Vorlesung 2

Dichte Mengen und separable Räume

Dichte Mengen und Separabilität. Sei (X, ρ) ein metrischer Raum.

- 1. Eine Menge $E \subset X$ heißt dicht in der Menge $X_0 \subset X$, wenn $X_0 \subset \operatorname{cl} E$ gilt, das heißt, wenn für alle $u \in X_0$ und r > 0 der Durchschnitt $E \cap B(u, r)$ nicht leer ist.
 - 2. Gibt es eine abzählbare, in X dichte Menge $E \subset X$, dann heißt (X, ρ) separabel.

Kriterium für Separabilität. Ein metrischer Raum (X, ρ) ist genau dann separabel, wenn es eine abzählbare Basis für die offenen Mengen in X gibt.

- Beweis. 1. Sei die Familie $\{G_k\}_{k\in\mathbb{N}}\subset X$ nichtleerer offener Mengen eine Basis für die offenen Mengen von (X,ρ) . Man wählt für jedes $k\in\mathbb{N}$ einen Punkt $u_k\in G_k$ aus und betrachtet die Folge $\{u_k\}_{k\in\mathbb{N}}\subset X$. Nach Definition gibt es für jede offene Kugel $B(u,r)\subset X$ eine Indexmenge $N_0\subset\mathbb{N}$, so daß $B(u,r)=\bigcup_{k\in N_0}G_k$ gilt, woraus sich $\{u_k\}_{k\in\mathbb{N}_0}\subset B(u,r)$ und somit die Dichtheit von $\{u_k\}_{k\in\mathbb{N}}$ in X ergibt.
- 2. Seien umgekehrt $\{u_k\}_{k\in N_0}\subset X$ eine in X dichte Menge mit $N_0\subset \mathbb{N}$. Definiert man durch $r_\ell=2^{-\ell}$ für $\ell\in \mathbb{N}$ eine Familie $\{r_\ell\}_{\ell\in \mathbb{N}}\subset \mathbb{R}$ von Radien, so soll gezeigt werden, daß die abzählbare Familie $\{B(u_k,r_\ell)\subset X:k\in N_0,\,\ell\in \mathbb{N}\}$ offener Kugeln eine Basis für die offenen Mengen in X darstellt:

Ist $G \subset X$ eine nichtleere offene Teilmenge, so bildet man zunächst die Indexmenge $N_1 = \{k \in N_0 : u_k \in G\}$, die aufgrund der Dichtheit von $\{u_k\}_{k \in N_0}$ in X nicht leer sein kann. Definiert man für jedes $k \in N_1$ die Zahl $\ell_k = \min\{\ell \in \mathbb{N} : B(u_k, r_\ell) \subset G\}$, dann gilt offenbar $B(u_k, r_\ell) \subset G$ für alle $k \in N_1$ und $\ell \in \mathbb{N}$ mit $\ell \geq \ell_k$. Somit ist auch die Vereinigung $E = \bigcup_{k \in N_1} B(u_k, r_{\ell_k})$ offener Kugeln eine Teilmenge von G.

Ist $u \in G$ ein beliebiger Punkt, so kann man wegen der Offenheit von G einen Index $m \in \mathbb{N}$ wählen, so daß $B(u, r_{\ell}) \subset G$ für alle $\ell \in \mathbb{N}$, $\ell \geq m$ gilt. Aufgrund der Dichtheit von $\{u_k\}_{k \in N_0}$ in X gibt es einen Index $k \in N_0$ mit $u_k \in B(u, r_{m+1}) \subset G$, es gilt also nach Definition sogar $k \in N_1$. Da für jedes $w \in B(u_k, r_{m+1})$ stets

$$\rho(u, w) \le \rho(u, u_k) + \rho(u_k, w) < 2r_{m+1} = r_m$$

gilt, ergibt sich die Inklusion $B(u_k, r_{m+1}) \subset B(u, r_m) \subset G$, also $m+1 \geq \ell_k$ aufgrund der Konstruktion. Wegen $u \in B(u_k, r_{m+1}) \subset B(u_k, r_{\ell_k})$ folgt daraus die Beziehung $u \in \bigcup_{k \in N_1} B(u_k, r_{\ell_k}) = E$, das heißt, auch $G \subset E$ und somit G = E.

