Vorlesung 5

Stetige Bilder kompakter Mengen

Stetige Bilder kompakter Mengen. Sind (X, ρ_X) und (Y, ρ_Y) metrische Räume und $T: X \to Y$ eine stetige Abbildung, so gilt:

- 1. Für jede in X kompakte Teilmenge K ist das Bild T[K] kompakt in Y.
- 2. Ist (X, ρ_X) kompakt, so ist $T: X \to Y$ beschränkt und gleichmäßig stetig.
- 3. Ist (X, ρ_X) kompakt und $T: X \leftrightarrow Y$ bijektiv, so ist T ein Homöomorphismus.

Beweis. 1. Seien K ein kompakte Teilmenge von X und $\{U_\gamma\}_{\gamma\in\Gamma}\subset Y$ eine offene Überdeckung des Bildes T[K] in Y. Dann ist $\{T^{-1}[U_\gamma]\}_{\gamma\in\Gamma}$ eine offene Überdeckung von K in X. Aufgrund der Kompaktheit von K gibt es eine endliche Indexmenge $\Gamma_0\subset\Gamma$, so daß bereits die endliche Teilfamilie $\{T^{-1}[U_\gamma]\}_{\gamma\in\Gamma_0}$ die Menge K überdeckt. Wegen $TT^{-1}[U_\gamma]=U_\gamma\cap T[X]$ ergibt sich aus $K\subset \cup_{\gamma\in\Gamma_0}T^{-1}[U_\gamma]$ offenbar

$$T[K] \subset \cup_{\gamma \in \Gamma_0} T T^{-1}[U_{\gamma}] \subset \cup_{\gamma \in \Gamma_0} U_{\gamma},$$

das heißt, die endliche Teilfamilie $\{U_{\gamma}\}_{{\gamma}\in\Gamma_0}$ ist eine offene Überdeckung von T[K] und damit T[K] eine kompakte Teilmenge von Y.

2. Sei (X, ρ_X) kompakt. Da das Bild T[X] nach Schritt 1 kompakt und damit beschränkt in Y ist, ergibt sich $T \in BC(X;Y)$. Angenommen, $T: X \to Y$ wäre nicht gleichmäßig stetig. Dann gäbe es ein $\varepsilon > 0$ und Folgen $\{u_k\}_{k \in \mathbb{N}}$ sowie $\{v_k\}_{k \in \mathbb{N}}$ in X, so daß $\rho_X(u_k, v_k) \leq 2^{-k}$ und $\rho_Y(Tu_k, Tv_k) \geq 2\varepsilon$ für jedes $k \in \mathbb{N}$ gelten würde. Wegen der Kompaktheit von X könnte man eine Teilfolge $\{u_{k_\ell}\}_{\ell \in \mathbb{N}}$ von $\{u_k\}_{k \in \mathbb{N}}$ finden, die in X gegen einen Grenzwert $u \in X$ konvergiert. Wegen $\rho_X(u_{k_\ell}, v_{k_\ell}) \leq 2^{-k_\ell}$ und

$$\rho_X(v_{k_\ell}, u) \leq \rho_X(v_{k_\ell}, u_{k_\ell}) + \rho_X(u_{k_\ell}, u)$$
 für alle $\ell \in \mathbb{N}$

würde auch die Teilfolge $\{v_{k_\ell}\}_{\ell\in\mathbb{N}}$ von $\{v_k\}_{k\in\mathbb{N}}$ in X gegen $u\in X$ konvergieren.

Aufgrund der Stetigkeit von $T: X \to Y$ in $u \in X$ gibt es ein $\delta > 0$, so daß für alle $v \in X$ aus $\rho_X(u,v) \le \delta$ stets $\rho_Y(Tu,Tv) \le \frac{\varepsilon}{2}$ folgt. Für alle $\ell \in \mathbb{N}$ mit $\rho_X(u_{k_\ell},u) \le \delta$ und $\rho_X(v_{k_\ell},u) \le \delta$ erhielte man den Widerspruch

$$\rho_Y(Tu_{k_\ell}, Tv_{k_\ell}) \le \rho_Y(Tu_{k_\ell}, Tu) + \rho_Y(Tv_{k_\ell}, Tu) \le \varepsilon.$$

Damit ist $T: X \to Y$ gleichmäßig stetig.

