
Math. Program., Ser. A (2008) 112:427–441
DOI 10.1007/s10107-006-0042-z

F U L L L E N G T H PA P E R

Optimal Jacobian accumulation is NP-complete

Uwe Naumann

Received: 17 January 2006 / Accepted: 22 August 2006 / Published online: 21 October 2006
© Springer-Verlag 2006

Abstract We show that the problem of accumulating Jacobian matrices by
using a minimal number of floating-point operations is NP-complete by reduc-
tion from Ensemble Computation. The proof makes use of the fact that, devi-
ating from the state-of-the-art assumption, algebraic dependences can exist
between the local partial derivatives. It follows immediately that the same prob-
lem for directional derivatives, adjoints, and higher derivatives is NP-complete,
too.

Keywords Automatic differentiation · Complexity · NP-completeness

Mathematics Subject Classification (2000) 26B10 · 68Q17

1 Context

We consider the automatic differentiation (AD) [10] of an implementation of
a non-linear vector function

y = F(x, a), F : IRn+ñ ⊇ D → IRm, (1)

as a computer program.1 With the Jacobian matrix F ′ of F defined in Eq. (6)
tangent-linear

ẏ = Ḟ(x, ẋ, a) ≡ F ′(x, a) ∗ ẋ, ẋ ∈ IRn, (2)

1 F is used to refer to the given implementation.

U. Naumann (B)
Software and Tools for Computational Engineering, Department of Computer Science,
RWTH Aachen University, 52056 Aachen, Germany
e-mail: naumann@stce.rwth-aachen.de
URL: http://www.stce.rwth-aachen.de



428 U. Naumann

and adjoint
x̄ = F̄(x, ȳ, a) ≡ (

F ′(x, a)
)T ∗ ȳ, ȳ ∈ IRm, (3)

versions of numerical simulation programs with potentially complicated intra-
and interprocedural flow of control can be generated automatically by AD tools
[9,11,15,22]. This technique has been proved extremely useful in the context
of numerous applications of computational science and engineering requiring
numerical methods that are based on derivative information [3,5–7]. For the
purpose of this paper we may assume trivial flow of control in the form of a
straight-line program. Similarly, one may consider the evaluation of an arbitrary
function at a given point to fix the flow of control.

Our interest lies in the computation of the Jacobian of the active outputs
(or dependent variables) y = (yj)j=1,...,m with respect to the active inputs (or
independent variables) x = (xi)i=1,...,n. The ñ−vector a contains all passive
inputs. Conceptually, AD decomposes the program into a sequence of scalar
assignments

vj = ϕj(vi)i≺j (4)

for j = 1, . . . , p + m, where we follow the notation in [10]. We refer to Eq. (4)
as the code list of F, and we set xi = vi−n for i = 1, . . . , n and yj = vp+j for
j = 1, . . . , m. The vj, j = 1, . . . , p, are referred to as intermediate variables. The
notation i ≺ j marks a direct dependence of vj on vi meaning that vi is an
argument of the elemental function2 ϕj. The code list induces a directed acyclic
graph G = (V, E) such that V = {1 − n, . . . , p + m} and (i, j) ∈ E ⇔ i ≺ j.
Assuming that all elemental functions are continuously differentiable at their
respective arguments all local partial derivatives can be computed by a single
evaluation of the linearized code list

cj,i = ∂ϕj

∂vi
(vk)k≺j ∀i ≺ j

vj = ϕj(vi)i≺j

for j = 1, . . . , p + m, (5)

for given values of x and a. The corresponding linearized computational graph
is obtained by attaching the cj,i to the corresponding edges (i, j). An example is
shown in Fig. 1.

It has been well-known for some time [2] that the entries of the Jacobian

F ′(x, a) ≡ (fj,i) =
(

∂yj

∂xi

)
=

(
∂vp+j

∂vi−n

)
, i = 1, . . . , n, j = 1, . . . , m, (6)

can be computed as
fj,i =

∑

[i→j]

∏

(k,l)∈[i→j]
cl,k, (7)

2 Elemental functions are the arithmetic operators and intrinsic functions provided by the pro-
gramming language.



Optimal Jacobian accumulation is NP-complete 429

Fig. 1 Linearized
Computational Graph G:
Independent and dependent
variables are represented by
black triangles pointing
upward (−3, . . . , 0) and
downward (4, . . . , 7),
respectively. Intermediate and
maximal vertices are marked
with their respective
elemental functions. The
corresponding local partial
derivatives that are associated
with all edges in G are
enclosed within square
brackets

