sodass  $U \perp \!\!\! \perp Y$  (unabh.)
  - ► Schritt 2:
    - ★ Falls  $U \le f(Y)/(Mg(Y))$ , so akzeptiere: X := Y;
    - ★ sonst: lehne Y ab, kehre zu Schritt 1 zur

      ück.

## Verwerfungsmethode – Eigenschaften

• Korrektheit:

$$\mathbb{P}[X \le x] = \mathbb{P}\Big[Y \le x \mid U \le \frac{f(Y)}{Mg(Y)}\Big] = \frac{\mathbb{P}\Big[Y \le x, U \le \frac{f(Y)}{Mg(Y)}\Big]}{\mathbb{P}[U \le \frac{f(Y)}{Mg(Y)}]}$$

$$= \frac{\int_{-\infty}^{x} \int_{0}^{f(y)/(Mg(y))} du \, g(y) \, dy}{\int_{-\infty}^{\infty} \int_{0}^{f(y)/(Mg(y))} du \, g(y) \, dy} = \frac{\frac{1}{M} \int_{-\infty}^{x} f(y) \, dy}{\frac{1}{M} \int_{-\infty}^{\infty} f(y) \, dy}$$

$$= \mathbb{P}_{f}\Big[(-\infty, x]\Big].$$

- Unabhängig von der Dimension.
- Akzeptanzwahrscheinlichkeit:  $\mathbb{P}\left[U \leq \frac{f(Y)}{Mg(Y)}\right] = 1/M$ . Je kleiner M, desto eher wirkt akzeptiert.
- Problem: g schwierig zu finden.

## Verwerfungsmethode – Eigenschaften

• Korrektheit:

$$\mathbb{P}[X \le x] = \mathbb{P}\Big[Y \le x \mid U \le \frac{f(Y)}{Mg(Y)}\Big] = \frac{\mathbb{P}\Big[Y \le x, U \le \frac{f(Y)}{Mg(Y)}\Big]}{\mathbb{P}[U \le \frac{f(Y)}{Mg(Y)}]}$$

$$= \frac{\int_{-\infty}^{x} \int_{0}^{f(y)/(Mg(y))} du \, g(y) \, dy}{\int_{-\infty}^{\infty} \int_{0}^{f(y)/(Mg(y))} du \, g(y) \, dy} = \frac{\frac{1}{M} \int_{-\infty}^{x} f(y) \, dy}{\frac{1}{M} \int_{-\infty}^{\infty} f(y) \, dy}$$

$$= \mathbb{P}_{f}\Big[(-\infty, x]\Big].$$

- Unabhängig von der Dimension.
- Akzeptanzwahrscheinlichkeit:  $\mathbb{P}\left[U \leq \frac{f(Y)}{Mg(Y)}\right] = 1/M$ . Je kleiner M, desto eher wirkt akzeptiert.
- Problem: g schwierig zu finden.

## Verwerfungsmethode – Beispiel

- Erzeuge  $X \sim \text{Beta}(4,3)$ , d.h.  $f(x) = \frac{1}{B(4,3)} x^{4-1} (1-x)^{3-1} = 60x^3 (1-x)^2$ ,  $x \in [0,1]$
- Inversionsmethode nicht analytisch möglich:  $u = \int_0^y f(x) dx = 15y^4 24y^5 + 10y^6$  nicht analytisch invertierbar.
- Für Verwerfungsmethode, wähle g(y)=1, also  $Y\sim \mathcal{U}_{[0,1]}$ . Konstante M:

$$f(x) \le Mg(x) = M$$
  

$$\Leftrightarrow 60x^3(1-x)^2 \le M$$

für  $x \in [0,1]$ , d.h.  $M \approx 2,1$ .

$$\mathbb{E}_f[h(X)] \approx \frac{1}{N} \sum_{i=1}^N h(X_i).$$

- Verschiedene Methoden für konkrete f:
  - Inversionsmethode
  - spezielle Methoden
  - Verwerfungsmethode
- Gemeinsamkeiten obiger Methoden:
  - **1** Erzeugen i.i.d. Samples  $X_i$ .
  - 2 Basieren auf relativ starken Annahmen an f.

$$\mathbb{E}_f[h(X)] \approx \frac{1}{N} \sum_{i=1}^N h(X_i).$$

- Verschiedene Methoden für konkrete f:
  - ▶ Inversionsmethode (i.A. teuer: muss  $F(x) = \int_{-\infty}^{x} f(z) dz$  invertieren)
  - spezielle Methoden (nur spezielle f)
  - ▶ Verwerfungsmethode (benötige Dichte g mit  $f(x)/g(x) \le \text{konst.}$ , für die  $\mathbb{P}_g$  leicht zu samplen ist)
- Gemeinsamkeiten obiger Methoden:
  - Erzeugen i.i.d. Samples  $X_i$ .
  - 2 Basieren auf relativ starken Annahmen an f.