Offene Überdeckungen. Ein System $\{U_{\gamma}\}_{{\gamma}\in\Gamma}$ offener Mengen aus X heißt offene Überdeckung einer Teilmenge $E\subset X$, wenn $E\subset \cup_{{\gamma}\in\Gamma}U_{\gamma}$ gilt, das heißt, wenn es für jeden Punkt $u\in E$ wenigstens einen Index ${\gamma}\in\Gamma$ mit $u\in U_{\gamma}$ gibt.

Abzählbare Basen und Überdeckungen. Ist der metrische Raum (X, ρ) separabel, dann kann aus jeder offenen Überdeckung von X eine abzählbare Teilfamilie ausgewählt werden, die X überdeckt.

Beweis. Sei die Familie $\{G_k\}_{k\in\mathbb{N}}\subset X$ nichtleerer offener Mengen eine Basis für die offenen Mengen in (X,ρ) und $\{U_\gamma\}_{\gamma\in\Gamma}$ eine offene Überdeckung von X. Wird $u\in X$ beliebig vorgegeben, so kann man einen Index $\gamma(u)\in\Gamma$ mit $u\in U_{\gamma(u)}$ festlegen. Da die in X offene Menge $U_{\gamma(u)}$ die Vereinigung einer Teilfamilie von $\{G_k\}_{k\in\mathbb{N}}\subset X$ ist, kann man einen Index $\ell(u)\in\mathbb{N}$ auswählen, so daß $u\in G_{\ell(u)}\subset U_{\gamma(u)}$ gilt. Die Familie $\{G_{\ell(u)}:u\in X\}$ ist eine abzählbare Überdeckung von X. Fixiert man eine abzählbare Indexmenge $N_0\subset\mathbb{N}$, so daß $\{G_k\}_{k\in\mathbb{N}_0}=\{G_{\ell(u)}:u\in X\}$ gilt, dann gibt es zu jedem $k\in N_0$ ein $u_k\in X$ mit $G_k=G_{\ell(u_k)}\subset U_{\gamma(u_k)}$. Daher ist mit $\{G_k\}_{k\in\mathbb{N}_0}$ auch $\{U_{\gamma(u_k)}\}_{k\in\mathbb{N}_0}$ eine abzählbare Überdeckung von X durch offene Mengen. \square

Separabilität des Raumes aller Zahlenfolgen. Der metrische Raum (s, ρ) aller Zahlenfolgen ist separabel, wenn die Metrik $\rho: s \times s \to \mathbb{R}$ wie folgt definiert wird:

$$\rho(u,v) = \sum_{\ell=1}^{\infty} \frac{1}{2^{\ell}} \frac{|x_{\ell} - y_{\ell}|}{1 + |x_{\ell} - y_{\ell}|} \quad \text{für alle } u = \{x_{\ell}\}_{\ell \in \mathbb{N}}, v = \{y_{\ell}\}_{\ell \in \mathbb{N}} \in s.$$

Beweis. 1. Die Menge $q \subset s$ aller Zahlenfolgen $v = \{y_\ell\}_{\ell \in \mathbb{N}} \in s$, so daß $y_\ell \in \mathbb{Q}$ im Falle $\mathbb{K} = \mathbb{R}$ sowie Re $y_\ell \in \mathbb{Q}$ und Im $y_\ell \in \mathbb{Q}$ im Falle $\mathbb{K} = \mathbb{C}$ für jedes $\ell \in \mathbb{N}$ gilt, ist dicht in s, da es für jedes $\varepsilon > 0$ und jede Folge $u = \{x_\ell\}_{\ell \in \mathbb{N}} \in s$ eine Folge $v = \{y_\ell\}_{\ell \in \mathbb{N}} \in q$ gibt, so daß $|x_\ell - y_\ell| < \varepsilon$ für alle $\ell \in \mathbb{N}$ und somit $\rho(u, v) < \varepsilon$ gilt.

