Vorlesung 26

Fredholm-Operatoren vom Index Null

Satz von Riesz über den Fredholm-Index. Sei $(V, \| \|_V)$ ein Banach-Raum sowie $T \in \mathcal{K}(V; V)$. Definiert man rekursiv die Familien linearer Teilräume

$$N_0 = \{0\}, \quad N_k = (I - T)^{-1}[N_{k-1}] \supset N_{k-1} \quad \text{für } k \in \mathbb{N},$$

 $F_0 = V, \quad F_k = (I - T)[F_{k-1}] \subset F_{k-1} \quad \text{für } k \in \mathbb{N},$

dann gelten die folgenden Aussagen:

- 1. Für jedes $k \in \mathbb{N}_0$ ist $N_k \subset V$ ein linearer Teilraum endlicher Dimension und $F_k \subset V$ ein abgeschlossener linearer Teilraum endlicher Codimension.
- 2. Es gibt eine kleinste Zahl $n \in \mathbb{N}_0$, so daß $N_k = N_{k+1}$ für alle $k \in \mathbb{N}_0$, $k \ge n$ gilt, und eine kleinste Zahl $r \in \mathbb{N}_0$, so daß $F_k = F_{k+1}$ für alle $k \in \mathbb{N}_0$, $k \ge r$ gilt.
- 3. Es gilt $(I-T)[N_r] \subset N_r$, und die Einschränkung $J_r = (I-T)|F_r: F_r \leftrightarrow F_r$ ist ein Isomorphismus.
- 4. Die Summe $V = F_r + N_r$ ist topologisch direkt, und es gilt r = n, wobei die Zahl $r \in \mathbb{N}_0$ als *Riesz-Zahl von T* bezeichnet wird.
- 5. Der Operator $I T \in \mathcal{L}(V; V)$ ist genau dann injektiv, wenn er surjektiv ist. In diesem Falle ist $I T : V \leftrightarrow V$ ein Isomorphismus, und es gilt r = 0.
- 6. Es existiert ein endlichdimensionaler linearer Teilraum $U_1 \subset N_r$, so daß die Summe $V = N_1 + U_1 + F_r$ topologisch direkt ist.
- 7. Es gibt einen linearen Teilraum $V_1 \subset N_r$ endlicher Dimension, so daß die Summe $V = F_1 + V_1$ topologisch direkt ist und codim $F_1 = \dim V_1 = \dim N_1$ gilt.

Beweis. 1. Definiert man rekursiv die Abbildungen

$$A_0 = I$$
, $A_k = A_{k-1}(I - T) \in \mathcal{L}(V; V)$ für $k \in \mathbb{N}$,

so soll induktiv gezeigt werden, daß man für jeden Index $k \in \mathbb{N}$ eine Darstellung $A_k = I - T_k \in \mathcal{L}(V; V)$ mit $T_k \in \mathcal{K}(V; V)$ bekommt:

Für k = 1 gilt offenbar $A_1 = I - T_1$ mit $T_1 = T \in \mathcal{K}(V; V)$. Für $k \in \mathbb{N}, k \ge 2$ ergibt sich aus den Induktionsvoraussetzungen $A_{k-1} = I - T_{k-1}$ und $T_{k-1} \in \mathcal{K}(V; V)$ wegen $T \in \mathcal{K}(V; V)$ die Gültigkeit der Induktionsbehauptung

$$A_k = (I - T_{k-1})(I - T) = I - T_k$$
 für $T_k = T_{k-1} + T - T_{k-1}T \in \mathcal{K}(V; V)$.

Da nach Definition stets

$$N_k = A_k^{-1}[\{0\}]$$
 sowie $F_k = A_k[V]$ für alle $k \in \mathbb{N}_0$ gilt,

liefert der Satz von Riesz die Fredholm-Eigenschaft der Operatoren $A_k = I - T_k$ mit $T_k \in \mathcal{K}(V; V)$: Für jedes $k \in \mathbb{N}_0$ ist $N_k \subset V$ ein linearer Teilraum endlicher Dimension und $F_k \subset V$ ein abgeschlossener linearer Teilraum endlicher Codimension.