−3 −2 −1 0

1 2

3

4 5 6 7

∗∗

∗∗ 3.14∗

/

sin

[c1,−3]

[c1,−2]

[c2,−1]

[c2,0]

[c3,1]

[c3,2]

[c4,1]

[c7,2]

[c4,3] [c5,3] [c6,3]

[c7,3]

where [i → j] denotes a path from i to j in G, that is, a sequence of edges
((kν , lν), ν = 1, . . . , |Pi,j|) such that k1 = i, l|Pi,j| = j, and lν = kν+1 for ν =
1, . . . , |Pi,j|−1. We set Pi,j ≡ {(k, l) ∈ [i → j]}. Throughout this paper we use the
notation |S| for the cardinality of a set S. Moreover, the theoretical investigation
of the potential decrease of the number of floating-point operations required
for the evaluation of Eq. (7) has been the subject of a number of papers [13,
14,18,20]. In all cases the authors consider elimination problems in versions of
the computational graph. The cj,i are assumed to be algebraically independent.
Linear parts of the program may represent an exception as the values of the
local partial derivatives are invariant with respect to the inputs of F. Hence they
can potentially be eliminated statically (at compile-time) as described in [21].3

Example 1 Consider the following linearized code list of a vector function
F : IR4 → IR4:

c1,−3 = v−2; c1,−2 = v−3; v1 = v−3 ∗ v−2,
c2,−1 = v0; c2,0 = v−1; v2 = v−1 ∗ v0,
c3,1 = 1/v2; c3,2 = −v1/v2

2; v3 = v1/v2,
c4,1 = v3; c4,3 = v1; v4 = v1 ∗ v3,
c5,3 = cos(v3); v5 = sin(v3),
c6,3 = 3.14; v6 = 3.14 ∗ v3,
c7,2 = v3; c7,3 = v2; v7 = v2 ∗ v3.

3 In AD one is primarily interested in a low dynamic (run-time) cost of the automatically generated
derivative code. Similar to classical compiler techniques the cost of compile-time manipulations
is not taken into account. This approach assumes that the cost of the compilation is still within
reasonable bounds, that is, it must be much lower than the cumulative computational cost of all
executions of the generated code. This requirement is satisfied by the static techniques proposed in
[21].



430 U. Naumann

The computation of the values of the code list variables v1, . . . , v7 is preceded by
the computation of the corresponding local partial derivatives. The linearized
computational graph is shown in Fig. 1. The fact that c4,1 = c7,2 = v3, contra-
dicts the assumption about the algebraic independence of the partial deriva-
tives. Nevertheless, to our knowledge such dependences have been ignored in
previous work on the subject.

The remainder of the paper is organized as follows: In Sect. 2 we state the
Optimal Jacobian Accumulation problem, and we prove its NP-completeness
by reduction from Ensemble Computation taking into account possible alge-
braic dependences between the local partial derivatives. Various special cases
are considered as well as the generalization for higher derivative tensors. In
Sect. 3 we discuss the results in the context of Jacobian accumulation tech-
niques that exploit structural properties of the computational graph.

2 Result

Ensemble Computation [8] is defined as follows: Given a collection C = {Cν ⊆
A : ν = 1, . . . , |C|} of subsets Cν = {cν

i : i = 1, . . . , |Cν |} of a finite set A and a
positive integer � is there a sequence ui = si ∪ ti for i = 1, . . . , ω of ω ≤ � union
operations, where each si and ti is either {a} for some a ∈ A or uj for some j < i,
such that si and ti are disjoint for i = 1, . . . , ω and such that for every subset
Cν ∈ C, ν = 1, . . . , |C|, there is some ui, 1 ≤ i ≤ ω, that is identical to Cν?

Lemma 1 Ensemble Computation is NP-complete.

Proof The proof is by reduction from Vertex Cover as shown in [8]. 
�
Example 2 Let an instance of Ensemble Computation be given by

A = {a1, a2, a3, a4}
C = {{a1, a2}, {a2, a3, a4}, {a1, a3, a4}}

and � = 4. The answer to the decision problem is positive with a corresponding
instance given by

C1 = u1 = {a1} ∪ {a2},
u2 = {a3} ∪ {a4},

C2 = u3 = {a2} ∪ u2,

C3 = u4 = {a1} ∪ u2.

