Vorlesung 16

Kompaktheit und punktweise Konvergenz

Satz von Banach-Mazur über die Universalität des Raums stetiger Funktionen.

Für jeden separablen Banach-Raum $(V, \| \|_V)$ über \mathbb{K} gibt es eine lineare Isometrie $T \in \mathcal{L}(V; W)$ von V auf einen abgeschlossenen linearen Teilraum W des separablen Banach-Raums $(BC([0, 1]; \mathbb{K}), \| \|_{\infty})$.

- Beweis. 1. Sei $(V, \| \|_V)$ ein separabler Banach-Raum über \mathbb{K} und $D = \{v_\ell\}_{\ell \in \mathbb{N}}$ eine abzählbare dichte Menge in V. Nach dem Satz von Banach-Alaoglu ist die abgeschlossene Einheitskugel $K = \{f \in V^* : \|f\|_{V^*} \le 1\}$ eine kompakte Teilmenge des metrischen Raums (V^*, d) bezüglich der punktweisen Konvergenz auf V.
- 2. Aufgrund der Universalität der Cantor-Menge $C \subset [0,1]$ existiert somit eine stetige Abbildung $\Lambda: C \to (V^*,d)$ mit $\Lambda[C] = K$. Konvergiert also eine Folge $\{y_m\}_{m\in\mathbb{N}} \subset C$ gegen einen Grenzwert $y\in C$, dann gilt $\lim_{m\to\infty} d(\Lambda y_m,\Lambda y)=0$. Somit konvergiert die Folge $\{\Lambda y_m\}_{m\in\mathbb{N}} \subset K$ punktweise gegen $\Lambda y\in K$, also gilt $\lim_{m\to\infty} \langle \Lambda y_m, u\rangle = \langle \Lambda y, u\rangle$ für alle $u\in V$. Demzufolge wird durch die Zuordnung $y\mapsto \langle \Lambda y,u\rangle$ für jedes $u\in V$ eine stetige Funktion $T_0u:C\to\mathbb{K}$ auf der Cantor-Menge $C\subset[0,1]$ definiert.
- 3. Der Satz über die stetige Erweiterung durch stückweise affine Fortsetzung liefert für jedes $u \in V$ eine stetige Erweiterung $Tu : [0,1] \to \mathbb{K}$ mit $Tu|C = T_0u : C \to \mathbb{K}$, die auf $[0,1] \setminus C$ stückweise affin ist und die Norm invariant läßt, das heißt, es gilt

$$\max_{y \in [0,1]} |Tu(y)| = \max_{y \in C} |T_0 u(y)|.$$

4. Da für jedes $y \in C$ sowie für alle $u, v \in V$ und $\alpha, \beta \in \mathbb{K}$ stets

$$\langle \Lambda v, \alpha u + \beta v \rangle = \alpha \langle \Lambda v, u \rangle + \beta \langle \Lambda v, v \rangle$$

gilt, folgt zunächst die Stetigkeit von $T_0(\alpha u + \beta v) = \alpha T_0 u + \beta T_0 v : C \to \mathbb{K}$. Wegen der stückweisen Affinität der Erweiterungen auf $[0,1] \setminus C$ ergibt sich für alle $u, v \in V$ und $\alpha, \beta \in \mathbb{K}$ auch die Stetigkeit von $T(\alpha u + \beta v) = \alpha T u + \beta T v : [0,1] \to \mathbb{K}$. Damit ist $T: V \to BC([0,1];\mathbb{K})$ eine lineare Abbildung, und Schritt 2 und 3 liefert für alle $u, v \in V$ die Beziehung

$$\max_{y \in [0,1]} |Tu(y) - Tv(y)| = \max_{y \in C} |T_0 u(y) - T_0 v(y)| = \max_{y \in C} |\langle \Lambda y, u - v \rangle|.$$

5. Seien $u, v \in V$ beliebig fixiert. Da $\Lambda y \in K$ für alle $y \in C$ gilt, ergibt sich einerseits die Abschätzung

$$|\langle \Lambda y, u - v \rangle| \le ||\Lambda y||_{V^*} ||u - v||_V \le ||u - v||_V$$

also $\max_{y \in C} |\langle \Lambda y, u - v \rangle| \le ||u - v||_V$.