2. Angenommen, es würde $N_k \neq N_{k+1}$ für jedes $k \in \mathbb{N}_0$ gelten. Da nach Definition $N_{k+1} = (I-T)^{-1}[N_k]$ und somit $(I-T)[N_{k+1}] \subset N_k \subset N_{k+1}$ für alle $k \in \mathbb{N}_0$ gilt, könnte man aufgrund des Hilfssatzes von Riesz induktiv eine Folge $\{v_k\}_{k \in \mathbb{N}} \subset V$ mit $v_k \in N_k$, $v_k \notin N_{k-1}$, $\|v_k\|_V = 1$ sowie

$$||Tv_k - Tv_\ell||_V \ge \frac{1}{2}$$
 für alle $k \in \mathbb{N}, \ell \in \{1, ..., k-1\}$

konstruieren. Hieraus ergäbe sich der Widerspruch, daß die Bildfolge $\{Tv_k\}_{k\in\mathbb{N}}$ keinen Häufungspunkt in V hätte, obwohl die Folge $\{v_k\}_{k\in\mathbb{N}}$ in V beschränkt wäre und $T \in \mathcal{K}(V;V)$ gilt. Somit war die Annahme falsch, und es gibt eine (kleinste) Zahl $n \in \mathbb{N}_0$, so daß $N_k = N_{k+1}$ für alle $k \in \mathbb{N}_0$, $k \ge n$ gilt.

Angenommen, es würde $F_k \neq F_{k+1}$ für jedes $k \in \mathbb{N}_0$ gelten. Da nach Definition $(I-T)[F_k] = F_{k+1} \subset F_k$ für alle $k \in \mathbb{N}_0$ gilt, könnte man wegen des Hilfssatzes von Riesz induktiv eine Folge $\{u_k\}_{k \in \mathbb{N}} \subset V$ mit $u_k \in F_k$, $u_k \notin F_{k+1}$, $||u_k||_V = 1$ sowie

$$||Tu_k - Tu_\ell||_V \ge \frac{1}{2}$$
 für alle $k, \ell \in \mathbb{N}, \ell > k$

konstruieren. Hieraus erhielte man den Widerspruch, daß die Bildfolge $\{Tu_k\}_{k\in\mathbb{N}}$ keinen Häufungspunkt in V hätte, obwohl die Folge $\{u_k\}_{k\in\mathbb{N}}$ in V beschränkt wäre und $T\in\mathcal{K}(V;V)$ gilt. Somit war die Annahme falsch, und es gibt eine (kleinste) Zahl $r\in\mathbb{N}_0$, so daß $F_k=F_{k+1}$ für alle $k\in\mathbb{N}_0$, $k\geq r$ gilt.

3. Im regulären Fall r=0 gilt $N_0=\{0\}$ und damit auch $(I-T)[N_0]=N_0$. Im Falle $r\geq 1$ folgt $(I-T)[N_r]\subset N_{r-1}\subset N_r$ aus der Definition $N_r=(I-T)^{-1}[N_{r-1}]$. Nach Schritt 1 ist $(F_r, \| \|_V)$ ein abgeschlossener linearer Teilraum des Banach-

Raums $(V, || ||_V)$, also selbst ein Banach-Raum. Da $(I - T)[F_r] = F_{r+1} = F_r$ wegen Schritt 2 gilt, ist die Einschränkung $J_r = (I - T)|F_r \in \mathcal{L}(F_r; F_r)$ surjektiv.

Sei $v \in F_r$ mit (I - T)v = 0. Wählt man im Hinblick auf Schritt 2 ein $k \in \mathbb{N}_0$ mit $k \ge n$ und $k \ge r$, dann gilt $N_k = N_{k+1}$ sowie $v \in F_r = F_k$. Daher gibt es ein $u \in V$ mit $A_k u = v$, woraus sich $A_{k+1} u = (I - T)v = 0$ und somit $u \in N_{k+1} = N_k$, also $v = A_k u = 0$ ergibt. Demnach ist $J_r = (I - T)|F_r \in \mathcal{L}(F_r; F_r)$ auch injektiv.

Da nach dem Satz von Riesz über die Fredholm-Eigenschaft für $T \in \mathcal{K}(V; V)$ stets eine Konstante $c_T \geq 0$ existiert, so daß für jedes $w_0 \in F_r$ die eindeutig bestimmte Lösung $u_0 = (I - T)^{-1}w_0 \in F_r$ von $(I - T)u_0 = w_0$ der Abschätzung

$$\|(I-T)^{-1}w_0\|_V = \min_{v \in N_1} \|u_0 + v\|_V \le c_T \|w_0\|_V$$

genügt, gilt auch $J_r^{-1} \in \mathcal{L}(F_r; F_r)$, das heißt, $J_r : F_r \leftrightarrow F_r$ ist ein Isomorphismus.