W.l.o.g. we assume A � IR in the following. The number of floating-point
operations (scalar multiplications “∗” and additions “+”) can potentially be
decreased compared to the straight-forward application of Eq. (7) by exploit-
ing the algebraic laws of the field (IR, +, ∗), that is associativity, commutativity,



Optimal Jacobian accumulation is NP-complete 431

and distributivity. The corresponding computer programs are referred to as
Jacobian accumulation codes. There is an exponential (in the size of G) number
of them.

Example 3 The derivation of the Jacobian accumulation code for Example 1
which corresponds to Eq. (7) is straight-forward. In

f1,1 = c4,3 ∗ c3,1 ∗ c1,−3 + c4,1 ∗ c1,−3,

f1,2 = c4,3 ∗ c3,1 ∗ c1,−2 + c4,1 ∗ c1,−2,

f1,3 = c4,3 ∗ c3,2 ∗ c2,−1,

f1,4 = c4,3 ∗ c3,2 ∗ c2,0,

f2,1 = c5,3 ∗ c3,1 ∗ c1,−3,
...

f7,4 = c7,3 ∗ c3,2 ∗ c2,0 + c7,2 ∗ c2,0,

36 multiplications and 4 additions are performed. It is less obvious that the
Jacobian can also be obtained by the Jacobian accumulation code

c4,1 + = c4,3 ∗ c3,1; f1,1 = c4,1 ∗ c1,−3; f1,2 = c4,1 ∗ c1,−2

c7,2 + = c7,3 ∗ c3,2; f4,3 = c7,2 ∗ c2,−1; f4,4 = c7,2 ∗ c2,0

c3,−3 = c3,1∗c1,−3; c3,−2 = c3,1∗c1,−2; c3,−1 = c3,2∗c2,−1; c3,0 = c3,2∗c2,0

f1,3 = c4,3 ∗ c3,−1; f1,4 = c4,3 ∗ c3,0

f2,1 = c5,3 ∗ c3,−3; f2,2 = c5,3 ∗ c3,−2; f2,3 = c5,3 ∗ c3,−1; f2,4 = c5,3 ∗ c3,0

f3,1 = c6,3 ∗ c3,−3; f3,2 = c6,3 ∗ c3,−2; f3,3 = c6,3 ∗ c3,−1; f3,4 = c6,3 ∗ c3,0

f4,1 = c7,3 ∗ c3,−3; f4,2 = c7,3 ∗ c3,−2

at the cost of 22 multiplications and 2 additions.4 Assuming structural indepen-
dence of the local partial derivatives the above is the best solution for the Bat
graph5 known today. See [20] for details.

We refer to the problem of minimizing the number of scalar multiplica-
tions and additions performed by a Jacobian accumulation code as the Optimal
Jacobian Accumulation (OJA) problem. The corresponding decision version
is defined as follows:

Given a linearized computational graph G of a vector function F as defined
in Eq. (1) and a positive integer � is there a sequence of scalar assignments
uk = sk ◦ tk, ◦ ∈ {+, ∗}, k = 1, . . . , ω, where each sk and tk is either cj,i for some
(i, j) ∈ E or uk′ for some k′ < k such that ω ≤ � and for every Jacobian entry
there is some identical uk, k ≤ ω?

4 We use the C-style notation a+ = b to denote the incrementation of a by b.
5 Turn the graph in Fig. 1 upside down and use a little imagination to verify the appropriateness of
the naming.



432 U. Naumann

Theorem 1 Optimal Jacobian Accumulation is NP-complete.

Proof We reduce from Ensemble Computation. A given solution is verified in
polynomial time by counting the number of operations.

Given an arbitrary instance of Ensemble Computation we define the corre-
sponding OJA problem as follows:

Consider y = F(x, a) where x ∈ IR|C|, a ≡ (aj)j=1,...,|A| ∈ IR|A| is a vector
containing all elements of A, and F : IR|C|+|A| → IR|C| defined as

yν = xν ∗
|Cν |∏

j=1

cν
j (8)

for ν = 1, . . . , |C| and where cν
j is equal to some ai, i = 1, . . . , |A|, for all ν and

j. The elements of A are set to be random numbers. We assume that

|Cν |∏

j=1

cν
j = cν

1 ∗ cν
2 ∗ · · · ∗ cν

|Cν |

and that, w.l.o.g.,

xν ∗
|Cν |∏

j=1

cν
j = xν ∗ cν

1 ∗ cν
2 ∗ · · · ∗ cν

|Cν | = (. . . ((xν ∗ cν
1) ∗ cν

2) . . .) ∗ cν
|Cν |

is evaluated from left to right. This transformation is linear with respect to
the original instance of Ensemble Computation in both space and time. The
Jacobian F ′(x, a) is a diagonal matrix with nonzero entries

fν,ν =
|Cν |∏

j=1

cν
j

for ν = 1, . . . , |C|. Is there a Jacobian accumulation code for F ′(x, a) of length
less than �? We claim that the answer is positive if and only if there is a solution
of the corresponding Ensemble Computation problem.

“⇐” In a given solution of the Ensemble Computation problem we simply
substitute ∗ for ∪. The length of the resulting Jacobian accumulation code is less
than �. The correctness of the code follows immediately from the definition of
both Ensemble Computation and OJA.

“⇒” No additions are performed by any Jacobian accumulation code as a
result of the definition of F(x, a). Let

uk = sk ∗ tk, k = 1, . . . , ω, (9)



Optimal Jacobian accumulation is NP-complete 433

Fig. 2 Shows the
corresponding linearized
computational graph

−2 −1 0

1

2

3

4

5

6 7 8

[a1]
[a1]

[a2]

[a2]

[a3][a3]

[a4][a4]

be a solution of the OJA problem. We claim that a solution of Ensemble Com-
putation is obtained by substitution of ∪ for ∗ in Eq. (9). According to the
definition of OJA each sk and tk is either ai for some i ∈ {1, . . . , |A|} or uk′
for some k′ < k. Similarly, there is some uj, j ≤ ω, for every subset Cν ∈ C,
ν = 1, . . . , |C|, that is identical to Cν since all Jacobian entries are computed by
Eq. (9). It remains to be shown that si and ti are disjoint for 1 ≤ i ≤ ω.

W.l.o.g. suppose that there is some i ≤ ω such that si ∩ ti = {b}. Hence the
computation of ui in the Jacobian accumulation code involves a factor b ∗ b.
Note that such a factor is not part of any Jacobian entry which implies that
the computation of ui is obsolete and therefore cannot be part of an optimal
Jacobian accumulation code.

While {a, b} = {c, d} if and only if a = c and b = d (or a = d and b = c) we
may well have a ∗ b = c ∗ d. Pick, for example, a = 2, b = 6, c = 3, and d = 4.
However as A consists of random numbers the similar treatment of (A, ∪) and
(A, ∗) is feasible. 
�

Example 4 The equivalent instance of OJA for Example 2 comes as a vector
function F : IR3+4 → IR3 defined by the following system of equations:

y1 = x1 ∗ a1 ∗ a2,

y2 = x2 ∗ a2 ∗ a3 ∗ a4,

y3 = x3 ∗ a1 ∗ a3 ∗ a4.



434 U. Naumann

The Jacobian accumulation code according to Eq. (7) is

f1,1 = a1 ∗ a2,

f2,2 = a2 ∗ a3 ∗ a4,

f3,3 = a1 ∗ a3 ∗ a4.

A Jacobian accumulation code that solves the OJA problem with � = 4 is
given as

t = a3 ∗ a4,

f1,1 = a1 ∗ a2,

f2,2 = a2 ∗ t,

f3,3 = a1 ∗ t.

While the straight-forward reduction from Ensemble Computation in the proof
of Theorem 1 is sufficient to show the NP-completeness of OJA it does not illus-
trate how differentiation makes life difficult. A similar combinatorial optimi-
zation problem arises already for the function evaluation itself. To circumvent
this inconvenience one may introduce local nonlinearities as follows.

Consider y = F(x, a) where x ∈ IR|C|, a ≡ (aj)j=1,...,|A| ∈ IR|A| is a vector
containing all elements of A, and F : IR|C|+|A| → IR|C| defined as

yν = ϕν
|Cν |−1(. . . ϕ

ν
2 (ϕν

1 (xν ∗ cν
1) ∗ cν

2) . . . cν
|Cν |−1) ∗ cν

|Cν | (10)

for ν = 1, . . . , |C| and where cν
j is equal to some random number ai, i =

1, . . . , |A|, for all ν and j. The unary nonlinear functions are chosen such that
ϕν

j (v) �= ϕ
µ

k (w) if v �= w. The function needs to be evaluated forward. The
algebraic properties of scalar multiplication cannot be exploited anymore.