2. Die abzählbare Teilmenge $q_0 \subset q$ der Zahlenfolgen $w = \{z_\ell\}_{\ell \in \mathbb{N}} \in q$, für die ein $\ell_0 \in \mathbb{N}$ existiert, so daß $z_\ell = 0$ für alle $\ell \in \mathbb{N}$, $\ell > \ell_0$ gilt, ist dicht in q: Ist nämlich $\varepsilon > 0$ vorgegeben, und wählt man ein $\ell_0 \in \mathbb{N}$ mit der Eigenschaft $2^{-\ell_0} < \varepsilon$, dann kann man für jede Folge $v = \{y_\ell\}_{\ell \in \mathbb{N}} \in q$ die Folge $w = \{z_\ell\}_{\ell \in \mathbb{N}} \in q_0$ durch $z_\ell = y_\ell$ für $\ell \in \{1, \ldots, \ell_0\}$ sowie $z_\ell = 0$ für $\ell \in \mathbb{N}$, $\ell > \ell_0$ definieren und erhält

$$\rho(v, w) = \sum_{\ell=\ell_0+1}^{\infty} \frac{1}{2^{\ell}} \frac{|y_{\ell}|}{1 + |y_{\ell}|} \le \sum_{\ell=\ell_0+1}^{\infty} \frac{1}{2^{\ell}} < \varepsilon.$$

3. Die abzählbare Menge q_0 ist dicht in s, da q_0 dicht in q und q dicht in s ist. \square

Nirgends dichte Mengen. Eine Teilmenge E eines metrischen Raums (X, ρ) heißt nirgends dicht, wenn sie in keiner offenen Kugel $B(u, r) \subset X$ dicht ist.

Charakterisierung nirgends dichter Mengen. Seien ein metrischer Raum (X, ρ) und eine Teilmenge $E \subset X$ gegeben. Dann sind folgende Aussagen äquivalent:

- 1. Die Menge *E* ist nirgends dicht.
- 2. Das Äußere ext $E = \operatorname{int}(X \setminus E) = X \setminus \operatorname{cl} E$ von E ist dicht in X.
- 3. Es gilt int cl $E = \emptyset$.

Beweis. 1. Sei eine offene Kugel $B(u,r) \subset X$ vorgegeben. Die Menge E ist genau dann nicht dicht in B(u,r), wenn es ein $v \in B(u,r)$ und ein $\delta > 0$ mit $E \cap B(v,\delta) = \emptyset$ gibt, also genau dann, wenn es ein $v \in B(u,r)$ mit $v \in X \setminus cl E$ gibt. Die Menge E ist somit genau dann nirgends dicht, wenn für jede offene Kugel $B(u,r) \subset X$ der Durchschnitt $B(u,r) \cap (X \setminus cl E)$ nicht leer ist. Dies ist aber gleichbedeutend mit der Dichtheit von $X \setminus cl E$ in X.

2. Da für jede Menge $E \subset X$ nach Definition sowohl cl $E = X \setminus \text{ext } E$ als auch $\text{int}(X \setminus \text{ext } E) = X \setminus \text{cl ext } E$ gilt, ergibt sich int cl $E = X \setminus \text{cl ext } E$. Somit gilt genau dann int cl $E = \emptyset$, wenn cl ext E = X gilt, also ext E dicht in X ist.

Eigenschaften der Cantor-Menge. Auf dem Intervall X = [0, 1] soll wie üblich eine Metrik $\rho: X \times X \to \mathbb{R}$ durch $\rho(x, y) = |x - y|$ für $x, y \in X$ definiert werden.

