Übungsaufgaben 2

Kompaktheit und Stetigkeit

Aufgabe 1. Man zeige, daß man für jede offene Überdeckung $\{U_{\gamma}\}_{{\gamma}\in\Gamma}$ eines kompakten metrischen Raums (X,ρ) eine Konstante $r_0>0$ finden kann, so daß für jedes $u\in X$ ein Index $\gamma\in\Gamma$ mit $B(u,r_0)\subset U_{\gamma}$ existiert!

Lösung. 1. Für jeden Punkt $u \in X$ gibt es ein $\gamma \in \Gamma$, so daß $u \in U_{\gamma}$ gilt; folglich gibt es wegen der Offenheit von U_{γ} in X einen Radius r(u) > 0 mit $B(u, 2r(u)) \subset U_{\gamma}$. Da die Familie $\{B(u, r(u))\}_{u \in X}$ der Kugeln eine offene Überdeckung des kompakten metrischen Raums (X, ρ) bildet, existiert eine endliche Menge $\{u_1, \ldots, u_k\} \subset X$ von Punkten, so daß auch die endliche Teilfamilie $\{B(u_1, r(u_1)), \ldots, B(u_k, r(u_k))\}$ den Raum X überdeckt.

2. Sei $r_0 = \min\{r(u_1), \dots, r(u_k)\}$ der kleinste dieser Radien. Da es für jedes $u \in X$ einen Index $\ell \in \{1, \dots, k\}$ mit $u \in B(u_\ell, r(u_\ell))$ gibt, gilt auch $B(u, r_0) \subset B(u_\ell, 2r(u_\ell))$. Nach Konstruktion kann man für jedes $\ell \in \{1, \dots, k\}$ einen Index $\gamma \in \Gamma$ finden, so daß $B(u_\ell, 2r(u_\ell)) \subset U_\gamma$ gilt, woraus sich $B(u, r_0) \subset U_\gamma$ ergibt.

Aufgabe 2. Sei (ℓ^{∞}, ρ) der metrische Raum aller Zahlenfolgen $u = \{x_{\ell}\}_{{\ell \in \mathbb{N}}} \subset \mathbb{K}$, für die das Supremum $\sup_{{\ell \in \mathbb{N}}} |x_{\ell}|$ endlich ist, und der mit der durch $\rho(u, v) = \sup_{{\ell \in \mathbb{N}}} |x_{\ell} - y_{\ell}|$ für $u = \{x_{\ell}\}_{{\ell \in \mathbb{N}}} \in \ell^{\infty}$ und $v = \{y_{\ell}\}_{{\ell \in \mathbb{N}}} \in \ell^{\infty}$ definierten Metrik ausgestattet ist. Man zeige, daß im Raum (ℓ^{∞}, ρ) keine abgeschlossene Kugel kompakt ist!

Lösung. Sei $K(u,r)=\{v\in\ell^\infty: \rho(u,v)\leq r\}$ eine abgeschlossene Kugel mit beliebig vorgegebenem Mittelpunkt $u=\{x_\ell\}_{\ell\in\mathbb{N}}\in\ell^\infty$ und Radius r>0. Es soll eine Folge $\{u_k\}_{k\in\mathbb{N}}\subset K(u,r)$ mit den Gliedern $u_k=\{x_{k\ell}\}_{\ell\in\mathbb{N}}\in\ell^\infty$ konstruiert werden, die keinen Häufungspunkt in ℓ^∞ besitzt. Dazu definiert man für alle $k,\ell\in\mathbb{N}$ die Folgeglieder

$$x_{k\ell} = \begin{cases} x_{\ell} + r & \text{falls } k = \ell, \\ x_{\ell} & \text{falls } k \neq \ell. \end{cases}$$

Dann gilt $\rho(u_k, u) = \sup_{\ell \in \mathbb{N}} |x_{k\ell} - x_{\ell}| = r$ sowie $\rho(u_k, u_m) = \sup_{\ell \in \mathbb{N}} |x_{k\ell} - x_{m\ell}| = r > 0$ für alle $k, m \in \mathbb{N}$ mit $k \neq m$, das bedeutet, die Folge $\{u_k\}_{k \in \mathbb{N}} \subset K(u, r)$ hat in ℓ^{∞} keinen Häufungspunkt.