3. Sei (X, ρ_X) kompakt, $T: X \leftrightarrow Y$ bijektiv und $K \subset X$ eine beliebig vorgegebene, in X abgeschlossene Teilmenge. Dann muß K auch kompakt in K sein. Aufgrund von Schritt 1 folgt daraus die Kompaktheit und somit die Abgeschlossenheit des Urbildes K in K bezüglich der inversen Abbildung K in K die damit stetig ist. K

Universalität der Cantor-Menge. Eine Teilmenge K eines metrischen Raum (X, ρ) ist genau dann kompakt, wenn sie ein stetiges Bild der Cantor-Menge $C \subset [0, 1]$ ist, das heißt, wenn es eine stetige Abbildung $T: C \to X$ mit T[C] = K gibt.

- Beweis. 1. Sei $K \subset X$ kompakt und $\{\varepsilon_k\}_{k \in \mathbb{N}} \subset \mathbb{R}$ eine Nullfolge positiver Zahlen. Dann existiert nach dem Kompaktheitskriterium von Hausdorff für jedes $k \in \mathbb{N}$ ein endliches ε_k -Netz $\{u_{k1}, \ldots, u_{km_k}\} \subset K$ für K, wobei durch eine eventuelle Hinzunahme von Punkten stets erreicht werden kann, daß $m_k = 2^{p_k}$ für ein $p_k \in \mathbb{N}$ gilt und $\{p_k\}_{k \in \mathbb{N}} \subset \mathbb{N}$ eine wachsende Folge ist. Für die weiteren Betrachtungen sei M die Menge aller Folgen $\{k_\ell\}_{\ell \in \mathbb{N}} \subset \mathbb{N}$, so daß $k_\ell \in \{1, \ldots, 2^{p_\ell}\}$ für jedes $\ell \in \mathbb{N}$ gilt.
- 2. Da die Menge K von der Familie der Kugeln $\{B(u_{11}, \varepsilon_1), \ldots, B(u_{12^{p_1}}, \varepsilon_1)\}$ überdeckt wird, ergibt sich die Darstellung $K = \bigcup_{k_1=1}^{2^{p_1}} K_{k_1}$ als Vereinigung nichtleerer kompakter Teilmengen $K_{k_1} = K \cap K(u_{1k_1}, \varepsilon_1)$ von K mit diam $K_{k_1} \leq 2\varepsilon_1$. Analog dazu kann man mit Hilfe des ε_2 -Netzes für K für jedes $k_1 \in \{1, \ldots, 2^{p_1}\}$ und $k_2 \in \{1, \ldots, 2^{p_2}\}$ nichtleere kompakte Teilmengen $K_{k_1k_2} = K_{k_1} \cap K(u_{2k_2}, \varepsilon_2)$ von K_{k_1} finden, so daß $K_{k_1} = \bigcup_{k_2=1}^{2^{p_2}} K_{k_1k_2}$ und diam $K_{k_1k_2} \leq 2\varepsilon_2$ gilt.