1. Jede Zahl $x \in [0, 1]$ besitzt eine *triadische* Entwicklung als Element der Menge

$$C_0 = \{ \sum_{\ell=1}^{\infty} 3^{-\ell} a_{\ell} \in \mathbb{R} : \{ a_{\ell} \}_{\ell \in \mathbb{N}} \subset \{ 0, 1, 2 \} \}.$$

Beweis. Zunächst folgt $C_0 \subset [0,1]$ aus $2\sum_{\ell=1}^{\infty} 3^{-\ell} = 1$. Um einzusehen, daß auch $[0,1] \subset C_0$ gilt, sei $x \in [0,1)$ vorgegeben. In einem ersten Schritt kann man ein $a_1 \in \{0,1,2\}$ finden, so daß $x-\frac{1}{3}a_1 \in \left[0,\frac{1}{3}\right)$ gilt. Unter der (induktiven) Voraussetzung, daß es Zahlen $a_1,\ldots,a_k \in \{0,1,2\}$ gibt, so daß $x-\sum_{\ell=1}^k 3^{-\ell}a_\ell \in \left[0,3^{-k}\right)$ erfüllt ist, wählt man durch Intervallschachtelung

$$a_{k+1} = \begin{cases} 0, & \text{falls } x - \sum_{\ell=1}^{k} 3^{-\ell} a_{\ell} \in [0, 3^{-k-1}), \\ 1, & \text{falls } x - \sum_{\ell=1}^{k} 3^{-\ell} a_{\ell} \in [3^{-k-1}, 2 \cdot 3^{-k-1}), \\ 2, & \text{falls } x - \sum_{\ell=1}^{k} 3^{-\ell} a_{\ell} \in [2 \cdot 3^{-k-1}, 3^{-k}), \end{cases}$$

und erhält, daß es Zahlen $a_1, \ldots, a_{k+1} \in \{0, 1, 2\}$ gibt, so daß $x - \sum_{\ell=1}^{k+1} 3^{-\ell} a_{\ell} \in [0, 3^{-k-1})$ gilt. Der Grenzübergang $k \to \infty$ liefert eine Folge $\{a_{\ell}\}_{\ell \in \mathbb{N}} \in \{0, 1, 2\}$ mit $x = \sum_{\ell=1}^{\infty} 3^{-\ell} a_{\ell} \in C_0$, es gilt also $C_0 = [0, 1]$.

2. Läßt man die Zahl $a_{\ell}=1$ für kein $\ell\in\mathbb{N}$ zu, dann entsteht die Cantor-Menge

$$C = \left\{ \sum_{\ell=1}^{\infty} 3^{-\ell} a_{\ell} \in \mathbb{R} : \{a_{\ell}\}_{\ell \in \mathbb{N}} \subset \{0, 2\} \right\} \subset [0, 1].$$

Betrachtet man die absteigende Familie $\{C_k\}_{k\in\mathbb{N}}\subset[0,1]$ der Mengen

$$C_k = \left\{ \sum_{\ell=1}^{\infty} 3^{-\ell} a_{\ell} \in \mathbb{R} : \{a_{\ell}\}_{\ell \in \mathbb{N}} \subset \{0, 1, 2\}, \{a_1, \dots, a_k\} \subset \{0, 2\} \right\} \quad \text{für } k \in \mathbb{N},$$

dann gilt $C = \bigcap_{k=1}^{\infty} C_k$. Zur rekursiven Konstruktion der Mengen C_k setzt man $F_0 = [0, 1]$ und definiert eine Familie $\{F_k\}_{k \in \mathbb{N}} \subset [0, 1]$ abgeschlossener Mengen

$$F_k = \left\{ \frac{1}{3}x \in \mathbb{R} : x \in F_{k-1} \right\} \cup \left\{ \frac{1}{3}x + \frac{2}{3} \in \mathbb{R} : x \in F_{k-1} \right\} \quad \text{für } k \in \mathbb{N}.$$

Dann gilt $F_k = C_k$ für alle $k \in \mathbb{N}$ und somit $C = \bigcap_{k=1}^{\infty} C_k = \bigcap_{k=1}^{\infty} F_k$.