Andererseits kann man wegen der Separabilität von $(V, \| \|_V)$ den Trennungssatz anwenden, um ein Funktional $f_0 \in V^*$ mit $\| f_0 \|_{V^*} = 1$ und $\langle f_0, u - v \rangle = \| u - v \|_V$ zu finden. Wegen $f_0 \in K$ und $\Lambda[C] = K$ gibt es somit einen Punkt $y_0 \in C$ mit $\Lambda y_0 = f_0 \in K$, woraus sich $\langle \Lambda y_0, u - v \rangle = \| u - v \|_V$ ergibt und folglich auch

$$||u-v||_V = \langle \Lambda y_0, u-v \rangle \le \max_{y \in C} |\langle \Lambda y, u-v \rangle| \le ||u-v||_V.$$

Wegen Schritt 4 erhält man schließlich

$$\max_{y \in [0,1]} |Tu(y) - Tv(y)| = \max_{y \in C} |\langle \Lambda y, u - v \rangle| = ||u - v||_V \quad \text{für alle } u, v \in V.$$

Damit ist $T: V \to BC([0,1]; \mathbb{K})$ eine lineare Isometrie von $(V, \| \|_V)$ auf den linearen Teilraum W = T[V] von $(BC([0,1]; \mathbb{K}), \| \|_{\infty})$, der wegen der Vollständigkeit von $(V, \| \|_V)$ ebenfalls vollständig und somit abgeschlossen ist.

Kompaktheitskriterium von Gelfand. Sei $(V, \| \|_V)$ Banach-Raum und $K \subset V$.

1. Ist K relativ kompakt in V, dann existiert für jede punktweise gegen $0 \in V^*$ konvergierende Folge $\{f_k\}_{k \in \mathbb{N}} \subset V^*$ und jedes $\varepsilon > 0$ ein Index $k_0 \in \mathbb{N}$, so daß

$$|\langle f_k, u \rangle| < \varepsilon$$
 für alle $k \in \mathbb{N}, k \ge k_0$ sowie jedes $u \in K$ gilt.

2. Ist $(V, \| \|_V)$ separabel und gibt es für jede punktweise gegen $0 \in V^*$ konvergierende Folge $\{f_k\}_{k \in \mathbb{N}} \subset V^*$ und jedes $\varepsilon > 0$ einen Index $k_0 \in \mathbb{N}$, so daß

$$|\langle f_k, u \rangle| < \varepsilon$$
 für alle $k \in \mathbb{N}, k \ge k_0$ sowie jedes $u \in K$ gilt,

dann ist K relativ kompakt in V.

Beweis. 1. Sei K relativ kompakt in V, $\{f_k\}_{k\in\mathbb{N}}\subset V^*$ eine Folge, die punktweise gegen $0\in V^*$ konvergiert und $\varepsilon>0$ beliebig vorgegeben. Da $(V,\|\ \|_V)$ ein Banach-Raum ist und die Folge $\{\langle f_k,u\rangle\}_{k\in\mathbb{N}}\subset\mathbb{K}$ für jedes $u\in V$ in \mathbb{K} beschränkt ist, liefert das Prinzip der gleichgradigen Beschränktheit die Existenz einer Schranke M>0, so daß $\|f_k\|_{V^*}\leq M$ für alle $k\in\mathbb{N}$ gilt. Da K relativ kompakt in V ist, gibt es nach dem Hausdorff-Kriterium ein endliches $\frac{\varepsilon}{2M}$ -Netz $\{v_1,\ldots,v_m\}\subset K$ für K.