Fährt man für wachsendes $\ell \in \mathbb{N}$ fort, dann erhält man für jede Folge $\{k_\ell\}_{\ell \in \mathbb{N}} \in M$ eine absteigende Familie $K_{k_1} \supset K_{k_1k_2} \supset \cdots \supset K_{k_1k_2\cdots k_\ell} \supset \cdots$ nichtleerer kompakter Teilmengen von K, deren Durchmesser für $\ell \to \infty$ gegen Null konvergiert. Der Durchschnitt $K_{k_1} \cap K_{k_1k_2} \cap \cdots \cap K_{k_1k_2\cdots k_\ell} \cap \cdots$ jeder Familie besteht stets aus genau einem Punkt $u \in K$. Dadurch wird eine Abbildung $\Phi : M \to K$ definiert, die jeder Folge $\{k_\ell\}_{\ell \in \mathbb{N}} \in M$ einen eindeutig bestimmten Punkt $u \in K$ zuordnet. Die Abbildung $\Phi : M \to K$ ist surjektiv, da man für jeden Punkt $u \in K$ nach Konstruktion eine Folge $\{k_\ell\}_{\ell \in \mathbb{N}} \in M$ finden kann, so daß $u \in K_{k_1} \cap K_{k_1k_2} \cap \cdots \cap K_{k_1k_2\cdots k_\ell} \cap \cdots$ gilt, jedoch nicht unbedingt injektiv, da der Punkt $u \in K$ gleichzeitig zu mehreren Überdeckungsmengen gehören kann.

3. Die Cantor-Menge $C \subset [0,1]$ kann als Durchschnitt $C = \bigcap_{k=0}^{\infty} F_k$ der absteigenden Familie $\{F_k\}_{k \in \mathbb{N}}$ kompakter Teilmengen $F_k \subset [0,1]$ dargestellt werden, die durch $F_0 = [0,1]$ und die rekursive Definition

$$F_k = \left\{ \frac{1}{3}x \in \mathbb{R} : x \in F_{k-1} \right\} \cup \left\{ \frac{1}{3}x + \frac{2}{3} \in \mathbb{R} : x \in F_{k-1} \right\} \quad \text{für } k \in \mathbb{N}$$

gegeben sind. Die Menge $F_{p_1} \subset [0,1]$ ist als disjunkte Vereinigung $F_{p_1} = \bigcup_{k_1=1}^{2^{p_1}} \Delta_{k_1}$ von 2^{p_1} kompakten Intervallen $\Delta_1, \ldots, \Delta_{2^{p_1}} \subset [0,1]$ mit diam $\Delta_{k_1} = 3^{-p_1}$ darstellbar. Die $2^{p_1} - 1$ Lücken zwischen diesen Intervallen haben mindestens den gleichen Durchmesser. Für jedes $k_1 \in \{1, \ldots, 2^{p_1}\}$ ist das Intervall Δ_{k_1} als disjunkte Vereinigung $\Delta_{k_1} = \bigcup_{k_2=1}^{2^{p_2}} \Delta_{k_1 k_2}$ von 2^{p_2} kompakten Intervallen $\Delta_{k_1 1}, \ldots, \Delta_{k_1 2^{p_2}} \subset [0,1]$ mit diam $\Delta_{k_1 k_2} = 3^{-(p_1 + p_2)}$ darstellbar. Wiederum haben die $2^{p_2} - 1$ Lücken zwischen diesen Intervallen mindestens den gleichen Durchmesser.

Setzt man diese Betrachtungen für wachsendes $\ell \in \mathbb{N}$ fort, dann erhält man für jede Folge $\{k_\ell\}_{\ell \in \mathbb{N}} \in M$ eine absteigende Familie $\Delta_{k_1} \supset \Delta_{k_1 k_2} \supset \cdots \supset \Delta_{k_1 k_2 \cdots k_\ell} \supset \cdots$ kompakter Intervalle, deren Durchmesser für $\ell \to \infty$ gegen Null konvergiert. Der Durchschnitt $\Delta_{k_1} \cap \Delta_{k_1 k_2} \cap \cdots \cap \Delta_{k_1 k_2 \cdots k_\ell} \cap \cdots$ jeder dieser Familien besteht jeweils aus genau einem Punkt $x \in C$. Dadurch wird eine Abbildung $\Psi : M \to C$ definiert, die jeder Folge $\{k_\ell\}_{\ell \in \mathbb{N}} \in M$ einen eindeutig bestimmten Punkt $x \in C$ zuordnet. Aufgrund der Eindeutigkeit der triadischen Darstellung jedes Punktes $x \in C$ ist diese Abbildung $\Psi : M \leftrightarrow C$ sogar bijektiv.