$$\mathbb{E}_f[h(X)] \approx \frac{1}{N} \sum_{i=1}^N h(X_i).$$

- Verschiedene Methoden für konkrete f:
  - ▶ Inversionsmethode (i.A. teuer: muss  $F(x) = \int_{-\infty}^{x} f(z) dz$  invertieren)
  - ▶ spezielle Methoden (nur spezielle f)
  - ▶ Verwerfungsmethode (benötige Dichte g mit  $f(x)/g(x) \le \text{konst.}$ , für die  $\mathbb{P}_g$  leicht zu samplen ist)
- Gemeinsamkeiten obiger Methoden:
  - Erzeugen i.i.d. Samples  $X_i$ .
  - ② Basieren auf relativ starken Annahmen an f. Häufig nicht erfüllt! Beispiel: Bayes a posteriori Dichte  $f^{\theta|X} = \frac{f^{X|\theta}f^{\theta}}{f^{X}} \propto f^{X|\theta}f^{\theta}$ .

$$\mathbb{E}_f[h(X)] \approx \frac{1}{N} \sum_{i=1}^N h(X_i).$$

- Verschiedene Methoden für konkrete f:
  - ▶ Inversionsmethode (i.A. teuer: muss  $F(x) = \int_{-\infty}^{x} f(z) dz$  invertieren)
  - ▶ spezielle Methoden (nur spezielle f)
  - ▶ Verwerfungsmethode (benötige Dichte g mit  $f(x)/g(x) \le \text{konst.}$ , für die  $\mathbb{P}_g$  leicht zu samplen ist)
- Gemeinsamkeiten obiger Methoden:
  - **1** Erzeugen i.i.d. Samples  $X_i$ .  $\leftarrow$  Das ist nicht nötig!
  - ② Basieren auf relativ starken Annahmen an f. Häufig nicht erfüllt! Beispiel: Bayes a posteriori Dichte  $f^{\theta|X} = \frac{f^{X|\theta}f^{\theta}}{f^{X}} \propto f^{X|\theta}f^{\theta}$ .

## Übersicht

Problemstellung

Markov Chain Monte Carlo

### Idee

[Christian P. Robert, George Casella – Monte Carlo Statistical Methods]

### Satz (Ergodensatz von Birkhoff)

Ist  $(X_n)_{n\geq 0}$  eine Harris-rekurrente Markov-Kette mit invariantem W-Maß  $\mathbb{P}_f$ , so gilt für alle  $h\in L^1(\mathbb{P}_f)$ , dass

$$\frac{1}{N}\sum_{n=0}^{N-1}h(X_n)\to\int h(x)f(x)\,\mathrm{d}x=\mathbb{E}_f[h(X)],\quad \text{für }N\to\infty.$$

- ullet Für "große" n erzeugt die Markovkette annähernd Samples bezüglich f.
- Diese Samples sind nicht i.i.d.!

### Markov-Ketten

## Definition (Überganskern)

Eine Abbildung  $K: \mathbb{R}^d \times \mathcal{B}(\mathbb{R}^d) \to \mathbb{R}$  heißt Überganskern, falls

- lacktriangledown  $K(x,\cdot)$  für alle  $x\in\mathbb{R}$  ein Wahrscheinlichkeitsmaß auf  $\mathcal{B}(\mathbb{R}^d)$  ist und
- ②  $K(\cdot, B)$  für alle  $B \in \mathcal{B}(\mathbb{R}^d)$  messbar ist.

### Definition (Markov-Kette)

Ein Prozess  $(X_n)_{n\geq 0}$  heißt Markov-Kette (MC), falls

$$\mathbb{P}[X_{n+1} \in B \mid X_0, \dots, X_n] = \mathbb{P}[X_{n+1} \in B \mid X_n] = \int_B K(X_n, dx)$$

für  $n \in \mathbb{N}_0$ ,  $B \in \mathcal{B}$ , mit Übergangskern K.

Beispiel: AR(1)-Prozess, Random Walk, ....