Differentiation of Eq. (10) with respect to x yields again a diagonal matrix
with nonzero entries

fν,ν = cν
|Cν | ∗

|Cν |−1∏

j=1

∂ϕν
j (v)

∂v
(vν

j ) ∗ cν
j

for ν = 1, . . . , |C| and where

vν
j =

⎧
⎪⎨

⎪⎩

xν ∗ cν
j if j = 1,

ϕν
j (ϕν

1 (xν ∗ cν
1) ∗ cν

j ) if j = 2,

ϕν
j−1(. . . ϕ

ν
1 (xν ∗ cν

1) ∗ · · · ∗ cν
j−1) ∗ cν

j if j = 3, . . . , |Cν | − 1.

The products of the cν
j in the derivative accumulation yield an Ensemble Com-

putation problem with � := � + ∑|C|
ν=1 |Cν | − |C|.



Optimal Jacobian accumulation is NP-complete 435

Example 5 Consider

y1 = ϕ1(x1 ∗ a1) ∗ a2,

y2 = ϕ3(ϕ2(x2 ∗ a2) ∗ a3) ∗ a4,

y3 = ϕ5(ϕ4(x3 ∗ a1) ∗ a3) ∗ a4.

The Jacobian accumulation code according to Eq. (7) is

f1,1 = a1 ∗ ∂ϕ1(v)

∂v
(x1 ∗ a1) ∗ a2,

f2,2 = a2 ∗ ∂ϕ2(v)

∂v
(x2 ∗ a2) ∗ a3 ∗ ∂ϕ3(v)

∂v
(ϕ2(x2 ∗ a2) ∗ a3) ∗ a4,

f3,3 = a1 ∗ ∂ϕ4(v)

∂v
(x3 ∗ a1) ∗ a3 ∗ ∂ϕ5(v)

∂v
(ϕ4(x3 ∗ a1) ∗ a3) ∗ a4.

A Jacobian accumulation code that solves the OJA problem with � = 4 +
∑|C|

ν=1 |Cν | − |C| = 9 is given as

t = a3 ∗ a4,

f1,1 = a1 ∗ ∂ϕ1(v)

∂v
(x1 ∗ a1) ∗ a2,

f2,2 = a2 ∗ ∂ϕ2(v)

∂v
(x2 ∗ a2) ∗ ∂ϕ3(v)

∂v
(ϕ2(x2 ∗ a2) ∗ a3) ∗ t,

f3,3 = a1 ∗ ∂ϕ4(v)

∂v
(x3 ∗ a1) ∗ ∂ϕ5(v)

∂v
(ϕ4(x3 ∗ a1) ∗ a3) ∗ t.

Note that only multiplications of local partial derivatives are counted. The

values
∂ϕν

j (v)

∂v (vν
j ) are assumed to be available after linearization of the compu-

tational graph as described in Sect. 1.

We may ask ourselves how large the savings in Jacobian accumulation can
become compared to the computational cost of evaluating the underlying func-
tion. For the type of function used in the proof of Theorem 1 savings are
negligible as outlined before. The proposed extension with local nonlinear func-
tions yields maximum savings of a factor of roughly two. Consider therefore
y = F(x, a) as before where x ∈ IR|A|!, and F : IR|A|!+|A| → IR|A|! defined as

yν = ϕν
|A|−1(. . . ϕ

ν
1 (xν ∗ cν

1) ∗ · · · cν
|A|−1) ∗ cν

|A| (11)

for ν = 1, . . . , |A|! such that the cν
1, . . . , cν

|A| range over all permutations of the
elements in A. An example computational graph is shown in Fig. 3 for |A| = 3,
where A = {a, b, c} and the partial derivatives of the ϕν

j are denoted by dj for

j = 1, . . . , (|A| − 1)|A|!. Assuming again that the
∂ϕν

j (v)

∂v (vν
j ) are algebraically

independent we observe that the function evaluation takes (2|A| − 1)|A|! oper-
ations whereas the Jacobian can be accumulated as a function of the local partial



436 U. Naumann

[a]

[a]

[a]

[a]

[a][a]

[b]

[b]

[b][b]

[b]

[b] [ c]

[c]

[c][c]

[c]

[c]

[d1]

[d2]

[d3]

[d4]

[d5]

[d6]

[d7]

[d8]

[d9]

[d10]

[d11]

[d12]

Fig. 3 Cheap Jacobians – an extreme case

derivatives at a cost of 2 + (|A| − 1)|A|! operations. For the example in Fig. 3
we get (2|A| − 1)|A|! = 30 and 2 + (|A| − 1)|A|! = 14.