4. Aufgrund von Schritt 2 und 3 ist die Verkettung der Inversen $\Psi^{-1}: C \leftrightarrow M$ mit der Abbildung $\Phi: M \to K$ eine surjektive Abbildung $T = \Phi \Psi^{-1}: C \to K$, welche also die Cantor-Menge $C \subset [0,1]$ auf die kompakte Menge $K \subset X$ abbildet.

Um die Stetigkeit von $T:C\to K$ einzusehen, seien $\varepsilon>0$ und $x\in C$ vorgegeben. Man findet eine Folge $\{k_\ell\}_{\ell\in\mathbb{N}}\in M$ mit $x\in\Delta_{k_1}\cap\Delta_{k_1k_2}\cap\cdots\cap\Delta_{k_1k_2\cdots k_\ell}\cap\cdots$ und $Tx\in K_{k_1}\cap K_{k_1k_2}\cap\cdots\cap K_{k_1k_2\cdots k_\ell}\cap\cdots$ sowie ein $\ell\in\mathbb{N}$ mit diam $K_{k_1k_2\cdots k_\ell}<\varepsilon$, also $Tx\in K_{k_1k_2\cdots k_\ell}\subset B(Tx,2\varepsilon)$ und $x\in\Delta_{k_1k_2\cdots k_\ell}\subset[0,1]$.

Setzt $\operatorname{man} \delta = \operatorname{diam} \Delta_{k_1 k_2 \cdots k_\ell} > 0$, dann können die Lücken zwischen den Intervallen $\Delta_{k_1 k_2 \cdots k_{\ell-1} 1}, \ldots, \Delta_{k_1 k_2 \cdots k_{\ell-1} 2^{p_\ell}}$ aufgrund der rekursiven Konstruktion nicht kürzer als der Durchmesser δ dieser Intervalle sein und nicht zur Cantor-Menge C gehören. Somit folgt wegen $x \in \Delta_{k_1 k_2 \cdots k_\ell}$ für alle $y \in C$ aus $|x-y| < \delta$ stets $y \in \Delta_{k_1 k_2 \cdots k_\ell}$ und damit auch $Ty \in K_{k_1 k_2 \cdots k_\ell} \subset B(Tx, 2\varepsilon)$, das heißt, $\rho(Tx, Ty) < 2\varepsilon$ für alle $y \in C$ mit $|x-y| < \delta$, woraus sich die Stetigkeit von $T: C \to K$ im beliebig vorgegebenen Punkt $x \in C$ ergibt.

5. Ist umgekehrt $T: C \to X$ eine stetige Abbildung, dann ist wegen der Kompaktheit der Cantor-Menge C auch ihr stetiges Bild T[C] kompakt in X.

Gleichmäßige Approximation durch stückweise konstante Abbildungen. Seien (X, ρ_X) ein kompakter und (Y, ρ_Y) ein separabler metrischer Raum. Dann existiert im Raum $(B(X;Y), \rho)$ eine abzählbare Teilmenge stückweise konstanter Abbildungen mit endlichem Wertebereich, die im Teilraum BC(X;Y) dicht liegt.

Beweis. 1. Sei $\{\delta_k\}_{k\in\mathbb{N}}\subset\mathbb{R}$ eine Nullfolge positiver Radien. Wegen der Kompaktheit von X kann man aufgrund des Hausdorff-Kriteriums für jedes $k\in\mathbb{N}$ ein endliches δ_k -Netz $N_k\subset X$ für X wählen. Dann bildet für jedes $k\in\mathbb{N}$ auch die Vereinigung $M_k=\cup_{m=1}^k N_m=\{v_1,\ldots,v_{m_k}\}\subset X$ ein endliches δ_k -Netz für X. Offenbar sind die Familien $\{B(v_1,\delta_k),\ldots,B(v_{m_k},\delta_k)\}$ offener Kugeln für alle $k\in\mathbb{N}$ endliche Überdeckungen von X. Man bildet für jedes $k\in\mathbb{N}$ durch die rekursive Vorschrift

$$E_{k\ell} = B(v_{\ell}, \delta_k) \setminus \bigcup_{m=1}^{\ell-1} E_{km}$$
 für $\ell \in \{1, \dots, m_k\}$

eine endliche Familie $\{E_{k1}, \ldots, E_{km_k}\}\subset X$ paarweise disjunkter Mengen, die X ebenfalls überdecken, obwohl einige von ihnen auch leer sein können.