Beweis. Offenbar gilt $F_0 = C_0 = [0, 1]$. Unter der (induktiven) Voraussetzung, daß $F_{k-1} = C_{k-1}$ für ein $k \in \mathbb{N}$ erfüllt ist, sei ein $y \in F_k$ vorgegeben. Es gibt also ein $x \in F_{k-1} = C_{k-1}$ und damit eine Folge $\{a_\ell\}_{\ell \in \mathbb{N}} \subset \{0, 1, 2\}$ mit $\{a_1, \dots, a_{k-1}\} \subset \{0, 2\}$, so daß die Identität $y = \frac{1}{3} \sum_{\ell=1}^{\infty} 3^{-\ell} a_\ell + \frac{1}{3} b_1$ für ein $b_1 \in \{0, 2\}$ gilt. Definiert man $\{b_\ell\}_{\ell \in \mathbb{N}} \subset \{0, 1, 2\}$ durch $b_{\ell+1} = a_\ell$ für $\ell \in \mathbb{N}$, dann ergibt sich $y = \sum_{\ell=1}^{\infty} 3^{-\ell} b_\ell$ mit $\{b_1, \dots, b_k\} \subset \{0, 2\}$, das heißt, es gilt $y \in C_k$ und somit $F_k \subset C_k$.

Wird unter der (induktiven) Voraussetzung $F_{k-1} = C_{k-1}$ ein $y \in C_k$ vorgegeben, dann gibt es eine Folge $\{a_\ell\}_{\ell \in \mathbb{N}} \subset \{0,1,2\}$ mit $\{a_1,\ldots,a_k\} \subset \{0,2\}$, so daß die Identität $3y - a_1 = \sum_{\ell=1}^{\infty} 3^{-\ell} a_{\ell+1}$ erfüllt ist. Bildet man die Folge $\{b_\ell\}_{\ell \in \mathbb{N}} \subset \{0,1,2\}$ durch $b_\ell = a_{\ell+1}$ für $\ell \in \mathbb{N}$, dann ergibt sich $\{b_1,\ldots,b_{k-1}\} \subset \{0,2\}$, das heißt, es gilt $3y - a_1 \in C_{k-1} = F_{k-1}$. Aus $a_1 \in \{0,2\}$ folgt somit $y \in F_k$, also $C_k \subset F_k$.

3. Die Cantor-Menge C besteht nur aus Randpunkten und ist nirgends dicht.

Beweis. Da $\{F_k\}_{k\in\mathbb{N}}\subset [0,1]$ eine Familie abgeschlossener Mengen ist, muß auch $C=\cap_{k=1}^\infty F_k$ abgeschlossen sein. Sei $\varepsilon>0$ vorgegeben und $\ell_0\in\mathbb{N}$ derart gewählt, daß $3^{-\ell_0}<\varepsilon$ gilt; ferner $x\in C$ ein beliebiger Punkt und $\{a_\ell\}_{\ell\in\mathbb{N}}\subset\{0,2\}$ eine Folge mit $x=\sum_{\ell=1}^\infty 3^{-\ell}a_\ell$. Dann gilt für jeden Punkt $y\in[0,1]$, der eine triadische Entwicklung $y=\sum_{\ell=1}^\infty 3^{-\ell}b_\ell$ mit einer Folge $\{b_\ell\}_{\ell\in\mathbb{N}}\subset\{0,1,2\}$ besitzt, so daß $b_\ell=a_\ell$ für alle $\ell\in\{1,\ldots,\ell_0\}$ erfüllt ist, die Abschätzung

$$|x - y| \le \sum_{\ell=\ell_0+1}^{\infty} 3^{-\ell} |a_{\ell} - b_{\ell}| \le 2 \sum_{\ell=\ell_0+1}^{\infty} 3^{-\ell} \le 3^{-\ell_0} < \varepsilon.$$

Somit enthält jede offene Kugel $B(x, \varepsilon) = \{z \in [0, 1] : |x - z| < \varepsilon\}$ sowohl Zahlen aus C als auch aus $[0, 1] \setminus C$, das heißt, jeder Punkt $x \in C$ ist Randpunkt von C. Da $C \subset [0, 1]$ abgeschlossen ist, folgt aus $\operatorname{cl} C = C = \operatorname{bd} C = \operatorname{cl} C \setminus \operatorname{int} C$, daß int $\operatorname{cl} C = \operatorname{int} C$ leer ist, das heißt, die Cantor-Menge C ist nirgends dicht in [0, 1]. \square

