Vorlesung 11

Räume linearer stetiger Abbildungen

Raum linearer stetiger Abbildungen. Seien $(V, \| \|_V)$ und $(W, \| \|_W)$ zwei lineare normierte Räume über demselben Körper $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$

- 1. Die Menge $\mathcal{L}(V;W)$ aller linearen stetigen Abbildungen $T:V\to W$ ist ein linearer Teilraum des linearen Raumes L(V;W) aller linearen Abbildungen.
- 2. Durch die Zuordung $T \mapsto ||T|| = \sup \{||Tu||_W : u \in V, ||u||_V \le 1\}$ wird eine Norm auf $\mathcal{L}(V; W)$ definiert.
- 3. Ist der lineare normierte Raum $(W, \| \|_W)$ vollständig, so ist auch der lineare normierte Raum $(\mathcal{L}(V; W), \| \|)$ vollständig.

Beweis. 1. Offenbar gilt für jedes $T \in \mathcal{L}(V; W)$ nach Definition stets $||T|| \ge 0$ sowie genau dann ||T|| = 0, wenn $||Tu||_W = 0$ für alle $u \in V$, $||u||_V \le 1$, also T = 0 gilt.

Für alle $\alpha \in \mathbb{K}$ und $T \in \mathcal{L}(V; W)$ ergibt sich aus $\|\alpha T u\|_W = |\alpha| \|T u\|_W$ durch die Bildung des Supremums über $u \in V$, $\|u\|_V \le 1$ auf der rechten und der linken Seite sowohl $\alpha T \in \mathcal{L}(V; W)$ als auch die Identität $\|\alpha T\| = |\alpha| \|T\|$.

Für alle $A, T \in \mathcal{L}(V; W)$ folgt aus $||Au + Tu||_W \le ||Au||_W + ||Tu||_W$ durch die Bildung des Supremums über $u \in V$, $||u||_V \le 1$ auf der rechten und der linken Seite sowohl $A + T \in \mathcal{L}(V; W)$ als auch $||A + T|| \le ||A|| + ||T||$.

2. Ist $\{T_k\}_{k\in\mathbb{N}}\subset \mathcal{L}(V;W)$ eine Cauchy-Folge in $\mathcal{L}(V;W)$, dann gibt es zu jedem $\varepsilon>0$ ein $k_0\in\mathbb{N}$, so daß $||T_k-T_\ell||\leq \varepsilon$ für alle $k,\ell\in\mathbb{N}$ mit $k,\ell\geq k_0$ gilt, das heißt,

$$||T_k u - T_\ell u||_W \le ||T_k - T_\ell|| ||u||_V \le \varepsilon ||u||_V$$
 für alle $u \in V$.

Damit ist $\{T_k u\}_{k \in \mathbb{N}} \subset W$ für jedes fixierte $u \in V$ eine Cauchy-Folge im Banach-Raum $(W, \| \|_W)$, konvergiert also in W gegen einen Grenzwert $Tu \in W$. Durch die Zuordnung $u \mapsto Tu$ wird eine Abbildung $T: V \to W$ definiert.

Wegen der Stetigkeit der Addition $(w_1, w_2) \mapsto w_1 + w_2$ von $W \times W$ nach W und der skalaren Multiplikation $(\alpha, w) \mapsto \alpha w$ von $\mathbb{K} \times W$ nach W folgt jeweils durch Grenzübergang $k \to \infty$ aus $T_k(u+v) = T_k u + T_k v$ stets T(u+v) = Tu + Tv für $u, v \in V$ sowie aus $T_k(\alpha u) = \alpha T_k u$ stets $T(\alpha u) = \alpha Tu$ für $\alpha \in \mathbb{K}$ und $u \in V$. Damit ist $T: V \to W$ eine lineare Abbildung.

Geht man für beliebig fixiertes $u \in V$ mit $||u||_V \le 1$ und $k \in \mathbb{N}$ mit $k \ge k_0$ in $||T_k u - T_\ell u||_W \le \varepsilon$ zur Grenze $\ell \to \infty$ über, dann ergibt sich

$$||T_k u - Tu||_W \le \varepsilon$$
 für alle $u \in V$, $||u||_V \le 1$ und $k \in \mathbb{N}$, $k \ge k_0$,

also insbesondere $||Tu||_W \le ||T_{k_0}u||_W + ||T_{k_0}u - Tu||_W \le ||T_{k_0}|| + \varepsilon$ für alle $u \in V$, $||u||_V \le 1$, das heißt, $T \in \mathcal{L}(V; W)$ ist eine lineare stetige Abbildung. Außerdem folgt aus der vorletzten Abschätzung $||T_k - T|| \le \varepsilon$ für alle $k \in \mathbb{N}$, $k \ge k_0$ und somit die Konvergenz der Folge $\{T_k\}_{k \in \mathbb{N}}$ in $\mathcal{L}(V; W)$ gegen $T \in \mathcal{L}(V; W)$.