- 2. Sei $D \subset Y$ eine in Y abzählbare dichte Teilmenge. Für jedes $k \in \mathbb{N}$ wird die Teilmenge $P_k \subset B(X;Y)$ aller stückweise konstanten Abbildungen mit endlichem Wertebereich in D mit folgender Eigenschaft definiert: Für jedes $\ell \in \{1,\ldots,m_k\}$ gibt es ein $g_\ell \in D$, so daß $Tu = g_\ell$ für alle $u \in E_{k\ell}$ gilt. Dann ist P_k für jedes $k \in \mathbb{N}$ und damit auch deren Vereinigung $P = \bigcup_{k \in \mathbb{N}} P_k$ eine abzählbare Teilmenge von B(X;Y).
- 3. Werden $\varepsilon > 0$ und $T \in BC(X;Y)$ beliebig vorgegeben, dann ist T wegen der Kompaktheit von X gleichmäßig stetig: Es gibt ein $\delta > 0$, so daß für alle $u, v \in X$ aus $\rho_X(u,v) \leq \delta$ stets $\rho_Y(Tu,Tv) \leq \frac{\varepsilon}{2}$ folgt. Man wählt ein $k \in \mathbb{N}$ mit $\delta_k \leq \delta$ und fixiert für jedes $\ell \in \{1,\ldots,m_k\}$ ein $g_\ell \in D$, so daß $\rho_Y(Tv_\ell,g_\ell) \leq \frac{\varepsilon}{2}$ gilt. Darauf bauend definiert man die stückweise konstante Abbildung $T_k \in P_k$ durch $T_k u = g_\ell$ für alle $u \in E_{k\ell}$ und $\ell \in \{1,\ldots,m_k\}$.
- 4. Sei $\ell \in \{1, ..., m_k\}$ vorgegeben. Wegen Schritt 1 gilt für alle $u \in E_{k\ell} \subset B(v_\ell, \delta_k)$ die Beziehung $\rho_X(u, v_\ell) \leq \delta_k \leq \delta$ und somit $\rho_Y(Tu, Tv_\ell) \leq \frac{\varepsilon}{2}$ nach Schritt 3. Da sich wegen Schritt 3 für jedes $u \in E_{k\ell}$ auch $\rho_Y(Tv_\ell, T_k u) = \rho_Y(Tv_\ell, g_\ell) \leq \frac{\varepsilon}{2}$ ergibt, erhält man damit $\rho_Y(Tu, T_k u) \leq \rho_Y(Tu, Tv_\ell) + \rho_Y(Tv_\ell, T_k u) \leq \varepsilon$ für alle $u \in E_{k\ell}$ und jedes $\ell \in \{1, ..., m_k\}$, also für alle $u \in X$. Daraus folgt schließlich $\rho(T, T_k) \leq \varepsilon$.

Stetige Fortsetzung durch stückweise affine Abbildungen. Ist $C \subset [0,1]$ die Cantor-Menge, dann existiert zu jeder stetigen Abbildung $T_0: C \to \mathbb{K}$ eine stetige Fortsetzung $T: [0,1] \to \mathbb{K}$ mit $T|C = T_0$ und $\max_{x \in [0,1]} |Tx| = \max_{x \in C} |T_0x|$, die auf $[0,1] \setminus C$ stückweise affin ist.