4. Die triadische Entwicklung jeder Zahl $x \in C$ ist eindeutig bestimmt.

Beweis. Führt man die Menge d aller dyadischen Zahlenfolgen $\{a_\ell\}_{\ell\in\mathbb{N}}\subset\{0,1\}$ ein, dann soll die Bijektivität derjenigen Abbildung $T:d\leftrightarrow C$ gezeigt werden, die durch

$$Tu = 2\sum_{\ell=1}^{\infty} 3^{-\ell} a_{\ell}$$
 für $u = \{a_{\ell}\}_{\ell \in \mathbb{N}} \in d$

definiert ist. Seien dazu $u=\{a_\ell\}_{\ell\in\mathbb{N}}\in d$ und $v=\{b_\ell\}_{\ell\in\mathbb{N}}\in d$ mit Tu=Tv gegeben. Würde $a_1=1$ und $b_1=0$ gelten, dann ergäbe sich der Widerspruch

$$\frac{2}{3} + 2\sum_{\ell=2}^{\infty} 3^{-\ell} a_{\ell} = 2\sum_{\ell=1}^{\infty} 3^{-\ell} a_{\ell} = 2\sum_{\ell=1}^{\infty} 3^{-\ell} b_{\ell} = 2\sum_{\ell=2}^{\infty} 3^{-\ell} b_{\ell} \le \frac{1}{3}.$$

Damit ist $a_1 = b_1$ gezeigt. Wird (induktiv) vorausgesetzt, daß $a_\ell = b_\ell$ für alle $\ell \in \{1, \dots, k-1\}$ gilt, dann kann nicht $a_k = 1$ und $b_k = 0$ gelten, denn

$$2 \cdot 3^{-k} + 2 \sum_{\ell=k+1}^{\infty} 3^{-\ell} a_{\ell} = 2 \sum_{\ell=k}^{\infty} 3^{-\ell} a_{\ell} = 2 \sum_{\ell=k}^{\infty} 3^{-\ell} b_{\ell} = 2 \sum_{\ell=k+1}^{\infty} 3^{-\ell} b_{\ell} \le 3^{-k}$$

würde zum Widerspruch führen. Somit gilt $a_k = b_k$ für alle $k \in \mathbb{N}$, also u = v.

Magere Mengen. Eine Teilmenge E eines metrischen Raums (X, ρ) wird mager genannt, wenn sie als Vereinigung $E = \bigcup_{k \in \mathbb{N}} E_k$ abzählbar vieler nirgends dichter Teilmengen E_k von X darstellbar ist.

Kategoriensatz von Baire. Ist (X, ρ) ein vollständiger metrischer Raum, so gilt:

- 1. Ist $\{G_k\}_{k\in\mathbb{N}}\subset X$ eine Folge offener, in X dichter Mengen, so ist auch deren Durchschnitt $\cap_{k\in\mathbb{N}}G_k$ dicht in X.
 - 2. Ist $E \subset X$ mager, dann ist das Komplement $X \setminus E$ dicht in X.
- 3. Ist $\{F_k\}_{k\in\mathbb{N}}\subset X$ eine Folge abgeschlossener Mengen mit $X=\bigcup_{k\in\mathbb{N}}F_k$, dann existiert ein Index $\ell\in\mathbb{N}$, so daß F_ℓ nicht mager ist.
 - 4. Keine nichtleere offene Menge $G \subset X$ ist mager.

Beweis. 1. Sei $\{G_k\}_{k\in\mathbb{N}}\subset X$ eine Folge offener, in X dichter Mengen und $B(u_0,r_0)$ eine vorgegebene offene Kugel in X. Da G_1 offen und dicht in X ist, muß somit auch $G_1\cap B(u_0,r_0)$ offen und nichtleer sein. Demnach gibt es eine abgeschlossene Kugel $K(u_1,r_1)$ mit $2r_1\leq r_0$, so daß $K(u_1,r_1)\subset G_1\cap B(u_0,r_0)$ gilt.