Verkettung linearer stetiger Abbildungen. Sind $(V, \| \|_V)$, $(W, \| \|_W)$, $(X, \| \|_X)$ lineare normierte Räume über demselben Körper $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, dann folgt aus $T \in \mathcal{L}(V; W)$ und $A \in \mathcal{L}(W; X)$ stets $AT \in \mathcal{L}(V; X)$ sowie $\|AT\| \leq \|A\| \|T\|$.

Beweis. Da $||Tu||_W \le ||T|| ||u||_V$ für alle $u \in V$ sowie $||Aw||_X \le ||A|| ||w||_W$ für alle $w \in W$ gilt, ergibt sich $||ATu||_X \le ||A|| ||Tu||_W \le ||A|| ||T|| ||u||_V$ für alle $u \in V$ und somit $AT \in \mathcal{L}(V; X)$ sowie $||AT|| \le ||A|| ||T||$.

Konvergente Reihen stetiger Bilder. Seien $(V, \| \|_V)$ und $(W, \| \|_W)$ zwei Banach-Räume und $T \in \mathcal{L}(V; W)$ eine lineare stetige Abbildung. Ist $\left\{\sum_{\ell=1}^k u_\ell\right\}_{k\in\mathbb{N}} \subset V$ eine in V (absolut) konvergente Reihe, so ist $\left\{\sum_{\ell=1}^k Tu_\ell\right\}_{k\in\mathbb{N}} \subset W$ eine in W (absolut) konvergente Reihe, und für ihre Summen gilt

$$\sum_{\ell=1}^{\infty} T u_{\ell} = T \left(\sum_{\ell=1}^{\infty} u_{\ell} \right) \in W.$$

Beweis. 1. Sei $\left\{\sum_{\ell=1}^k u_\ell\right\}_{k\in\mathbb{N}} \subset V$ eine in V konvergente Reihe. Wegen $T\in\mathcal{L}(V;W)$ kann man den Grenzübergang $k\to\infty$ in

$$\sum_{\ell=1}^{k} T u_{\ell} = T \left(\sum_{\ell=1}^{k} u_{\ell} \right) \in W \quad \text{für } k \in \mathbb{N}$$

ausführen und erhält die Konvergenz der Reihe $\left\{\sum_{\ell=1}^k Tu_\ell\right\}_{k\in\mathbb{N}}\subset W$ in W gegen den Grenzwert $\sum_{\ell=1}^\infty Tu_\ell=T\left(\sum_{\ell=1}^\infty u_\ell\right)\in W$.

2. Wegen $T \in \mathcal{L}(V; W)$ erhält man zunächst die Abschätzung

$$\sum_{\ell=1}^{k} \|Tu_{\ell}\|_{W} \le \|T\| \sum_{\ell=1}^{k} \|u_{\ell}\|_{V} \quad \text{für alle } k \in \mathbb{N}.$$

Konvergiert die Reihe $\left\{\sum_{\ell=1}^k u_\ell\right\}_{k\in\mathbb{N}}\subset V$ absolut in V, dann muß somit auch die Reihe $\left\{\sum_{\ell=1}^k Tu_\ell\right\}_{k\in\mathbb{N}}\subset W$ absolut in W konvergieren. Außerdem folgt

$$\sum_{\ell=1}^{\infty} \|Tu_{\ell}\|_{W} \le \|T\| \sum_{\ell=1}^{\infty} \|u_{\ell}\|_{V}$$

nach Ausführung des Grenzübergangs $k \to \infty$.

Lineare stetige Abbildungen auf Banach-Räumen summierbarer Zahlenfolgen. Sei $(\ell^p, \| \|_p)$ für $p \in (1, \infty)$ der separable Banach-Raum aller zur p-ten Potenz summierbaren Zahlenfolgen $u = \{x_\ell\}_{\ell \in \mathbb{N}} \subset \mathbb{K}$, der mit der durch $\|u\|_p^p = \sum_{\ell=1}^\infty |x_\ell|^p$ definierten Norm ausgestattet ist.

Sei ferner $q \in (1, \infty)$ mit $\frac{1}{p} + \frac{1}{q} = 1$ gegeben sowie $\{a_{k\ell}\}_{k,\ell \in \mathbb{N}} \subset \mathbb{K}$ eine Doppelfolge mit der Eigenschaft, daß die Doppelreihe $\{\sum_{k=1}^m \sum_{\ell=1}^n |a_{k\ell}|^q\}_{m,n \in \mathbb{N}}$ gegen die endliche Summe $\sum_{k=1}^\infty \sum_{\ell=1}^\infty |a_{k\ell}|^q$ konvergiert.

Wird jeder Folge $u = \{x_\ell\}_{\ell \in \mathbb{N}} \in \ell^p$ die Folge $Au = \{z_k\}_{k \in \mathbb{N}} \subset \mathbb{K}$ mit den Gliedern

$$z_k = \sum_{\ell=1}^{\infty} a_{k\ell} x_{\ell}$$
 für $k \in \mathbb{N}$

zugeordnet, dann erhält man eine Abbildung $A \in \mathcal{L}(\ell^p; \ell^q)$, die jede beschränkte Teilmenge E von ℓ^p auf eine relativ kompakte Teilmenge A[E] von ℓ^q abbildet.

