Vorlesung 1

Metrische Räume und Vollständigkeit

Metrische Räume. Ein Paar (X, ρ) heißt *metrischer Raum*, wenn auf einer nichtleeren Menge X eine $Metrik\ \rho: X\times X\to \mathbb{R}$ definiert ist, das heißt, für alle $u,v,w\in X$ folgende Bedingungen erfüllt sind:

- 1. Positivität: Es gilt $\rho(u, v) \ge 0$ sowie nur dann $\rho(u, v) = 0$, wenn u = v ist.
- 2. Symmetrie: Es gilt $\rho(u, v) = \rho(v, u)$.
- 3. Dreiecksungleichung: Es gilt $\rho(u, v) \leq \rho(u, w) + \rho(w, v)$.

Offene und abgeschlossene Mengen. Sei (X, ρ) ein metrischer Raum und $E \subset X$.

- 1. Die Menge $B(u,r) = \{v \in X : \rho(u,v) < r\}$ wird als offene Kugel mit dem Mittelpunkt $u \in X$ und dem Radius r > 0 bezeichnet.
- 2. Ein Punkt $u \in X$ wird innerer Punkt von E genannt, wenn eine offene Kugel $B(u,r) \subset X$ mit $B(u,r) \subset E$ existiert. Die Menge

int
$$E = \{u \in X : B(u, r) \subset E \text{ für ein } r > 0\} \subset E$$

aller inneren Punkte von E heißt *Inneres von E*. Man bezeichnet die Menge E als offene Teilmenge von X, wenn $E = \operatorname{int} E$ gilt.

3. Man nennt einen Punkt $u \in X$ äußeren Punkt von E, wenn er innerer Punkt des Komplements $X \setminus E$ ist. Die Menge

$$\operatorname{ext} E = \operatorname{int}(X \setminus E) = \{ u \in X : B(u, r) \subset X \setminus E \text{ für ein } r > 0 \} \subset X \setminus E$$

aller äußeren Punkte von E heißt Äußeres von E.

4. Ein Punkt $u \in X$ wird *Berührungspunkt von E* genannt, wenn jede offene Kugel $B(u,r) \subset X$ einen nichtleeren Durchschnitt mit E hat. Die Menge

$$\operatorname{cl} E = \{u \in X : B(u,r) \cap E \neq \emptyset \text{ für alle } r > 0\} \supset E$$

aller Berührungspunkte von E heißt Abschließung von E. Man bezeichnet E als abgeschlossene Teilmenge von X, wenn $E = \operatorname{cl} E$ gilt.

- 5. Die Menge $K(u,r) = \{v \in X : \rho(u,v) \le r\}$ wird als abgeschlossene Kugel mit dem Mittelpunkt $u \in X$ und dem Radius r > 0 bezeichnet.
- 6. Man nennt einen Punkt $u \in X$ Randpunkt von E, wenn er sowohl Berührungspunkt von E als auch vom Komplement $X \setminus E$ ist. Die Menge

$$\operatorname{bd} E = \operatorname{cl} E \cap \operatorname{cl}(X \setminus E)$$

heißt Rand von E.

Topologische Eigenschaften. Für jede Teilmenge $E \subset X$ gilt:

- 1. Der Durchschnitt einer endlichen Anzahl sowie die Vereinigung einer beliebigen Familie offener Mengen ist eine offene Menge.
 - 2. Für jede offene Menge $G \subset X$ folgt aus $G \subset E$ stets $G \subset \text{int } E$.
- 3. Die Vereinigung einer endlichen Anzahl sowie der Durchschnitt einer beliebigen Familie abgeschlossener Mengen ist eine abgeschlossene Menge.
 - 4. Für jede abgeschlossene Menge $F \subset X$ folgt aus $F \supset E$ stets $F \supset \operatorname{cl} E$.
 - 5. Die Menge E ist genau dann offen, wenn $X \setminus E$ abgeschlossen ist.
 - 6. Die Menge E ist genau dann abgeschlossen, wenn $X \setminus E$ offen ist.
 - 7. Für das Äußere von E gilt ext $E = \operatorname{int}(X \setminus E) = X \setminus \operatorname{cl} E$.
 - 8. Für den Rand von E gilt bd $E = \operatorname{cl} E \setminus \operatorname{int} E$.
 - 9. Der ganze Raum ist die disjunkte Vereinigung $X = \operatorname{int} E \cup \operatorname{bd} E \cup \operatorname{ext} E$.