- Beweis. 1. Wegen der Kompaktheit von $C \subset [0,1]$ ist $T_0 : C \to \mathbb{K}$ gleichmäßig stetig: Für alle $\varepsilon > 0$ gibt es ein $\delta > 0$, so daß für alle $x, y \in C$ aus $|x y| \le \delta$ stets $|Tx Ty| \le \frac{\varepsilon}{3}$ folgt.
- 2. Die Cantor-Menge $C \subset [0, 1]$ läßt sich als Durchschnitt $C = \bigcap_{k=0}^{\infty} F_k$ der absteigenden Familie $\{F_k\}_{k \in \mathbb{N}}$ kompakter Teilmengen $F_k \subset [0, 1]$ dargestellen, die durch $F_0 = [0, 1]$ und die rekursive Definition

$$F_k = \left\{ \frac{1}{3}x \in \mathbb{R} : x \in F_{k-1} \right\} \cup \left\{ \frac{1}{3}x + \frac{2}{3} \in \mathbb{R} : x \in F_{k-1} \right\} \quad \text{für } k \in \mathbb{N}$$

gegeben sind. Dabei ist $F_k = \bigcup_{\ell=1}^{2^k} D_{k\ell}$ für jedes $k \in \mathbb{N} \cup \{0\}$ eine disjunkte Vereinigung von 2^k kompakten Intervallen $D_{k\ell} = [x_{k\ell}, y_{k\ell}]$ der Länge 3^{-k} mit Endpunkten

$$0 = x_{k1} < y_{k1} < \dots < x_{k\ell} < y_{k\ell} < \dots < x_{k2^k} < y_{k2^k} = 1,$$

die allesamt zur Cantor-Menge $C \subset [0, 1]$ gehören.

Die Lücken zwischen den Intervallen D_{k1},\ldots,D_{k2^k} werden von der komplementären Menge $[0,1]\setminus F_k=\cup_{\ell=1}^{2^k-1}L_{k\ell}$ gefüllt, die aus einer disjunkten Vereinigung von 2^k-1 offenen Intervallen $L_{k\ell}=(y_{k\ell},x_{k\ell+1})$ besteht, welche die Länge 3^{-k} nicht unterschreiten. Das Komplement $[0,1]\setminus C$ der Cantor-Menge ist die Vereinigung $\bigcup_{k=0}^{\infty}([0,1]\setminus F_k)$ einer aufsteigenden Familie $\{[0,1]\setminus F_k\}_{k\in\mathbb{N}}$ offener Teilmengen.

3. Für jedes $k \in \mathbb{N}$ definiert man eine stetige und stückweise affine Abbildung $T_k : [0,1] \to \mathbb{K}$ wie folgt: Für jedes $\ell \in \{1,\ldots,2^k\}$ setzt man

$$T_k x = \frac{y_{k\ell} - x}{y_{k\ell} - x_{k\ell}} T_0 x_{k\ell} + \frac{x - x_{k\ell}}{y_{k\ell} - x_{k\ell}} T_0 y_{k\ell} \quad \text{für } x \in D_{k\ell} = [x_{k\ell}, y_{k\ell}]$$

und erhält für alle $x \in D_{k\ell}$ die Abschätzung

$$|T_k x - T_0 y_{k\ell}| \le \frac{y_{k\ell} - x}{y_{k\ell} - x_{k\ell}} |T_0 x_{k\ell} - T_0 y_{k\ell}| \le |T_0 x_{k\ell} - T_0 y_{k\ell}|.$$

Für jedes $\ell \in \{1, \dots, 2^k - 1\}$ definiert man analog dazu

$$T_k x = \frac{x_{k\ell+1} - x}{x_{k\ell+1} - y_{k\ell}} T_0 y_{k\ell} + \frac{x - y_{k\ell}}{x_{k\ell+1} - y_{k\ell}} T_0 x_{k\ell+1} \quad \text{für } x \in L_{k\ell} = (y_{k\ell}, x_{k\ell+1})$$

und bekommt für alle $x \in L_{k\ell}$ die Beziehung

$$|T_k x - T_0 y_{k\ell}| \le \frac{x - y_{k\ell}}{x_{k\ell+1} - y_{k\ell}} |T_0 x_{k\ell+1} - T_0 y_{k\ell}| \le |T_0 x_{k\ell+1} - T_0 y_{k\ell}|.$$

Außerdem gilt $T_m x = T_k x$ für alle $x \in [0, 1] \setminus F_k$ und jedes $m \in \mathbb{N}$ mit $m \ge k$.