Wegen der punktweisen Konvergenz von $\{f_k\}_{k\in\mathbb{N}}\subset V^*$ gegen $0\in V^*$ existiert für jedes $\ell\in\{1,\ldots,m\}$ ein Index $k_\ell\in\mathbb{N}$ mit

$$|\langle f_k, v_\ell \rangle| < \frac{\varepsilon}{2}$$
 für alle $k \in \mathbb{N}, k \ge k_\ell$ sowie jedes $\ell \in \{1, \dots, m\}$.

Da man außerdem zu jedem $u \in K$ ein $\ell \in \{1, ..., m\}$ mit $||u - v_{\ell}||_{V} < \frac{\varepsilon}{2M}$ finden kann, erhält man die Abschätzung

$$|\langle f_k, u \rangle| \le |\langle f_k, v_\ell \rangle| + |\langle f_k, u - v_\ell \rangle| \le |\langle f_k, v_\ell \rangle| + ||f_k||_{V^*} ||u - v_\ell||_V < \varepsilon$$

für alle $k \in \mathbb{N}$, $k \ge k_0 = \max\{k_1, \dots, k_m\}$ und jedes $u \in K$.

2. Sei $(V, \| \|_V)$ ein separabler Banach-Raum und $K \subset V$ eine Teilmenge, so daß für jede punktweise gegen $0 \in V^*$ konvergierende Folge $\{f_k\}_{k \in \mathbb{N}} \subset V^*$ und jedes $\varepsilon > 0$ ein Index $k_0 \in \mathbb{N}$ existiert, so daß

$$|\langle f_k, u \rangle| < \varepsilon$$
 für alle $k \in \mathbb{N}, k \ge k_0$ sowie jedes $u \in K$ gilt.

Angenommen, die Menge $K \subset V$ wäre unbeschränkt. Dann könnte man Folgen $\{u_k\}_{k\in\mathbb{N}} \subset K$ und $\{\delta_k\}_{k\in\mathbb{N}} \subset \mathbb{R}$ finden, so daß $\|u_k\|_V = \delta_k^2$ und $\delta_k \geq k$ für alle $k \in \mathbb{N}$ gilt. Nach dem Trennungssatz gäbe es für jedes $k \in \mathbb{N}$ ein Funktional $g_k \in V^*$ mit $\|g_k\|_{V^*} = 1$ und $\langle g_k, u_k \rangle = \|u_k\|_V$. Für die durch $f_k = \frac{1}{\delta_k} g_k \in V^*$ definierte Folge $\{f_k\}_{k\in\mathbb{N}} \subset V^*$ bekäme man $\lim_{k\to\infty} \|f_k\|_{V^*} = \lim_{k\to\infty} \frac{1}{\delta_k} = 0$, aber gleichzeitig auch $\langle f_k, u_k \rangle = \frac{1}{\delta_k} \langle g_k, u_k \rangle = \frac{1}{\delta_k} \|u_k\|_V = \delta_k \geq k$ für alle $k \in \mathbb{N}$ im Widerspruch zur Voraussetzung. Somit ist die Menge K in V beschränkt.

- 3. Wegen der Universalität des Raums $(BC([0,1]; \mathbb{K}), \| \|_{\infty})$ gibt es eine lineare Isometrie $T \in \mathcal{L}(V; W)$ des separablen Banach-Raums V auf einen abgeschlossenen Teilraum W = T[V] von $BC([0,1]; \mathbb{K})$. Es soll mit Hilfe des Satzes von Ascoli gezeigt werden, daß T[K] relativ kompakt in $(BC([0,1]; \mathbb{K}), \| \|_{\infty})$ ist: Offenbar ist das isometrische Bild T[K] der in V beschränkten Menge K in $BC([0,1]; \mathbb{K})$ beschränkt.
- 4. Angenommen, die Menge $T[K] \subset BC([0,1]; \mathbb{K})$ wäre nicht gleichmäßig gleichgradig stetig. Dann könnte man ein $\varepsilon > 0$, eine Folge $\{u_k\}_{k \in \mathbb{N}} \subset K$ sowie zwei Zahlenfolgen $\{x_k\}_{k \in \mathbb{N}}, \{y_k\}_{k \in \mathbb{N}} \subset [0,1]$ finden, so daß