Beweis. 1. Wegen der Hölder-Ungleichung gilt für jedes $k \in \mathbb{N}$ die Beziehung

$$|z_k|^q = \left|\sum_{\ell=1}^{\infty} a_{k\ell} x_{\ell}\right|^q \le \sum_{\ell=1}^{\infty} |a_{k\ell}|^q \left(\sum_{\ell=1}^{\infty} |x_{\ell}|^p\right)^{q/p},$$

also $|z_k|^q \leq \sum_{\ell=1}^{\infty} |a_{k\ell}|^q ||u||_p^q$, das heißt, jedes Folgeglied $z_k = \sum_{\ell=1}^{\infty} a_{k\ell} x_{\ell}$ ist die endliche Summe einer in \mathbb{K} konvergenten Reihe.

2. Durch Summation über $k \in \{1, ..., m\}$ ergibt sich aus der in Schritt 1 gewonnenen Abschätzung

$$\sum_{k=1}^{m} |z_k|^q \le \sum_{k=1}^{m} \sum_{\ell=1}^{\infty} |a_{k\ell}|^q \left(\sum_{\ell=1}^{\infty} |x_{\ell}|^p\right)^{q/p}$$

für jedes $m \in \mathbb{N}$. Der Grenzübergang $m \to \infty$ liefert somit

$$||Au||_q \le \left(\sum_{k=1}^{\infty} \sum_{\ell=1}^{\infty} |a_{k\ell}|^q\right)^{1/q} ||u||_p$$
 für jedes $u \in \ell^p$

und damit den Nachweis, daß A den Raum ℓ^p in den Raum ℓ^q abbildet.

3. Da für alle $u = \{x_\ell\}_{\ell \in \mathbb{N}} \in \ell^p, v = \{y_\ell\}_{\ell \in \mathbb{N}} \in \ell^p \text{ sowie } \alpha, \beta \in \mathbb{K} \text{ stets}$

$$\sum_{\ell=1}^{\infty} a_{k\ell} (\alpha x_{\ell} + \beta y_{\ell}) = \alpha \sum_{\ell=1}^{\infty} a_{k\ell} x_{\ell} + \beta \sum_{\ell=1}^{\infty} a_{k\ell} y_{\ell}$$

gilt, ist $A:\ell^p\to\ell^q$ eine lineare Abbildung. Aus Schritt 2 ergibt sich $A\in\mathcal{L}(\ell^p;\ell^q)$ zusammen mit der Normabschätzung $\|A\|^q\le\sum_{k=1}^\infty\sum_{\ell=1}^\infty|a_{k\ell}|^q$.

4. Wegen der Konvergenz der Reihe $\left\{\sum_{k=1}^{m}\sum_{\ell=1}^{\infty}|a_{k\ell}|^{q}\right\}_{m\in\mathbb{N}}$ gegen die endliche Summe $\sum_{k=1}^{\infty}\sum_{\ell=1}^{\infty}|a_{k\ell}|^{q}$ gibt es für jedes $\varepsilon>0$ einen Index $n_{0}\in\mathbb{N}$, so daß

$$\sum_{k=n+1}^{\infty} \sum_{\ell=1}^{\infty} |a_{k\ell}|^q \le \varepsilon^q \quad \text{für alle } n \in \mathbb{N}, n \ge n_0 \text{ gilt.}$$

Durch Summation über $k \in \{n+1,...,m\}$ folgt aus der in Schritt 1 hergeleiteten Abschätzung

$$\sum_{k=n+1}^{m} |z_k|^q \le \sum_{k=n+1}^{m} \sum_{\ell=1}^{\infty} |a_{k\ell}|^q \left(\sum_{\ell=1}^{\infty} |x_{\ell}|^p\right)^{q/p}$$

für alle $m, n \in \mathbb{N}, m \ge n + 1$. Im Grenzprozeß $m \to \infty$ erhält man für die Folge $Au = \{z_k\}_{k \in \mathbb{N}} \in \ell^q$ die folgende Abschätzung für den Reihenrest

$$\sum_{k=n+1}^{\infty} |z_k|^q \le \sum_{k=n+1}^{\infty} \sum_{\ell=1}^{\infty} |a_{k\ell}|^q ||u||_p^q \le \varepsilon^q ||u||_p^q \quad \text{für jedes } n \in \mathbb{N}, n \ge n_0.$$

Nach dem Kompaktheitskriterium für Teilmengen von ℓ^q bildet somit $A \in \mathcal{L}(\ell^p; \ell^q)$ jede Kugel $E = \{u \in V : \|u\|_p < \delta\} \subset \ell^p$ um den Nullpunkt mit beliebigem Radius $\delta > 0$ auf eine relativ kompakte Teilmenge A[E] von ℓ^q ab.