4. Definiert man die linearen stetigen Abbildungen

$$P_r = J_r^{-r} A_r \in \mathcal{L}(V; V)$$
 und $Q_r = I - P_r \in \mathcal{L}(V; V)$,

dann gilt für jedes $u \in V$ wegen $J_r : F_r \leftrightarrow F_r$ sowohl $P_r u \in F_r$ als auch

$$A_r Q_r u = A_r u - (I - T)^r J_r^{-r} A_r u = A_r u - A_r u = 0$$
 und somit $Q_r u \in N_r$.

Damit ist gezeigt, daß jedes $u \in V$ in eine Summe $u = P_r u + Q_r u$ von $P_r u \in F_r$ und $Q_r u \in N_r$ zerlegt werden und $V = F_r + N_r$ als Summe von F_r und N_r dargestellt werden kann. Um einzusehen, daß diese Zerlegung eindeutig bestimmt ist, seien für ein beliebiges $u \in V$ zwei Vektoren $w \in F_r$ und $v \in N_r$ mit u = w + v gegeben:

Dann gilt $A_r v = 0$ und somit $A_r u = A_r w$. Wegen $J_r = (I - T)|F_r$ folgt aus $w \in F_r$ aber $A_r w = J_r^r w$ und somit $w = J_r^{-r} A_r w = J_r^{-r} A_r u = P_r u$ aufgrund der Definition von P_r , also auch $v = u - w = u - P_r u = Q_r u$. Aus der Eindeutigkeit der Zerlegung ergibt sich, daß $V = F_r + N_r$ eine algebraisch direkte Summe ist. Damit sind P_r , $Q_r \in \mathcal{L}(V; V)$ Projektoren von V auf F_r bzw. von V auf N_r , das heißt, $V = F_r + N_r$ ist eine topologisch direkte Summe.

Sei $u \in N_{r+1}$ beliebig vorgegeben. Dann liefert die Zerlegung $u = P_r u + Q_r u$ wegen $Q_r u \in N_r$, $P_r u \in F_r$ und $J_r = (I - T)|F_r$ die Beziehung

$$0 = A_{r+1}u = A_{r+1}P_ru + A_{r+1}Q_ru = A_{r+1}P_ru = J_r^{r+1}P_ru$$

und somit $P_r u = 0$, da $J_r : F_r \leftrightarrow F_r$ bijektiv ist. Daraus folgt $u = Q_r u \in N_r$, also $N_{r+1} \subset N_r \subset N_{r+1}$ und somit $n \le r$ wegen Schritt 2.

Wird $w \in F_n$ beliebig vorgegeben, dann existiert ein $v \in V$ mit $A_n v = w$, und die Zerlegung $v = P_r v + Q_r v$ liefert zunächst $w = A_n P_r v + A_n Q_r v$. Wegen $n \le r$ gilt $Q_r v \in N_r = N_n$ und damit $A_n Q_r v = 0$. Somit folgt wegen $P_r v \in F_r$ und der Bijektivität von $J_r = (I - T)|F_r : F_r \leftrightarrow F_r$ die Beziehung

$$w = A_n P_r v = A_n (I - T) J_r^{-1} P_r v = A_{n+1} J_r^{-1} P_r v$$

und somit $w \in F_{n+1}$. Daraus ergibt sich $F_n \subset F_{n+1} \subset F_n$, demzufolge $r \leq n$ aufgrund von Schritt 2 und insgesamt schließlich r = n.

- 5. Ist $I T \in \mathcal{L}(V; V)$ injektiv, so gilt $N_1 = N_0 = \{0\}$, also n = r = 0 wegen Schritt 4 sowie $F_1 = F_0 = V$. Ist $I T \in \mathcal{L}(V; V)$ surjektiv, dann folgt $F_1 = F_0 = V$, also ebenfalls r = 0. In beiden Fällen ist $I T = J_0 : V \leftrightarrow V$ ein Isomorphismus.
- 6. Im Falle r=0 ist $I-T:V\leftrightarrow V$ ein Isomorphismus. Wegen $N_1=\{0\}$ und $F_1=V$ gilt somit codim $F_1=\dim N_1=0$. Jetzt wird der Fall $r\geq 1$ betrachtet:

Da der Kern N_1 ein linearer Teilraum des endlichdimensionalen Teilraums N_r ist, gibt es ein topologisches Komplement U_1 von N_1 in N_r , das heißt, $N_r = N_1 + U_1$ ist eine topologisch direkte Summe. Bildet man die topologisch direkte Summe mit dem abgeschlossenen linearen Teilraum F_r endlicher Codimension, dann erhält man

$$V = N_r + F_r = N_1 + U_1 + F_r$$

als topologisch direkte Summe, wobei der abgeschlossene lineare Teilraum $U_1 + F_r$ endlicher Codimension topologisches Komplement des Kerns N_1 in V ist. Somit gibt es einen linearen stetigen Projektor $Q_1 \in \mathcal{L}(V;V)$ von V auf N_1 . Aufgrund von $r \geq 1$ hat der Kern N_1 eine endliche Dimension dim $N_1 = m \geq 1$.

Sei $\{v_1, \ldots, v_m\} \subset N_1$ eine Basis von N_1 . Für jedes $k \in \{1, \ldots, m\}$ wird durch

$$v = \sum_{\ell=1}^{m} \alpha_{\ell} v_{\ell} \in N_1 \mapsto \langle g_k, v \rangle = \alpha_k \in \mathbb{K}$$

ein Funktional $g_k \in \mathcal{L}(N_1; \mathbb{K})$ definiert. Bildet man für jedes $k \in \{1, ..., m\}$ die Verkettung $f_k = g_k Q_1 \in V^* = \mathcal{L}(V; \mathbb{K})$, dann gilt

$$Q_1 u = \sum_{\ell=1}^m \langle g_\ell, Q_1 u \rangle v_\ell = \sum_{\ell=1}^m \langle f_\ell, u \rangle v_\ell$$
 für alle $u \in V$

sowie wegen $\{v_1, \ldots, v_m\} \subset N_1$ auch

$$\langle f_{\ell}, v_{k} \rangle = \langle g_{\ell}, Q_{1}v_{k} \rangle = \langle g_{\ell}, v_{k} \rangle = \delta_{k\ell}$$
 für alle $k, \ell \in \{1, \dots, m\}$.

7. Da $V = F_r + N_r$ eine topologisch direkte Summe ist, gilt die Beziehung

$$F_r \cap (N_r \cap F_1) = (F_r \cap N_r) \cap F_1 = \{0\},\$$

also ist auch $F_r + (N_r \cap F_1)$ eine topologisch direkte Summe.

Ist $u \in F_1 \subset V = F_r + N_r$, dann gibt es eine Zerlegung u = w + v mit $v \in N_r$ und $w \in F_r \subset F_1$. Daraus folgt $v = u - w \in F_1$ und damit $v \in N_r \cap F_1$, das heißt, es gilt $u = w + v \in F_r + (N_r \cap F_1)$ und demnach $F_1 \subset F_r + (N_r \cap F_1)$. Andererseits ergibt sich aus $F_r \subset F_1$ und $N_r \cap F_1 \subset F_1$ sofort $F_1 + (N_r \cap F_1) \subset F_1$. Damit ist die Summe $F_1 = F_r + (N_r \cap F_1)$ topologisch direkt.

Da $N_r \cap F_1$ ein linearer Teilraum des endlichdimensionalen linearen Teilraums N_r ist, gibt es ein topologisches Komplement V_1 von $N_r \cap F_1$ in N_r , das heißt, die Summe $N_r = (N_r \cap F_1) + V_1$ ist topologisch direkt. Bildet man die topologisch direkte Summe mit dem abgeschlossenen linearen Teilraum F_r endlicher Codimension, so erhält man

$$V = F_r + N_r = F_r + (N_r \cap F_1) + V_1 = F_1 + V_1.$$

Wegen $r \ge 1$ hat F_1 eine endliche Codimension codim $F_1 = s \ge 1$. Da $V = F_1 + V_1$ eine topologisch direkte Summe ist, muß somit das topologische Komplement V_1 von F_1 in V die endliche Dimension dim $V_1 = s \ge 1$ haben.

Man legt eine Basis $\{u_1, \ldots, u_s\} \subset V_1$ von V_1 fest und definiert die Abbildung $T_0 \in \mathcal{K}(V; V)$ durch die Vorschrift

$$T_0 u = T u + \sum_{\ell=1}^{\min\{s,m\}} \langle f_\ell, u \rangle u_\ell$$
 für $u \in V$,

die sich von $T \in \mathcal{K}(V; V)$ nur durch einen Summanden mit endlichdimensionalem Bildraum unterscheidet. Die bisherige Theorie liefert somit die Fredholm-Eigenschaft der Abbildung $I - T_0 \in \mathcal{L}(V; V)$. Um einzusehen, daß m = s gilt, wird von der Tatsache Gebrauch gemacht, daß die Abbildung $I - T_0 \in \mathcal{L}(V; V)$ nach Schritt 5 genau dann injektiv ist, wenn sie surjektiv ist.