4. Sei $k_0 \in \mathbb{N}$ derart gewählt, daß $3^{-k_0} \le \delta$ gilt sowie $m, k \in \mathbb{N}$ mit $m \ge k \ge k_0$ vorgegeben. Ferner sei $x \in F_k$ fixiert. Dann existiert ein $\ell \in \{1, \dots, 2^k\}$ mit $x \in D_{k\ell}$. Jetzt werden die beiden Fälle $x \in F_m$ bzw. $x \in F_k \setminus F_m$ untersucht:

Im Falle $x \in F_m$ existiert ein $p \in \{1, ..., 2^m\}$ mit $x \in D_{mp} \subset D_{k\ell}$, und es gilt

$$|x_{k\ell} - y_{k\ell}| \le 3^{-k} \le \delta$$
, $|x_{mp} - y_{mp}| \le 3^{-k} \le \delta$, $|y_{k\ell} - y_{mp}| \le 3^{-k} \le \delta$.

Schritt 1 liefert aufgrund der Stetigkeit von $T_0: C \to \mathbb{K}$ folglich

$$|T_0x_{k\ell}-T_0y_{k\ell}|\leq \frac{\varepsilon}{3},\quad |T_0x_{mp}-T_0y_{mp}|\leq \frac{\varepsilon}{3},\quad |T_0y_{k\ell}-T_0y_{mp}|\leq \frac{\varepsilon}{3}.$$

Wegen $x \in D_{mp} \subset D_{k\ell}$ erhält man daraus nach Schritt 3 die Abschätzungen

$$|T_kx-T_0y_{k\ell}|\leq |T_0x_{k\ell}-T_0y_{k\ell}|\leq \frac{\varepsilon}{3}, \quad |T_mx-T_0y_{mp}|\leq |T_0x_{mp}-T_0y_{mp}|\leq \frac{\varepsilon}{3}$$
 und somit auch

$$|T_k x - T_m x| \le |T_k x - T_0 y_{k\ell}| + |T_0 y_{k\ell} - T_0 y_{mp}| + |T_0 y_{mp} - T_m x| \le \varepsilon.$$

Im Falle $x \in F_k \setminus F_m$ gibt es ein $p \in \{1, \dots, 2^m - 1\}$ mit $x \in L_{mp} \subset D_{k\ell}$, also gilt

$$|x_{k\ell} - y_{k\ell}| \le 3^{-k} \le \delta$$
, $|x_{mp+1} - y_{mp}| \le 3^{-k} \le \delta$, $|y_{k\ell} - y_{mp}| \le 3^{-k} \le \delta$.

Mit Schritt 1 gelangt man wegen der Stetigkeit von $T_0: C \to \mathbb{K}$ zu

$$|T_0x_{k\ell} - T_0y_{k\ell}| \le \frac{\varepsilon}{3}, \quad |T_0x_{mp+1} - T_0y_{mp}| \le \frac{\varepsilon}{3}, \quad |T_0y_{k\ell} - T_0y_{mp}| \le \frac{\varepsilon}{3}.$$

Aufgrund von $x \in L_{mp} \subset D_{k\ell}$ ergeben sich daraus nach Schritt 3 die Beziehungen

$$|T_k x - T_0 y_{k\ell}| \le |T_0 x_{k\ell} - T_0 y_{k\ell}| \le \frac{\varepsilon}{3}, \quad |T_m x - T_0 y_{mp}| \le |T_0 x_{mp+1} - T_0 y_{mp}| \le \frac{\varepsilon}{3}$$
 und deshalb

$$|T_k x - T_m x| \le |T_k x - T_0 y_{k\ell}| + |T_0 y_{k\ell} - T_0 y_{mp}| + |T_0 y_{mp} - T_m x| \le \varepsilon.$$

Da außerdem nach Konstruktion $T_k x = T_m x$ für alle $x \in [0, 1] \setminus F_k$ gilt, ergibt sich

$$|T_k x - T_m x| \le \varepsilon$$
 für alle $x \in [0, 1]$ und $m, k \in \mathbb{N}$ mit $m \ge k \ge k_0$.