#### Markov-Ketten

Eine Markov-Kette  $(X_n)_{n\geq 0}$  mit Überganskern K heißt

- Zeit-homogen, falls  $\mathbb{P}[X_{n+1} \in B \mid X_n] = \mathbb{P}[X_1 \in B \mid X_0];$
- $\nu$ -irreduzibel für ein Maß  $\nu$  auf  $\mathcal{B}$ , falls  $\forall x \in \mathbb{R}^d, A \in \mathcal{B}$  mit  $\nu(A) > 0$  $\exists n: K^n(x,A) > 0$ ;
- Harris-rekurrent, falls  $\exists \nu: (X_n) \ \nu$ -irreduzibel und  $\forall A, \nu(A) > 0 \ \forall x \in A: \mathbb{P}[\exists n \geq 1: X_n \in A \mid X_0 = x] = 1$

#### Definition

Ein Maß  $\mu$  heißt zu einem Übergangskern K invariant, falls  $\mu K = \mu$ , also  $\int \mu(\mathrm{d}x)K(x,B) = \mu(B) \ \forall B \in \mathcal{B}$ .

Ist  $\mu$  ein W-Maß, so heißt es auch stationär (( $X_n$ ) mit  $X_0 \sim \mu$  ist stationär).

Für Existenz von  $\mu$  genügt die Detailed Balance Bedingung:

$$\mu(dx)K(x, dy) = \mu(dy)K(y, dx).$$

## Der Metropolis-Hastings-Algorithmus

Ziel: Markov-Kette  $(X_n)_{n\geq 0}$  mit invariantem W-Maß  $\mathbb{P}_f$  simulieren.

- Wähle  $X_0$  zufällig/beliebig, sodass  $f(X_0) > 0$ .
- ② Angenommen, wir haben schon  $X_n$  erzeugt. Erzeuge  $Y_n \sim \mathbb{P}_{q(\cdot|x)}$ .

Setze 
$$r(X_n, Y_n) := \min \left\{ 1, \frac{f(Y_n)q(X_n \mid Y_n)}{f(X_n)q(Y_n \mid X_n)} \right\}$$
 die Akzeptanzwkt. Setze

$$X_{n+1} := egin{cases} Y_n & ext{mit Wahrscheinlichkeit } r(X_n, Y_n), \ X_n & ext{mit Wahrscheinlichkeit } 1 - r(X_n, Y_n). \end{cases}$$

Spezialfall: Symmetrische Sampling-Dichte q(y|x) = q(x|y)  $\Rightarrow r(X_n, Y_n) = \min\{1, f(Y_n)/f(X_n)\}.$  Interpretation:

- $\bullet$  Akzeptiere  $Y_n$  immer, falls es im Bereich größerer Dichte liegt.
- Ansonsten vertraue dem Sample weniger und "wirf eine Münze".

## Der Metropolis-Hastings-Algorithmus

Ziel: Markov-Kette  $(X_n)_{n\geq 0}$  mit invariantem W-Maß  $\mathbb{P}_f$  simulieren.

- Wähle  $X_0$  zufällig/beliebig, sodass  $f(X_0) > 0$ .
- ② Angenommen, wir haben schon  $X_n$  erzeugt. Erzeuge  $Y_n \sim \mathbb{P}_{q(\cdot|x)}$ .

Setze 
$$r(X_n, Y_n) := \min \left\{ 1, \frac{f(Y_n)q(X_n \mid Y_n)}{f(X_n)q(Y_n \mid X_n)} \right\}$$
 die Akzeptanzwkt. Setze

$$X_{n+1} := egin{cases} Y_n & ext{mit Wahrscheinlichkeit } r(X_n, Y_n), \ X_n & ext{mit Wahrscheinlichkeit } 1 - r(X_n, Y_n). \end{cases}$$

Spezialfall: Symmetrische Sampling-Dichte q(y|x) = q(x|y)  $\Rightarrow r(X_n, Y_n) = \min\{1, f(Y_n)/f(X_n)\}.$  Interpretation:

- Akzeptiere  $Y_n$  immer, falls es im Bereich größerer Dichte liegt.
- Ansonsten vertraue dem Sample weniger und "wirf eine Münze".

## Eigenschaften der Metropolis-Hastings MC $(X_n)$

• Übergangskern der Markov-Kette ist

$$K(x,B) = \mathbb{P}[X_{n+1} \in B \mid X_n = x]$$

$$= \int_B r(x,y)q(y \mid x) dy + \mathbb{1}_B(x) \int (1 - r(x,z))q(z \mid x) dz$$

für Borelmenge B.

K erfüllt Detailed Balance: K(x, dy)f(x)dx = K(y, dx)f(y)dy (nachrechnen!)