Aufgabe 3. Sei (X, ρ) ein vollständiger metrischer Raum und $T: X \to X$ eine Abbildung, für die eine Lipschitz-Konstante $0 \le L < 1$ existiert, so daß $\rho(Tu, Tv) \le L\rho(u, v)$ für alle $u, v \in X$ gilt. Ferner werde für einen Punkt $u_0 \in X$ eine Folge $\{u_k\}_{k \in \mathbb{N}} \subset X$ durch $u_k = Tu_{k-1}$ für $k \in \mathbb{N}$ rekursiv definiert. Man beweise die folgenden Aussagen:

- 1. Es gilt $(1-L)\rho(u_k,u_\ell) \leq L^k\rho(u_1,u_0)$ für alle $k,\ell \in \mathbb{N}$ mit $k < \ell$.
- 2. Die Folge $\{u_k\}_{k\in\mathbb{N}}\subset X$ konvergiert gegen einen Grenzwert $u\in X$.
- 3. Dieser Grenzwert $u \in X$ ist ein Fixpunkt von $T: X \to X$, das heißt, es gilt Tu = u.
- 4. Die Abbildung $T: X \to X$ hat genau einen Fixpunkt.

Lösung. 1. Es soll gezeigt werden, daß die rekursiv definierte Folge $\{u_k\}_{k\in\mathbb{N}}\subset X$ für einen beliebigen Startpunkt $u_0\in X$ konvergiert: Zunächst gilt

$$\rho(u_{k+1}, u_k) = \rho(Tu_k, Tu_{k-1}) \le L\rho(u_k, u_{k-1}) \le \dots \le L^k \rho(u_1, u_0)$$

für jedes $k \in \mathbb{N}$. Daraus folgt für alle $k, \ell \in \mathbb{N}$ mit $k < \ell$ die Beziehung

$$\rho(u_{\ell}, u_{k}) = \sum_{m=k}^{\ell-1} \rho(u_{m+1}, u_{m}) \le \rho(u_{1}, u_{0}) \sum_{m=k}^{\ell-1} L^{m} = L^{k} \rho(u_{1}, u_{0}) \sum_{m=0}^{\ell-k-1} L^{m}.$$

Wegen $0 \le L < 1$ gilt $\sum_{m=0}^{\ell-k-1} L^m \le \sum_{m=0}^{\infty} L^m = \frac{1}{1-L}$ und somit

$$(1-L)\rho(u_{\ell},u_k) \le L^k \rho(u_1,u_0)$$
 für alle $k, \ell \in \mathbb{N}$ mit $k < \ell$.

- 2. Da $\{L^k\}_{k\in\mathbb{N}}\subset\mathbb{R}$ eine Nullfolge ist, muß $\{u_k\}_{k\in\mathbb{N}}\subset X$ eine Cauchy-Folge sein, die wegen der Vollständigkeit von (X,ρ) gegen einen Grenzwert $u\in X$ konvergiert. Führt man in der letzten Ungleichung den Grenzübergang $\ell\to\infty$ aus, so ergibt sich die außerdem die Abschätzung $(1-L)\rho(u,u_k)\leq L^k\rho(u_1,u_0)$ für alle $k\in\mathbb{N}$.
- 3. Um einzusehen, daß dieser Grenzwert $u \in X$ ein Fixpunkt von T ist, führt man in der für alle $k \in \mathbb{N}$ geltenden Abschätzung

$$\rho(Tu, u) \le \rho(Tu, Tu_k) + \rho(u_{k+1}, u) \le L\rho(u_k, u) + \rho(u_{k+1}, u)$$

den Grenzübergang $k \to \infty$ durch und erhält Tu = u wegen $\lim_{k \to \infty} \rho(u_k, u) = 0$.

4. Sind $u, v \in X$ zwei Fixpunkte von T, dann gilt $\rho(u, v) = \rho(Tu, Tv) \leq L\rho(u, v)$, also $(1 - L)\rho(u, v) \leq 0$. Wegen $0 \leq L < 1$ folgt daraus u = v, das heißt, der Fixpunkt $u \in X$ von T ist eindeutig bestimmt.