Damit ist $\{T_k\}_{k\in\mathbb{N}}\subset BC([0,1];\mathbb{K})$ eine Cauchy-Folge im vollständigen metrischen Raum $BC([0,1];\mathbb{K})$ und konvergiert somit gleichmäßig gegen eine Abbildung $T\in BC([0,1];\mathbb{K})$, die auf $[0,1]\setminus C$ stückweise affin ist, da $C=\cap_{m=0}^{\infty}F_m$ sowie desweiteren $T|([0,1]\setminus F_m)=T_m|([0,1]\setminus F_m)$ für jedes $m\in\mathbb{N}$ gilt.

5. Ist $x \in C$ vorgegeben, dann gibt es eine Folge $\{\ell_k\}_{k \in \mathbb{N}} \subset \mathbb{N}$ mit $\ell_k \in \{1, \dots, 2^k\}$, so daß die Folge $\{x_{k\ell_k}\}_{k \in \mathbb{N}} \subset C$ in \mathbb{R} gegen $x \in C$ konvergiert. Wegen der Stetigkeit der Abbildungen $T_0: C \to \mathbb{K}$ und $T: [0, 1] \to \mathbb{K}$ liefert der Grenzprozeß $k \to \infty$ in

$$|Tx - T_0x| \le |Tx - Tx_{k\ell_k}| + |Tx_{k\ell_k} - T_kx_{k\ell_k}| + |T_kx_{k\ell_k} - T_0x|$$

$$\le |Tx - Tx_{k\ell_k}| + \max_{y \in [0,1]} |Ty - T_ky| + |T_0x_{k\ell_k} - T_0x|$$

offenbar $Tx = T_0x$ und somit die Fortsetzungseigenschaft $T|C = T_0$.

6. Sei $k \in \mathbb{N}$ beliebig vorgegeben. Wegen Schritt 3 gilt für alle $x \in D_{k\ell} = [x_{k\ell}, y_{k\ell}]$ mit $\ell \in \{1, \dots, 2^k\}$ die Abschätzung

$$|T_k x| \le \frac{y_{k\ell} - x}{y_{k\ell} - x_{k\ell}} |T_0 x_{k\ell}| + \left(1 - \frac{y_{k\ell} - x}{y_{k\ell} - x_{k\ell}}\right) |T_0 y_{k\ell}| \le \max_{y \in C} |T_0 y|$$

sowie für jedes $x \in L_{k\ell} = (y_{k\ell}, x_{k\ell+1})$ mit $\ell \in \{1, \dots, 2^k - 1\}$ ebenfalls

$$|T_k x| = \frac{x_{k\ell+1} - x}{x_{k\ell+1} - y_{k\ell}} |T_0 y_{k\ell}| + \left(1 - \frac{x_{k\ell+1} - x}{x_{k\ell+1} - y_{k\ell}}\right) |T_0 x_{k\ell+1}| \le \max_{y \in C} |T_0 y|,$$

also insgesamt $\max_{x \in [0,1]} |T_k x| \leq \max_{y \in C} |T_0 y|$ für jedes $k \in \mathbb{N}$. Wegen der gleichmäßigen Konvergenz von $\{T_k\}_{k \in \mathbb{N}} \subset BC([0,1];\mathbb{K})$ gegen $T \in BC([0,1];\mathbb{K})$ folgt daraus $\max_{x \in [0,1]} |Tx| \leq \max_{y \in C} |T_0 y|$. Da nach Schritt 5 auch $T|C = T_0$ gilt, folgt schließlich die Gleichheit $\max_{x \in [0,1]} |Tx| = \max_{y \in C} |T_0 y|$ der Maxima.