Basen offener Mengen. Eine Familie $\{G_{\gamma}\}_{{\gamma}\in\Gamma}\subset X$ nichtleerer offener Mengen heißt Basis für die offenen Mengen eines metrischen Raums (X,ρ) , wenn jede nichtleere offene Teilmenge von X Vereinigung einer Teilfamilie von $\{G_{\gamma}\}_{{\gamma}\in\Gamma}\subset X$ ist.

System offener Kugeln. Das System $\mathfrak{B} = \{B(u, r) \subset X : u \in X, r > 0\}$ der offenen Kugeln bildet in jedem metrischen Raum (X, ρ) eine Basis für die offenen Mengen.

Beweis. Ist G eine nichtleere offene Teilmenge von X, so betrachtet man die Teilfamilie $\mathfrak{A} = \{B \in \mathfrak{B} : B \subset G\}$ und bildet deren Vereinigung $E = \bigcup_{B \in \mathfrak{A}} B \subset G$. Da es für jeden Punkt $u \in G$ eine offene Kugel $B(u,r) \subset X$ mit $B(u,r) \subset G$, also $B(u,r) \in \mathfrak{A}$ gibt, ergibt sich $u \in E$ und somit auch $G \subset E$.

Metrische Teilräume. Ist (X, ρ) ein metrischer Raum und $X_0 \subset X$ eine nichtleere Menge, so heißt (X_0, ρ_0) metrischer Teilraum mit induzierter Metrik $\rho_0 = \rho | X_0 \times X_0$.

Topologische Eigenschaften. Für jede Teilmenge $E_0 \subset X_0$ gilt:

- 1. Die Menge E_0 ist genau dann offen in X_0 , wenn eine in X offene Menge $E \subset X$ existiert, so daß $E_0 = E \cap X_0$ gilt.
- 2. Die Menge E_0 ist genau dann abgeschlossen in X_0 , wenn es eine in X abgeschlossene Menge $E \subset X$ gibt, so daß $E_0 = E \cap X_0$ gilt.

Beschränkte Teilmengen. Ist (X, ρ) ein metrischer Raum, so wird der *Durchmesser* einer Menge $E \subset X$ durch diam $(E) = \sup_{u \in E, v \in E} \rho(u, v)$ definiert. Man nennt eine Teilmenge $E \subset X$ beschränkt, wenn sie einen endlichen Durchmesser hat.

Konvergente Folgen und Grenzwerte. Eine Folge $\{u_k\}_{k\in\mathbb{N}}$ von Punkten eines metrischen Raums (X,ρ) konvergiert gegen den *Grenzwert* $u\in X$, wenn es für jedes $\varepsilon>0$ ein $k_0\in\mathbb{N}$ gibt, so daß $\rho(u_k,u)<\varepsilon$ für jedes $k\in\mathbb{N}, k\geq k_0$ gilt, mit anderen Worten, wenn $\lim_{k\to\infty}\rho(u_k,u)=0$ ist.

Bemerkung. 1. Sind $u, v \in X$ Grenzwerte einer konvergenten Folge $\{u_k\}_{k \in \mathbb{N}}$ in X, dann folgt aus der Dreiecksungleichung $\rho(u, v) \leq \rho(u_k, u) + \rho(u_k, v)$ stets u = v, das heißt, der Grenzwert einer konvergenten Folge ist eindeutig bestimmt.