$$|x_k - y_k| \le \frac{1}{k}$$
 und $|Tu(x_k) - Tu(y_k)| \ge \varepsilon$ für alle $k \in \mathbb{N}$ gelten würde

und durch Auswahl einer Teilfolge erreicht werden, daß $\{x_k\}_{k\in\mathbb{N}}\subset[0,1]$ und damit auch $\{y_k\}_{k\in\mathbb{N}}\subset[0,1]$ gegen einen Grenzwert $x_0\in[0,1]$ konvergieren würde.

5. Durch die Vorschrift

$$\langle f_k, u \rangle = Tu(x_k) - Tu(y_k)$$
 für $k \in \mathbb{N}$ und $u \in V$

würde eine Folge von linearen Abbildungen $f_k: V \to \mathbb{K}$ definiert werden, denn für alle $u, v \in V$ und $\alpha, \beta \in \mathbb{K}$ erhielte man wegen $T \in \mathcal{L}(V; W)$ die Identität

$$\langle f_k, \alpha u + \beta v \rangle = T(\alpha u + \beta v)(x_k) - T(\alpha u + \beta v)(y_k)$$

$$= \alpha \big(Tu(x_k) - Tu(y_k) \big) + \beta \big(Tv(x_k) - Tv(y_k) \big)$$

$$= \alpha \langle f_k, u \rangle + \beta \langle f_k, v \rangle$$

für alle $k \in \mathbb{N}$. Außerdem ergäbe sich für alle $k \in \mathbb{N}$ und $u \in V$ die Abschätzung

$$|\langle f_k, u \rangle| = |Tu(x_k) - Tu(y_k)| \le |Tu(x_k)| + |Tu(y_k)| \le 2 \max_{y \in [0,1]} |Tu(y)| = 2||u||_V,$$

das heißt, man bekäme $\{f_k\}_{k\in\mathbb{N}}\subset V^*$ sowie $\|f_k\|_{V^*}\leq 2$ für alle $k\in\mathbb{N}$.

6. Da $Tu \in BC([0,1]; \mathbb{K})$ eine stetige Funktion ist, erhielte man nach Schritt 4 $\lim_{k \to \infty} \langle f_k, u \rangle = \lim_{k \to \infty} \left(Tu(x_k) - Tu(y_k) \right) = Tu(x_0) - Tu(x_0) = 0 \quad \text{für jedes } u \in V$ und somit die punktweise Konvergenz der Folge $\{f_k\}_{k \in \mathbb{N}} \subset V^*$ gegen $0 \in V^*$. Nach Voraussetzung würde somit ein Index $k_0 \in \mathbb{N}$ existieren, so daß

 $|Tu(x_k) - Tu(y_k)| = |\langle f_k, u \rangle| < \varepsilon$ für alle $k \in \mathbb{N}, k \ge k_0$ sowie jedes $u \in K$ gelten würde, was der Wahl der Folgen $\{x_k\}_{k \in \mathbb{N}}, \{y_k\}_{k \in \mathbb{N}} \subset [0, 1]$ in Schritt 4 widerspräche. Damit ist die gleichmäßig gleichgradige Stetigkeit von $T[K] \subset BC([0, 1]; \mathbb{K})$ bewiesen. Der Satz von Ascoli liefert somit die relative Kompaktheit der Menge T[K] in $BC([0, 1]; \mathbb{K})$, woraus sich schließlich die relative Kompaktheit des isometrischen Urbilds K in V ergibt.