Übungsaufgaben 12

Vollstetige Abbildungen

Aufgabe 1. Seien $(V, \| \|_V)$ und $(W, \| \|_W)$ Banach-Räume über demselben Körper \mathbb{K} . Man beweise, daß der Bildraum T[V] einer vollstetigen Abbildung $T \in \mathcal{K}(V; W)$ stets ein separabler linearer Teilraum von $(W, \| \|_W)$ ist!

Lösung. Wegen $T \in \mathcal{K}(V; W)$ ist das Bild $T[K_{\ell}]$ der Kugel $K_{\ell} = \{u \in V : ||u||_{V} \leq \ell\}$ für jedes $\ell \in \mathbb{N}$ relativ kompakt in W. Daher gibt es für jedes $\ell \in \mathbb{N}$ eine abzählbare, in $T[K_{\ell}] \subset W$ dichte Menge $D_{\ell} \subset T[K_{\ell}]$.

Da wegen $V = \bigcup_{\ell=1}^{\infty} K_{\ell}$ auch $T[V] = \bigcup_{\ell=1}^{\infty} T[K_{\ell}]$ gilt, ist $\bigcup_{\ell=1}^{\infty} D_{\ell} \subset T[V]$ somit eine abzählbare, in $\bigcup_{\ell=1}^{\infty} T[K_{\ell}] = T[V]$ dichte Menge, das heißt, der Bildraum T[V] ist ein separabler linearer Teilraum von $(W, \| \|_W)$.

Aufgabe 2. Seien $(V, \| \|_V)$ und $(W, \| \|_W)$ Banach-Räume über demselben Körper \mathbb{K} . Sei ferner $\{T_k\}_{k\in\mathbb{N}}\subset\mathcal{L}(V;W)$ eine Folge, so daß der Bildraum $T_k[V]$ für jedes $k\in\mathbb{N}$ endlichdimensional ist. Konvergiert die Folge $\{T_k\}_{k\in\mathbb{N}}$ in $(\mathcal{L}(V;W), \| \|)$, so zeige man, daß der Grenzwert T zu $\mathcal{K}(V;W)$ gehört!

Lösung. Der Bildraum $(T_k[V], \| \|_W)$ ist für jedes $k \in \mathbb{N}$ ein endlichdimensionaler und damit abgeschlossener linearer Teilraum von $(W, \| \|_W)$. Wegen $\{T_k\}_{k \in \mathbb{N}} \subset \mathcal{L}(V; W)$ ist die Bildmenge $T_k[E]$ für jede beschränkte Menge $E \subset V$ im endlichdimensionalen Teilraum $(T_k[V], \| \|_W)$ beschränkt und somit relativ kompakt in $(T_k[V], \| \|_W)$, das heißt, es gilt $T_k \in \mathcal{K}(V; T_k[V])$ für jedes $k \in \mathbb{N}$.

Da die natürliche Einbettung des Teilraums $(T_k[V], \| \|_W)$ in $(W, \| \|_W)$ eine lineare stetige Abbildung ist, ergibt sich daraus $\{T_k\}_{k\in\mathbb{N}}\subset\mathcal{K}(V;W)$.

Wegen der Konvergenz der Folge $\{T_k\}_{k\in\mathbb{N}}\subset \mathcal{K}(V;W)$ in $(\mathcal{L}(V;W),\|\ \|)$ gegen den Grenzwert $T\in \mathcal{L}(V;W)$ und der Abgeschlossenheit des linearen Teilraums $\mathcal{K}(V;W)$ in $(\mathcal{L}(V;W),\|\ \|)$ ergibt sich $T\in \mathcal{K}(V;W)$.

Aufgabe 3. Sei $(V, \| \|_V)$ ein separabler Banach-Raum über \mathbb{R} , ferner $\mu : \mathfrak{A} \to [0, \infty]$ ein σ -endliches, vollständiges Maß auf einer σ -Algebra $\mathfrak{A} \subset \mathfrak{P}(X)$ über X sowie desweiteren $u \in L^2(X; V)$ eine vorgegebene Funktion. Man weise nach, daß durch die Vorschrift

$$T\varphi = \int_X u\varphi \, d\mu \quad \text{für } \varphi \in L^2(X; \mathbb{R}),$$

4

eine vollstetige Abbildung $T \in \mathcal{K}(L^2(X;\mathbb{R});V)$ definiert wird!

Lösung. 1. Wegen $u \in L^2(X; V)$ ist aufgrund der Hölder-Ungleichung die Funktion $||u||_V |\varphi| : X \to \mathbb{R}$ für jedes $\varphi \in L^2(X; \mathbb{R})$ integrierbar, und es gilt die Abschätzung

$$||T\varphi||_V \le \int_X ||u||_V |\varphi| d\mu \le ||u||_{L^2(X;V)} ||\varphi||_{L^2(X;\mathbb{R})}.$$

Da $T: L^2(X; \mathbb{R}) \to V$ eine lineare Abbildung ist, erhält man $T \in \mathcal{L}(L^2(X; \mathbb{R}); V)$.