Angenommen, es würde m < s gelten: Dann würde man nach Definition von T_0 für ein beliebig fixiertes $v \in (I - T_0)^{-1}[\{0\}]$ eine Zerlegung des Nullvektors

$$0 = (I - T_0)v = (I - T)v - \sum_{\ell=1}^{m} \langle f_{\ell}, v \rangle u_{\ell}$$

im Sinne der direkten Summe $V = F_1 + V_1$ bekommen und somit (I - T)v = 0 sowie $\sum_{\ell=1}^m \langle f_\ell, v \rangle u_\ell = 0$. Da die Basisvektoren $u_1, \ldots, u_m \in V_1$ linear unabhängig sind, erhielte man neben $v \in N_1$ auch $\langle f_\ell, v \rangle = 0$ für alle $\ell \in \{1, \ldots, m\}$, also $v \in N_1$ und $Q_1v = 0$, das heißt, v = 0. Damit wäre die Abbildung $I - T_0 \in \mathcal{L}(V; V)$ injektiv, also auch surjektiv. Deshalb müßte es wegen m < s ein $u \in V$ mit $(I - T_0)u = u_{m+1}$ geben. Man bekäme nach Definition von T_0 eine Zerlegung des Nullvektors

$$0 = (I - T_0)u - u_{m+1} = (I - T)u - (u_{m+1} + \sum_{\ell=1}^{m} \langle f_{\ell}, u \rangle u_{\ell})$$

im Sinne der direkten Summe $V = F_1 + V_1$, woraus $u_{m+1} + \sum_{\ell=1}^m \langle f_\ell, u \rangle u_\ell = 0$ im Widerspruch zur linearen Unabhängigkeit der Basisvektoren $u_1, \ldots, u_{m+1} \in V_1$ folgen würde. Somit ist die Gültigkeit der Ungleichung $s \leq m$ nachgewiesen.

Angenommen, es würde s < m gelten: Man erhielte wegen $\{v_1, \ldots, v_m\} \subset N_1$, der Definition von T_0 und Schritt 5 die Darstellung

$$(I - T_0)v_k = (I - T)v_k - \sum_{\ell=1}^s \langle f_\ell, v_k \rangle u_\ell = \begin{cases} -u_k & \text{für } k \in \{1, \dots, s\}, \\ 0 & \text{für } k \in \{s + 1, \dots, m\}. \end{cases}$$

Wählte man $u \in V$ beliebig, dann könnte man eine Zerlegung

$$u = (I - T)v + \sum_{\ell=1}^{s} \beta_{\ell} u_{\ell}$$

im Sinne der direkten Summe $V = F_1 + V_1$ für geeignete $v \in V$ und Koordinaten $\beta_1, \ldots, \beta_s \in \mathbb{K}$ finden. Daraus ergäbe sich wegen der Definition von T_0 und der obigen Darstellung $(I - T_0)v_{\ell} = -u_{\ell}$ für jedes $\ell \in \{1, \ldots, s\}$ die Beziehung

$$u = (I - T_0)v + \sum_{\ell=1}^{s} (\langle f_{\ell}, v \rangle + \beta_{\ell}) u_{\ell} = (I - T_0) (v - \sum_{\ell=1}^{s} (\langle f_{\ell}, v \rangle + \beta_{\ell}) v_{\ell}).$$

Damit wäre die Abbildung $I - T_0 \in \mathcal{L}(V; V)$ surjektiv, also auch injektiv. Für den Basisvektor $v_{s+1} \in N_1$ würde somit $(I - T_0)v_{s+1} \neq 0$ folgen, was im Widerspruch zur obigen Darstellung $(I - T_0)v_{s+1} = 0$ stünde. Damit war die Annahme falsch, und es gilt $m \leq s$, woraus sich insgesamt dim $N_1 = m = s = \dim V_1 = \operatorname{codim} F_1$, also $\operatorname{ind}(I - T) = \dim N_1 - \operatorname{codim} F_1 = 0$ für den Fredholm-Index der Abbildung $I - T \in \mathcal{L}(V; V)$ ergibt.