Unter der induktiven Voraussetzung, daß für jedes $\ell \in \{1, ..., k\}$ eine abgeschlossene Kugel $K(u_\ell, r_\ell)$ mit $2r_\ell \le r_{\ell-1}$ sowie $K(u_\ell, r_\ell) \subset G_\ell \cap B(u_{\ell-1}, r_{\ell-1})$ existiert, gibt es wegen der Offenheit und der Dichtheit von G_{k+1} in X eine abgeschlossene Kugel $K(u_{k+1}, r_{k+1})$ mit $2r_{k+1} \le r_k$ sowie $K(u_{k+1}, r_{k+1}) \subset G_{k+1} \cap B(u_k, r_k)$.

Da für jedes $k \in \mathbb{N}$ die Kugel $B(u_k, r_k)$ alle folgenden Kugeln $B(u_\ell, r_\ell)$ mit $\ell \geq k$ enthält, muß dann stets $\rho(u_k, u_\ell) \leq r_k$ gelten. Wegen $\lim_{k \to \infty} r_k = 0$ ist $\{u_k\}_{k \in \mathbb{N}} \subset X$ eine Cauchy-Folge in X, und die Vollständigkeit von X liefert die Konvergenz der Folge $\{u_k\}_{k \in \mathbb{N}}$ gegen einen Grenzwert $u \in X$. Da für alle $k, \ell \in \mathbb{N}$ mit $\ell \geq k$ stets $\rho(u_k, u) \leq \rho(u_k, u_\ell) + \rho(u_\ell, u) \leq r_k + \rho(u_\ell, u)$ gilt, erhält man für $\ell \to \infty$ die Beziehung $\rho(u_k, u) \leq r_k$ und somit $u \in K(u_k, r_k)$ für jedes $k \in \mathbb{N}$, woraus

$$u \in \cap_{k \in \mathbb{N}} K(u_k, r_k) \subset \cap_{k \in \mathbb{N}} (G_k \cap B(u_{k-1}, r_{k-1})) \subset \cap_{k \in \mathbb{N}} G_k \cap B(u_0, r_0)$$

folgt. Da $B(u_0, r_0)$ in X beliebig vorgegeben war, mu $\mathbb{S} \cap_{k \in \mathbb{N}} G_k$ in X dicht liegen.

2. Ist $E \subset X$ mager, dann existiert eine Folge $\{E_k\}_{k \in \mathbb{N}}$ in X nirgends dichter Mengen $E_k \subset X$ mit $E = \bigcup_{k \in \mathbb{N}} E_k$. Da wegen int cl $E_k = \emptyset$ auch die Abschließung cl E_k für jedes $k \in \mathbb{N}$ nirgends dicht ist, muß das Komplement $X \setminus E_k$ für jedes $k \in \mathbb{N}$ eine offene, in X dichte Menge sein. Nach Schritt 1 erhält man die in X dichten Mengen

$$\bigcap_{k \in \mathbb{N}} (X \setminus \operatorname{cl} E_k) = X \setminus \bigcup_{k \in \mathbb{N}} \operatorname{cl} E_k \subset X \setminus \bigcup_{k \in \mathbb{N}} E_k = X \setminus E.$$

- 3. Sei $\{F_k\}_{k\in\mathbb{N}}\subset X$ eine Folge abgeschlossener magerer Mengen. Nach Schritt 2 sind die Komplemente $X\setminus F_k$ für alle $k\in\mathbb{N}$ offen und dicht in X. Somit ist nach Schritt 1 auch $\cap_{k\in\mathbb{N}}(X\setminus F_k)=X\setminus \bigcup_{k\in\mathbb{N}}F_k$ dicht in X, also gilt $\bigcup_{k\in\mathbb{N}}F_k\neq X$.
- 4. Ist $G \subset X$ offen und mager, dann ist das Komplement $X \setminus G$ nach Schritt 2 abgeschlossen und dicht in X, das heißt, es gilt $X \setminus G = X$ und somit $G = \emptyset$.