2. Wegen der Dichtheit der einfachen Funktionen aus $L^2(X; V)$ in $L^2(X; V)$ kann man eine Folge $\{u_k\}_{k\in\mathbb{N}}\subset L^2(X; V)$ einfacher Funktionen wählen, die in $L^2(X; V)$ gegen $u\in L^2(X; V)$ konvergiert. Wird $\varepsilon>0$ beliebig vorgegeben, so existiert ein $k_0\in\mathbb{N}$ mit

$$||u_k - u||_{L^2(X;V)} \le \frac{\varepsilon}{2}$$
 für alle $k \in \mathbb{N}, k \ge k_0$.

3. Da $\{u_k\}_{k\in\mathbb{N}}\subset L^2(X;V)$ eine Folge einfacher Funktionen ist, findet man für jeden Index $k\in\mathbb{N}$ eine Zerlegung $\{E_{k\ell}\}_{\ell\in\mathbb{N}}\subset \mathfrak{A}$ von X in Mengen endlichen Maßes sowie eine Folge $\{v_{k\ell}\}_{\ell\in\mathbb{N}}\subset V$ mit der Darstellung $u_k=\sum_{\ell=1}^\infty\mathbb{1}_{E_{k\ell}}v_{k\ell}\in L^2(X;V)$. Da für jedes $k\in\mathbb{N}$ die Konvergenzbeziehung $\sum_{\ell=1}^\infty\int_{E_{k\ell}}\|u_k\|_V^2\,d\mu=\int_X\|u_k\|_V^2\,d\mu$ gilt, kann man für jedes $k\in\mathbb{N}$ ein $m_k\in\mathbb{N}$ mit folgender Eigenschaft finden:

$$\int_{X} \|u_{k} - \sum_{\ell=1}^{m_{k}} \mathbb{1}_{E_{k\ell}} v_{k\ell} \|_{V}^{2} d\mu = \int_{X} \|\sum_{\ell=m_{k}+1}^{\infty} \mathbb{1}_{E_{k\ell}} v_{k\ell} \|_{V}^{2} d\mu
= \sum_{\ell=m_{k}+1}^{\infty} \int_{E_{k\ell}} \|v_{k\ell}\|_{V}^{2} d\mu = \sum_{\ell=m_{k}+1}^{\infty} \int_{E_{k\ell}} \|u_{k}\|_{V}^{2} d\mu \le \frac{1}{4} \varepsilon^{2}.$$

Wählt man $w_k = \sum_{\ell=1}^{m_k} \mathbbm{1}_{E_{k\ell}} v_{k\ell} \in L^2(X; V)$ für jedes $k \in \mathbb{N}$, dann folgt mit Schritt 2 $\|w_k - u\|_{L^2(X; V)} \leq \|w_k - u_k\|_{L^2(X; V)} + \|u_k - u\|_{L^2(X; V)} \leq \varepsilon \quad \text{für alle } k \in \mathbb{N}, k \geq k_0.$

4. Man definiert für jedes $k \in \mathbb{N}$ eine Abbildung $T_k : L^2(X; \mathbb{R}) \to V$ durch

$$T_k \varphi = \int_X w_k \varphi \, d\mu \quad \text{für } \varphi \in L^2(X; \mathbb{R}).$$

Wegen $\{w_k\}_{k\in\mathbb{N}}\subset L^2(X;V)$ ist $\|w_k\|_V|\varphi|:X\to\mathbb{R}$ aufgrund der Hölder-Ungleichung für jedes $\varphi\in L^2(X;\mathbb{R})$ integrierbar, und es gilt die Abschätzung

$$||T_k \varphi||_V \le \int_X ||w_k||_V |\varphi| \, d\mu \le ||w_k||_{L^2(X;V)} ||\varphi||_{L^2(X;\mathbb{R})}$$
 für alle $k \in \mathbb{N}$.

Da $T_k: L^2(X; \mathbb{R}) \to V$ für jedes $k \in \mathbb{N}$ linear ist, erhält man $\{T_k\}_{k \in \mathbb{N}} \subset \mathcal{L}(L^2(X; \mathbb{R}); V)$. Aufgrund der Konstruktion aus Schritt 3 ergibt sich für jedes $k \in \mathbb{N}$ und $\varphi \in L^2(X; \mathbb{R})$

$$T_k \varphi = \int_X \sum_{\ell=1}^{m_k} \mathbb{1}_{E_{k\ell}} v_{k\ell} \varphi \, d\mu = \sum_{\ell=1}^{m_k} \int_{E_{k\ell}} \varphi \, d\mu \, v_{k\ell} \in \operatorname{lin} \{v_{k1}, \dots, v_{km_k}\},$$