2. Ist $E \subset X$ eine nichtleere Menge, so gilt nach Definition genau dann $u \in \operatorname{cl} E$, wenn eine Folge $\{u_k\}_{k\in\mathbb{N}} \subset E$ existiert, die gegen den Grenzwert $u \in X$ konvergiert.

Konvergente Teilfolgen und Häufungspunkte. Sei (X, ρ) ein metrischer Raum.

- 1. Eine Folge $\{u_{k_{\ell}}\}_{\ell \in \mathbb{N}}$ wird *Teilfolge* von $\{u_{k}\}_{k \in \mathbb{N}} \subset X$ genannt, wenn $\{k_{\ell}\}_{\ell \in \mathbb{N}}$ eine wachsende Folge natürlicher Zahlen ist.
- 2. Man nennt $u \in X$ einen $H \ddot{a}u fung spunkt$ der Folge $\{u_k\}_{k \in \mathbb{N}} \subset X$, wenn eine Teilfolge $\{u_{k_\ell}\}_{\ell \in \mathbb{N}}$ mit der Eigenschaft $\lim_{\ell \to \infty} \rho(u_{k_\ell}, u) = 0$ existiert, das heißt, wenn es für jedes $\varepsilon > 0$ und alle $k_0 \in \mathbb{N}$ ein $k \in \mathbb{N}$, $k \ge k_0$ gibt, so daß $\rho(u_k, u) < \varepsilon$ gilt.

Cauchy-Folgen und Vollständigkeit. Sei (X, ρ) ein metrischer Raum.

- 1. Eine Folge $\{u_k\}_{k\in\mathbb{N}}\subset X$ heißt *Cauchy-Folge*, wenn es zu jedem $\varepsilon>0$ ein $k_0\in\mathbb{N}$ gibt, so daß $\rho(u_k,u_\ell)<\varepsilon$ für alle $k,\ell\in\mathbb{N}$ mit $k,\ell\geq k_0$ gilt.
- 2. Der Raum (X, ρ) heißt *vollständig*, wenn jede Cauchy-Folge $\{u_k\}_{k \in \mathbb{N}} \subset X$ gegen einen Grenzwert $u \in X$ konvergiert.

Bemerkung. Konvergiert eine Teilfolge $\{u_{k_{\ell}}\}_{{\ell}\in\mathbb{N}}$ einer Cauchy-Folge $\{u_{k}\}_{{k}\in\mathbb{N}}\subset X$ in einem metrischen Raum (X,ρ) gegen einen Grenzwert $u\in X$, dann konvergiert wegen der für alle $k,\ell\in\mathbb{N}$ geltenden Abschätzung $\rho(u_k,u)\leq \rho(u_k,u_{k_{\ell}})+\rho(u_{k_{\ell}},u)$ auch die ganze Folge $\{u_k\}_{k\in X}$ gegen diesen Grenzwert $u\in X$.

Raum aller Zahlenfolgen. 1. Auf der Menge s aller Zahlenfolgen $u = \{x_\ell\}_{\ell \in \mathbb{N}}$ mit Gliedern aus dem Körper $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ wird folgende Metrik $\rho : s \times s \to \mathbb{R}$ eingeführt:

$$\rho(u,v) = \sum_{\ell=1}^{\infty} \frac{1}{2^{\ell}} \frac{|x_{\ell} - y_{\ell}|}{1 + |x_{\ell} - y_{\ell}|} \quad \text{für alle } u = \{x_{\ell}\}_{\ell \in \mathbb{N}}, v = \{y_{\ell}\}_{\ell \in \mathbb{N}} \in s.$$