The idea underlying the proof of Theorem 1 can be applied to a wide vari-
ety of practically relevant derivative computations as shown below. A major
strength of AD is the ability to compute Jacobian-vector (for example, used in
matrix-free Newton-type methods for solving systems of nonlinear equations
[17]) and transposed-Jacobian-vector products (for example, used in nonlinear
least squares optimization [16]) in its forward and reverse modes, respectively,
without building the full Jacobian. The latter can be computed by the tangent-
linear (resp. adjoint) code that implements Eq. (2) (resp. Eq. (3)) at a complexity
that is proportional to n (resp. m) if ẋ (resp. ȳ) ranges over the Cartesian basis
vectors in IRn (resp. IRm). Gradients (m = 1), in particular, can be evaluated
as adjoints in reverse mode at a computational cost that is a small constant
multiple of the cost of evaluating F itself [23].

The accumulation of the Jacobian for a function with the Bat graph G =
(V, E) displayed in Fig. 1 takes n × |E| = 4 × 12 = 48 scalar multiplications in
forward mode and, as n = m, the same number in reverse mode. The best Jaco-
bian accumulation code for the Bat graph know so far takes less than half this
number. We believe that this improvement is rather impressive keeping in mind
that the function at hand is extremely simple compared to numerical simulation
programs for real-world applications. See [10] for further details on AD. In any
case, the minimization of the corresponding computational effort must play a
central role in all attempts to speed up numerical methods that rely on some
kind of derivative information. In the following we derive NP-completeness
results for various related problems.



Optimal Jacobian accumulation is NP-complete 437

We define the Optimal Gradient Accumulation problem similar to OJA
with a scalar dependent variable in Eq. (1).

Theorem 2 Optimal Gradient Accumulation is NP-complete.

Proof The proof follows immediately by modifying Eq. (8) in the proof of
Theorem 1 as follows:

y =
|C|∑

ν=1

yν =
|C|∑

ν=1

⎛

⎝xν ∗
|Cν |∏

j=1

cν
j

⎞

⎠ .

The additional sum introduces a linear section that can be eliminated statically
as described in [21]. The nonzeros on the diagonal of the Jacobian become the
gradient entries. 
�

Gradients are single rows in the Jacobian. Similarly, we can show that the
computation of single columns, that is, for a scalar independent variable in
Eq. (1), is NP-complete by considering the Jacobian of

yν = x ∗
|Cν |∏

j=1

cν
j ν = 1, . . . , |C|.

Example 6 The linearized computational graphs for

y = x1 ∗ a1 ∗ a2 + x2 ∗ a2 ∗ a3 ∗ a4 + x3 ∗ a1 ∗ a3 ∗ a4, (12)

and

y1 = x ∗ a1 ∗ a2

y2 = x ∗ a2 ∗ a3 ∗ a4

y3 = x ∗ a1 ∗ a3 ∗ a4.

(13)

are shown in Figs. 4a and 5, respectively. The graph in Fig. 4b is obtained by
applying static elimination techniques for edges that carry label 1 to the graph
in Fig. 4a as described in [21].

We define the Optimal Tangent Computation and Optimal Adjoint Com-
putation problems as the problems of computing the product of the Jacobian
with an n-vector ẋ and the product of the transposed Jacobian with an m-vector
ȳ, respectively.

Theorem 3 Optimal Tangent Computation and Optimal Adjoint Computa-
tion are NP-complete.



438 U. Naumann

−2 −1 0

1

2

3

4

5

6 7 8

9

10

[1]
[1]

[1]

[1]

[a1]
[a1]

[a2]

[a2]

[a3][a3]

[a4][a4]

−2 −1 0

1

2

3

4

5

10

[a1]
[a1]

[a2]

[a2]

[a3][a3]

[a4]
[a4]

(a) (b)

Fig. 4 Linearized computational graph for Eq. (12) before (a) and after (b) folding of constant
local partial derivatives

Proof Setting ẋν = cν
1 for ν = 1, . . . , |C| the computation of F ′ ∗ ẋ becomes

equivalent to the computation of the |C| × 1 Jacobian of y with respect to x for

y = Ḟ(x, ẋ, a), Ḟ : IR1+|C|+|A| ⊇ D → IR|C|

defined as

yν = x ∗ ẋν ∗
|Cν |∏

j=2

cν
j .