das heißt, der Bildraum $T_k[L^2(X;\mathbb{R})] \subset \lim \{v_{k1},\ldots,v_{km_k}\}$ ist für jedes $k \in \mathbb{N}$ von endlicher Dimension. Da für alle $k \in \mathbb{N}$, $k \geq k_0$ und $\varphi \in V$ nach Schritt 3 die Abschätzung

$$||T_k \varphi - T \varphi||_V \le \int_X ||w_k - u||_V |\varphi| \, d\mu \le ||w_k - u||_{L^2(X;V)} ||\varphi||_{L^2(X;\mathbb{R})} \le \varepsilon ||\varphi||_{L^2(X;\mathbb{R})}$$

gilt, konvergiert die Folge $\{T_k\}_{k\in\mathbb{N}}$ in $\mathcal{L}(L^2(X;\mathbb{R});V)$ gegen $T\in\mathcal{L}(L^2(X;\mathbb{R});V)$, woraus sich nach Aufgabe 2 schließlich die Vollstetigkeit von $T\in\mathcal{K}(L^2(X;\mathbb{R});V)$ ergibt.

Alternative Lösung. 1. Die Hölder-Ungleichung liefert wegen $u \in L^2(X; V)$ die Integrierbarkeit der Funktion $||u||_V |\varphi| : X \to \mathbb{R}$ für jedes $\varphi \in L^2(X; \mathbb{R})$, und es gilt

$$||T\varphi||_V \le \int_X ||u||_V |\varphi| d\mu \le ||u||_{L^2(X;V)} ||\varphi||_{L^2(X;\mathbb{R})}.$$

Da $T: L^2(X; \mathbb{R}) \to V$ eine lineare Abbildung ist, erhält man $T \in \mathcal{L}(L^2(X; \mathbb{R}); V)$.

2. Sei $\{g_k\}_{k\in\mathbb{N}}\subset V^*$ eine auf V punktweise gegen $0\in V^*$ konvergente Folge. Nach dem Satz von Banach-Steinhaus für Funktionale ist $\{g_k\}_{k\in\mathbb{N}}$ eine in V^* beschränkte Folge. Wegen $u\in L^2(X;V)$ folgt daraus die Beschränktheit der Folge $\{\langle g_k,u\rangle\}_{k\in\mathbb{N}}\subset L^2(X;\mathbb{R})$, denn es gilt die Abschätzung

$$\int_X |\langle g_k, u \rangle|^2 d\mu \le \int_X \|g_k\|_{V^*}^2 \|u\|_V^2 d\mu \le \|g_k\|_{V^*}^2 \|u\|_{L^2(X;V)}^2 \quad \text{für alle } k \in \mathbb{N}.$$

Außerdem konvergiert die Folge $\{\langle g_k, u \rangle\}_{k \in \mathbb{N}}$ fast überall auf X punktweise gegen $0 \in \mathbb{R}$.

3. Für alle $k \in \mathbb{N}$ und $\varphi \in L^2(X; \mathbb{R})$ erhält man durch Anwendung des Satzes von Bochner über lineare stetige Abbildungen mit Hilfe der Hölder-Ungleichung für die adjungierte Abbildung $T^* \in \mathcal{L}(V^*; [L^2(X; \mathbb{R})]^*)$

$$\begin{aligned} |\langle T^* g_k, \varphi \rangle| &= |\langle g_k, T\varphi \rangle| = |\langle g_k, \int_X u\varphi \, d\mu \rangle| \le \int_X |\langle g_k, u\varphi \rangle| \, d\mu \\ &= \int_X |\langle g_k, u \rangle| |\varphi| \, d\mu \le \|\langle g_k, u \rangle\|_{L^2(X;\mathbb{R})} \|\varphi\|_{L^2(X;\mathbb{R})} \end{aligned}$$

und somit die Abschätzung $||T^*g_k||_{V^*} \leq ||\langle g_k, u \rangle||_{L^2(X;\mathbb{R})}$ für alle $k \in \mathbb{N}$. Der Satz von Lebesgue über majorisierte Konvergenz liefert im Grenzprozeß $k \to \infty$ wegen Schritt 2

$$\lim_{k \to \infty} \|T^* g_k\|_{V^*}^2 \le \lim_{k \to \infty} \int_X |\langle g_k, u \rangle|^2 d\mu = \int_X \lim_{k \to \infty} |\langle g_k, u \rangle|^2 d\mu = 0.$$

Da die auf V punktweise gegen $0 \in V^*$ konvergente Folge $\{g_k\}_{k \in \mathbb{N}} \subset V^*$ anfangs will-kürlich vorgegeben wurde und $(V, \| \|_V)$ ein separabler Banach-Raum ist, liefert das Vollsteitskriterium von Gelfand schließlich $T \in \mathcal{K}(L^2(X; \mathbb{R}); V)$.