Tatsächlich gilt für alle $u, v \in s$ stets $\rho(u, v) = \rho(v, u) \ge 0$, und es ist $\rho(u, v) = 0$ nur im Falle u = v erfüllt. Außerdem gilt für alle $a, b \in \mathbb{R}$ die Abschätzung

$$\frac{|a+b|}{1+|a+b|} \le \frac{|a|+|b|}{1+|a|+|b|} = \frac{|a|}{1+|a|+|b|} + \frac{|b|}{1+|a|+|b|} \le \frac{|a|}{1+|a|} + \frac{|b|}{1+|b|}.$$

Somit ist für alle $u = \{x_\ell\}_{\ell \in \mathbb{N}}, v = \{y_\ell\}_{\ell \in \mathbb{N}}, w = \{z_\ell\}_{\ell \in \mathbb{N}} \in s$ die Beziehung

$$\frac{|x_{\ell} - y_{\ell}|}{1 + |x_{\ell} - y_{\ell}|} \le \frac{|x_{\ell} - z_{\ell}|}{1 + |x_{\ell} - z_{\ell}|} + \frac{|z_{\ell} - y_{\ell}|}{1 + |z_{\ell} - y_{\ell}|} \quad \text{für jedes } \ell \in \mathbb{N}$$

und damit die Dreiecksungleichung $\rho(u, v) \leq \rho(u, w) + \rho(w, v)$ erfüllt.

- 2. Jede Teilmenge von s ist beschränkt, denn es gilt $\rho(u, v) < 1$ für alle $u, v \in s$.
- 3. Eine Folge $\{u_k\}_{k\in\mathbb{N}}\subset s$ von Elementen $u_k=\{x_{k\ell}\}_{\ell\in\mathbb{N}}\in s$ konvergiert in (s,ρ) genau dann gegen den Grenzwert $u=\{x_\ell\}_{\ell\in\mathbb{N}}\in s$, wenn für jedes $\ell\in\mathbb{N}$ die Folge $\{u_{k\ell}\}_{k\in\mathbb{N}}\subset\mathbb{K}$ der ℓ -ten Folgeglieder gegen den Grenzwert x_ℓ in \mathbb{K} konvergiert.

Beweis. Einerseits folgt aus $\lim_{k\to\infty} \rho(u_k, u) = 0$ und der Abschätzung

$$\frac{1}{2^{\ell}} \frac{|x_{k\ell} - x_{\ell}|}{1 + |x_{k\ell} - x_{\ell}|} \le \sum_{\ell=1}^{\infty} \frac{1}{2^{\ell}} \frac{|x_{k\ell} - x_{\ell}|}{1 + |x_{k\ell} - x_{\ell}|} = \rho(u_k, u)$$

stets $\lim_{k\to\infty} |x_{k\ell} - x_{\ell}| = 0$ für jedes $\ell \in \mathbb{N}$.

Gilt umgekehrt $\lim_{k\to\infty} |x_{k\ell} - x_{\ell}| = 0$ für jedes $\ell \in \mathbb{N}$, wird $\varepsilon > 0$ vorgegeben und ein $\ell_0 \in \mathbb{N}$ mit $2^{-\ell_0} < \varepsilon$ ausgewählt, dann ergibt sich für jedes $k \in \mathbb{N}$ die Abschätzung

$$\rho(u_k, u) \le \sum_{\ell=1}^{\ell_0} \frac{1}{2^{\ell}} \frac{|x_{k\ell} - x_{\ell}|}{1 + |x_{k\ell} - x_{\ell}|} + \sum_{\ell=\ell_0+1}^{\infty} \frac{1}{2^{\ell}} \le \sum_{\ell=1}^{\ell_0} \frac{1}{2^{\ell}} \frac{|x_{k\ell} - x_{\ell}|}{1 + |x_{k\ell} - x_{\ell}|} + \varepsilon.$$

Da $\lim_{k\to\infty} |x_{k\ell}-x_{\ell}|=0$ für jedes $\ell\in\{1,\ldots,\ell_0\}$ gilt, kann man ein $k_0\in\mathbb{N}$ mit

$$\sum_{\ell=1}^{\ell_0} \frac{1}{2^\ell} \frac{|x_{k\ell} - x_{\ell}|}{1 + |x_{k\ell} - x_{\ell}|} < \varepsilon \quad \text{für jedes } k \in \mathbb{N}, k \ge k_0$$

finden, woraus sich schließlich $\rho(u_k, u) < 2\varepsilon$ für alle $k \in \mathbb{N}, k \ge k_0$ ergibt.