 $\Rightarrow \mu = \mathbb{P}_f$  ist invariante Verteilung von  $(X_n)$ , da

$$\begin{split} \mathbb{P}[X_1 \in B \mid X_0 \sim \mu] &= \int K(x, B) f(x) \, \mathrm{d}x \\ &= \iint \mathbb{1}_B(y) K(x, \, \mathrm{d}y) f(x) \, \mathrm{d}x = \iint \mathbb{1}_B(y) K(y, \, \mathrm{d}x) f(y) \, \mathrm{d}y \\ &= \int f(y) \mathbb{1}_B(y) \, \mathrm{d}y = \mu(B) \, . \end{split}$$

# Weitere Eigenschaften von $(X_n)$

- Falls  $q(y \mid x) > 0$  für alle  $(x, y) \in \mathcal{E} \times \mathcal{E}$ , wobei  $\mathcal{E} = \text{supp}(f)$ , so ist  $(X_n)_{n \geq 0}$  irreduzibel (bzgl. Lebesgue-Maß), d.h. jeder Punkt im Support  $\mathcal{E}$  von f kann in einem Schritt erreicht werden, denn K(x, y) > 0.
- Man kann zeigen: falls  $\mathbb{P}[X_{n+1} = X_n] > 0$ , so ist  $(X_n)_{n \geq 0}$  aperiodisch und somit (da irreduzibel) Harris-rekurrent, d.h. der Ergodenzatz ist anwendbar.
- Es sollte leicht sein, von  $q(\cdot \mid x)$  zu samplen.
- Erzeugte Samples hängen stark von der Konvergenzgeschwindigkeit gegen die stationäre Verteilung  $\mathbb{P}_f$  ab.
- Samples sind *nicht* unabhängig; Approximation ist erst nach Burn-in-Phase gut; verwende  $\frac{1}{N} \sum_{n=b+1}^{b+N} h(X_n)$ .

### Anwendungsbeispiel

- 28. Januar 1986: Explosion der Raumfähre Challenger wegen Materialermüdung en Dichtungsringen
- Wahrscheinlicher Grund: ungewöhnlich niedrige Außentemperatur von  $31\,^{\circ}F$  (ca.  $0\,^{\circ}C$ )

| Probleme   | 1  | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|------------|----|----|----|----|----|----|----|----|----|----|----|----|
| Temperatur | 53 | 57 | 58 | 63 | 66 | 67 | 67 | 67 | 68 | 69 | 70 | 70 |
| Probleme   | 1  | 1  | 0  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  |    |
| Temperatur | 70 | 70 | 72 | 73 | 75 | 75 | 76 | 76 | 78 | 79 | 81 |    |

### Anwendungsbeispiel

- Modelliere Materialprobleme mit logistischer Regression:
  - ▶ Annahme: Beobachte  $Y_i \stackrel{iid}{\sim} Bernoulli(p(x_i))$
  - $ightharpoonup X_i = \text{Temperatur}, Y_i = \text{Material problem Ja/Nein}$
  - $p(x_i) = \mathbb{P}[Y_i = 1 \mid X_i = x_i] = \frac{\exp(\alpha + x_i \beta)}{1 + \exp(\alpha + x_i \beta)} \text{ für Parameter }$   $\alpha, \beta \in \mathbb{R}$
  - ▶ Dies ist ein *verallgemeinertes lineares Modell*
- **Ziel:** Bestimme  $\alpha, \beta$  anhand der Daten und mache Vorhersagen für ungesehene Temperaturen.

### Anwendungsbeispiel

- hier: Bayes-Analyse
- a-Priori-Dichte:  $\pi_{\alpha}(\alpha \mid b) = \frac{1}{b}e^{\alpha}e^{-e^{\alpha}/b}$ ,  $\pi_{\beta}(\beta) = 1$ , b = Hyperparameter (für datengetriebene Wahl siehe [Robert & Casella, 2004])
- Likelihood-Funktion: Für  $\mathbf{x} = (x_i)_{i=1}^{23}$ ,  $\mathbf{y} = (y_i)_{i=1}^{23}$ ,

$$L(\alpha, \beta \mid \mathbf{x}, \mathbf{y}) = \prod_{i=1}^{23} p(x_i)^{y_i} (1 - p(x_i))^{1-y_i}$$

- a-Posteriori-Dichte:  $f(\alpha, \beta) \propto L(\alpha, \beta \mid \mathbf{x}, \mathbf{y}) \pi(\alpha, \beta)$
- Vorschlagsdichte (unabhängig):  $q(\alpha, \beta) = \pi_{\alpha}(\alpha \mid b)\varphi(\beta)$ , mit  $\mathcal{N}(0, 1)$ -Dichte  $\varphi$ .
- Von q lässt sich leicht samplen.
- Akzeptanzwahrscheinlichkeit von  $(\alpha', \beta')$ :

$$r((\alpha, \beta), (\alpha', \beta')) = \min \left\{ 1, \frac{L(\alpha', \beta' \mid \mathbf{x}, \mathbf{y})\varphi(\beta)}{L(\alpha, \beta \mid \mathbf{x}, \mathbf{y})\varphi(\beta')} \right\}$$