The proof is similar to the proof of Theorem 1.



Optimal Jacobian accumulation is NP-complete 439

Fig. 5 Linearized
computational graph for
Eq. (13)

0

1

2

3

4

5

6 7 8

[a1]

[a1]

[a2]

[a2]

[a3] [a3]

[a4][a4]

The result for (F ′)T ∗ ȳ follows by symmetry. Simply set ȳν = cν
|Cν | for ν =

1, . . . , |C| and consider

y = F̄(x, a, ȳ), F : IR|C|+|A|+|C| ⊇ D → IR

defined as

y =
|C|∑

ν=1

(
xν ∗ cν

1 ∗ · · · ∗ cν
|Cν |−1 ∗ ȳν

)
=

|C|∑

ν=1

⎛

⎝xν ∗
|Cν |−1∏

j=1

cν
j

⎞

⎠ ∗ ȳν .


�
Example 7 With ȳ = (a2, a4, a4) and ẋT = (a1, a2, a1) the linearized computa-
tional graphs are similar to Figs. 4a and 5, respectively.

The results can be generalized to derivatives of arbitrary order q > 0 by
considering

yν = xq
ν

q!
|Cν |∏

j=1

cν
j .

for ν = 1, . . . , |C| instead of Eq. (8) and deriving the corresponding special
cases. The division by q! is not essential. All it does is ensure that the qth



440 U. Naumann

derivative of yν with respect to xν is equal to
∏|Cν |

j=1 cν
j , thus making the proof of

Theorem 1 applicable without any modification.

3 Discussion

Previous work on the subject has always made the assumption that the local
partial derivatives are algebraically independent [4,12,13,19]. The potential
impact of dependences between the cj,i on the complexity of Jacobian accumu-
lation has been acknowledged only recently during personal communication
with Griewank and Steihaug at Humboldt University Berlin [1].

The simplicity of the result of reducing Ensemble Computation to OJA
ensures that all elimination techniques known so far are covered. Vertex [13],
edge [18], and face elimination [20] as well as rerouting and normalization
[14] exploit different structural properties of the computational graph. Neither
rerouting nor normalization are applicable if all dependent variables are mutu-
ally independent and all intermediate vertices have both a single predecessor
and a single successor. Both face and edge elimination are equivalent to ver-
tex elimination in this case. Hence we have shown the NP-completeness of a
special case that implies the NP-completeness of all elimination problems on
versions of the computational graph known so far. Note that we have not shown
the NP-completeness of Optimal Jacobian Computation for mutually algebra-
ically independent local partial derivatives. We conjecture that a similar result
can be derived in this case. However, the proof appears to be less straight-for-
ward than that developed in this paper. Moreover, the relevance of this special
case becomes questionable in the light of these new results.

Optimal Adjoint Computation is equivalent to the problem of computing
adjoints with a minimal number of operations if the entire code list can be
stored. Hence, it represents a special case of the Optimal Checkpointing prob-
lem that aims to balance the use of storage and recomputation such that the
overall number of operations is minimized [24,25]. Theoretically, the NP-com-
pleteness of this special case could be taken as proof for the NP-completeness
of the Optimal Checkpointing problem. However, one must acknowledge that
there is no Optimal Checkpointing problem if the entire execution of the func-
tion can be stored. Hence we envision further work to be necessary in order to
handle this highly relevant problem theoretically in a consistent way. There is
no doubt that practical algorithmic work is crucial to speed up derivative-based
numerical methods.

All existing algorithms for minimizing the operations count of Jacobian accu-
mulation codes aim to exploit structural properties of the computational graph.
The main conclusion from this paper is that a mind shift is required to tackle
the OJA problem adequately. Tools for AD need to take potential algebraic
dependences between the local partial derivatives into account. First steps in
this direction are currently made at Humboldt University Berlin and RWTH
Aachen University as part of a collaborative research project. The practical
implementation of new (pre) accumulation strategies in existing AD tools



Optimal Jacobian accumulation is NP-complete 441

(see, for example, [9,11,15,22] and http://www.autodiff.org) remains a major
technical challenge.