- 4. Sei F eine Teilmenge von s und $F_{\ell} = \{x_{\ell} \in \mathbb{K} : \{x_{\ell}\}_{{\ell \in \mathbb{N}}} \in F\} \subset \mathbb{K}$ für jedes $\ell \in \mathbb{N}$ die Menge der ℓ -ten Glieder der Folgen aus F. Die Menge F ist genau dann abgeschlossen in (s, ρ) , wenn F_{ℓ} für jedes $\ell \in \mathbb{N}$ in \mathbb{K} abgeschlossen ist.
 - 5. Der metrische Raum (s, ρ) ist vollständig.

Beweis. Sei $\{u_k\}_{k\in\mathbb{N}}\subset s$ eine Cauchy-Folge von Elementen $u_k=\{x_{k\ell}\}_{\ell\in\mathbb{N}}\in s$. Da

$$\frac{1}{2^{\ell}} \frac{|x_{k\ell} - x_{m\ell}|}{1 + |x_{k\ell} - x_{m\ell}|} \le \sum_{\ell=1}^{\infty} \frac{1}{2^{\ell}} \frac{|x_{k\ell} - x_{m\ell}|}{1 + |x_{k\ell} - x_{m\ell}|} = \rho(u_k, u_m) \quad \text{für alle } k, m \in \mathbb{N}$$

gilt, muß die Folge $\{x_{k\ell}\}_{k\in\mathbb{N}}\subset\mathbb{K}$ der ℓ -ten Folgeglieder für jedes $\ell\in\mathbb{N}$ eine Cauchy-Folge in \mathbb{K} sein und damit wegen der Vollständigkeit von \mathbb{K} gegen ein $x_{\ell}\in\mathbb{K}$ konvergieren. Nach Aussage 3 folgt daraus $\lim_{k\to\infty}\rho(u_k,u)=0$ für $u=\{x_{\ell}\}_{\ell\in\mathbb{N}}\in s$.

Vollständigkeit abgeschlossener Teilräume. Sei (X, ρ) ein vollständiger metrischer Raum und $X_0 \subset X$ eine nichtleere Teilmenge. Der metrische Teilraum (X_0, ρ_0) mit $\rho_0 = \rho | X_0 \times X_0$ ist genau dann vollständig, wenn X_0 in X abgeschlossen ist.

Beweis. 1. Jedes $u \in \operatorname{cl} X_0$ ist Grenzwert einer konvergenten Folge $\{u_k\}_{k \in \mathbb{N}} \subset X_0$, die offenbar eine Cauchy-Folge in (X_0, ρ_0) ist. Im Falle der Vollständigkeit von (X_0, ρ_0) konvergiert die Folge gegen einen Grenzwert $v \in X_0$. Die eindeutige Bestimmtheit des Grenzwerts konvergenter Folgen liefert $u = v \in X_0$ und somit $\operatorname{cl} X_0 = X_0$.

2. Jede Cauchy-Folge $\{u_k\}_{k\in\mathbb{N}}\subset X_0$ konvergiert wegen der Vollständigkeit von (X,ρ) gegen einen Grenzwert $u\in X$, woraus $u\in\operatorname{cl} X_0$ folgt. Ist X_0 abgeschlossen in X, dann ergibt sich $u\in\operatorname{cl} X_0=X_0$ und somit die Vollständigkeit von (X_0,ρ_0) . \square