Acknowledgements My thanks go to A. Griewank and the anonymous referees for numerous
highly useful comments on the manuscript.

References

1. Personal communication with Steihaug, T. Bergen University, Norway, and Griewank, A. at
Humboldt University Berlin (2005)

2. Baur, W., Strassen, V.: The complexity of partial derivatives. Theoret. Comput. Sci. 22, 317–330
(1983)

3. Berz, M., Bischof, C., Corliss, G., Griewank, A. (eds.) Computational differentiation: tech-
niques, applications, and tools. In: Proceedings Series. SIAM Philadelphia (1996)

4. Bischof, C., Haghighat, M.: Hierarchical approaches to automatic differentiation. In: [3],
pp. 82–94

5. Bücker, M., Corliss, G., Hovland, P., Naumann, U., Norris, B. (eds.) Automatic Differentiation:
Applications, Theory, and Tools. Lecture Notes in Computational Science and Engineering,
vol. 50. Springer, Berlin Heidelberg New York (2005)

6. Corliss, G., Faure, C., Griewank, A., Hascoët, L., Naumann, U. (eds.) Automatic Differentia-
tion of Algorithms – From Simulation to Optimization. Springer, Berlin Heidelberg New York
(2002)

7. Corliss, G., Griewank, A. (eds.) Automatic Differentiation: Theory, Implementation, and
Application. Proceedings Series. SIAM Philadelphia (1991)

8. Garey, M., Johnson, D.: Computers and Intractability – A Guide to the Theory of NP-com-
pleteness. W. H. Freeman and Company, San Francisco (1979)

9. Giering, R., Kaminski, T.: Applying TAF to generate efficient derivative code of Fortran 77-95
programs. In: Proceedings of GAMM 2002, Augsburg, Germany (2002)

10. Griewank, A.: Evaluating derivatives. Principles and techniques of algorithmic differentiation.
Frontiers in Applied Mathematics, vol. 19. SIAM, Philadelphia (2000)

11. Griewank, A., Juedes, D., Utke, J.: ADOL–C, a package for the automatic differentiation of
algorithms written in C/C++. ACM Trans. Math. Softw. 22(2), 131–167 (1996)

12. Griewank, A., Naumann, U.: Accumulating Jacobians as chained sparse matrix products. Math.
Prog. 3(95), 555–571 (2003)

13. Griewank, A., Reese, S.: On the calculation of Jacobian matrices by the Markovitz rule. In: [7],
pp. 126–135

14. Griewank, A., Vogel, O.: Analysis and exploitation of Jacobian scarcity. In: Proceedings of
HPSC Hanoi. Springer, Berlin Heidelberg New York (2003)

15. Hascoët, L., Pascual, V.: Tapenade 2.1 user’s guide. Technical report 300, INRIA (2004)
16. Heath, M.: Scientific Computing. An Introductory Survey. McGraw-Hill, New York (1998)
17. Kelley, C.: Solving Nonlinear Equations with Newton’s Method. SIAM Philadelphia (2003)
18. Naumann, U.: Elimination techniques for cheap Jacobians. In: [6], chap. 29, pp. 247–253 (2001)
19. Naumann, U.: Cheaper Jacobians by simulated annealing. SIAM J. Opt. 13(3), 660–674 (2002)
20. Naumann, U.: Optimal accumulation of Jacobian matrices by elimination methods on the dual

computational graph. Math. Prog. 3(99), 399–421 (2004)
21. Naumann, U., Utke, J.: Optimality-preserving elimination of linearities in Jacobian accumula-

tion. Electron. Trans. Numer. Anal. (ETNA) 21, 134–150 (2005)
22. Naumann, U., Utke, J., Wunsch, C., Hill, C., Heimbach, P., Fagan, M., Tallent, N., Strout,

M.: Adjoint code by source transformation with open ad/f. In: Proceedings of the European
Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006). TU Delft (2006)

23. Speelpenning, B.: Compiling fast partial derivatives of functions given by algorithms. Ph.D.
Thesis, University of Chicago (1980)

24. Walther, A.: Program reversal schedules for single- and multi-processor machines. Ph.D. Thesis,
Institute of Scientific Computing, Technical University Dresden (1999)

25. Walther, A., Griewank, A.: New results on program reversals. In: [6], chapt. 28, pp. 237–243.
Springer, Berlin Heidelberg New York (2001)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


