Vorlesung 8

Lineare normierte Räume

Lineare normierte Räume. Unter einer *Norm* auf einem linearen Raum V über $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ versteht man eine Abbildung $u \mapsto ||u||$ von V nach \mathbb{R} , die jedem Vektor $u \in V$ seine Länge $||u|| \in \mathbb{R}$ zuordnet und für die folgende Eigenschaften erfüllt sind:

- 1. Für jedes $u \in V$ gilt $||u|| \ge 0$ sowie genau dann ||u|| = 0, wenn u = 0.
- 2. Für alle $\alpha \in \mathbb{K}$ und $u \in V$ gilt $\|\alpha u\| = |\alpha| \|u\|$.
- 3. Für alle $u, v \in V$ gilt $||u + v|| \le ||u|| + ||v||$.

Ist auf einem linearen Raum V eine Norm $\| \|$ definiert, so nennt man $(V, \| \|)$ einen *linearen normierten Raum*.

Metrisierung linearer normierter Räume. Für jede Norm $u \mapsto ||u||$ auf einem linearen Raum V wird durch $\rho(u, v) = ||u - v||$ eine Metrik $\rho : V \times V \to \mathbb{R}$ auf V definiert, welche die folgenden Eigenschaften besitzt:

- 1. Für alle $u, v, w \in V$ gilt $\rho(u + w, v + w) = \rho(u, v)$.
- 2. Für jedes $\alpha \in \mathbb{K}$ und alle $u, v \in V$ gilt $\rho(\alpha u, \alpha v) = |\alpha| \rho(u, v)$.

Ist umgekehrt V ein linearer Raum mit einer Metrik $\rho: V \times V \to \mathbb{R}$, welche diese Eigenschaften hat, dann wird durch $u \mapsto ||u|| = \rho(u, 0)$ eine Norm auf V definiert.

Übertragung der Eigenschaften von linearen und metrischen Räumen. In linearen normierten Räumen $(V, \| \|)$ gelten alle Eigenschaften, die in metrischen und linearen Räumen gültig sind:

1. Die Normabbildung $u \mapsto ||u||$ ist Lipschitz-stetig von V nach \mathbb{R} , das heißt, für alle $u, v \in V$ gilt $|||u|| - ||v||| \le ||u - v||$.

Beweis. Für alle $u, v \in V$ gilt wegen der Dreiecksungleichung $||u|| \le ||u - v|| + ||v||$ und $||v|| \le ||u - v|| + ||u||$, also $||u|| - ||v|| \le ||u - v||$ sowie $||v|| - ||u|| \le ||u - v||$. \square

- 2. Die Konvergenz einer Folge $\{u_k\}_{k\in\mathbb{N}}\subset V$ gegen einen Grenzwert $u\in V$ ist gleichbedeutend mit $\lim_{k\to\infty}\|u_k-u\|=0$.
 - 3. Ein vollständiger linearer normierter Raum wird Banach-Raum genannt.
 - 4. Die Addition $(u, v) \mapsto u + v$ von $V \times V$ nach V ist stetig.

Beweis. Sind $\{u_k\}_{k\in\mathbb{N}}$, $\{v_k\}_{k\in\mathbb{N}}\subset V$ in V konvergente Folgen mit den Grenzwerten $u\in V$ bzw. $v\in V$, dann folgt aus $\|(u_k+v_k)-(u+v)\|\leq \|u_k-u\|+\|v_k-v\|$ stets $\lim_{k\to\infty}\|(u_k+v_k)-(u+v)\|=0$.

5. Die skalare Multiplikation $(\alpha, v) \mapsto \alpha u$ von $\mathbb{K} \times V$ nach V ist stetig.

Beweis. Konvergiert die Folge $\{\alpha_k\}_{k\in\mathbb{N}}\subset\mathbb{K}$ in \mathbb{K} gegen $\alpha\in\mathbb{K}$ und $\{u_k\}_{k\in\mathbb{N}}\subset V$ in V gegen $u\in V$, dann folgt aus $\|\alpha_k u_k - \alpha u\| \leq |\alpha_k| \|u_k - u\| + |\alpha_k - \alpha| \|u\|$ stets $\lim_{k\to\infty} \|\alpha_k u_k - \alpha u\| = 0$.

Lineare Teilräume linearer normierter Räume. Sei $(V, \| \|)$ ein linearer normierter Raum und V_0 ein linearer Teilraum von V.

- 1. Durch die Einschränkung der Normabbildung $u \mapsto ||u||$ von V auf V_0 wird eine Norm auf V_0 induziert und somit der lineare normierte Teilraum $(V_0, || ||)$ definiert.
 - 2. Die Abschließung cl V_0 in (V, || ||) ist ebenfalls ein linearer Teilraum von V.

Beweis. Seien $u, v \in \operatorname{cl} V_0$ beliebig vorgegeben. Dann gibt es Folgen $\{u_k\}_{k \in \mathbb{N}} \subset V_0$ und $\{v_k\}_{k \in \mathbb{N}} \subset V_0$ mit $\lim_{k \to \infty} \|u_k - u\| = 0$ und $\lim_{k \to \infty} \|v_k - v\| = 0$. Da die Abschätzung

$$\|(\alpha u_k + \beta v_k) - (\alpha u + \beta v)\| \le |\alpha| \|u_k - u\| + |\beta| \|v_k - v\|$$

für alle α , $\beta \in \mathbb{K}$ gilt, konvergiert die Folge $\{\alpha u_k + \beta v_k\}_{k \in \mathbb{N}} \subset V_0$ in V gegen den Grenzwert $\alpha u + \beta v \in \operatorname{cl} V_0$.

3. Ist $(V, \| \|)$ ein Banach-Raum und V_0 ein abgeschlossener linearer Teilraum von V, dann ist auch $(V_0, \| \|)$ ein Banach-Raum.

Konvergente Reihen. Sei $(V, \| \|)$ ein linearer normierter Raum.

- 1. Die Folge $\left\{\sum_{\ell=1}^k u_\ell\right\}_{k\in\mathbb{N}}\subset V$ der k-ten Partialsummen $\sum_{\ell=1}^k u_\ell\in V$ wird Reihe mit den Gliedern der Folge $\{u_\ell\}_{\ell\in\mathbb{N}}\subset V$ genannt.
- 2. Konvergiert die Reihe $\left\{\sum_{\ell=1}^k u_\ell\right\}_{k\in\mathbb{N}}\subset V$ gegen einen Grenzwert in V, so wird dieser als Summe $\sum_{\ell=1}^\infty u_\ell\in V$ der konvergenten Reihe bezeichnet.

Konvergenzkriterium von Cauchy. Sei (V, || ||) ein linearer normierter Raum.

1. Konvergiert die Reihe $\left\{\sum_{\ell=1}^k u_\ell\right\}_{k\in\mathbb{N}}\subset V$ in V, so ist diese Reihe eine Cauchy-Folge in V, das heißt, es gibt es zu jedem $\varepsilon>0$ ein $k_0\in\mathbb{N}$, so daß die Ungleichung

$$\left\| \sum_{\ell=k+1}^{k+m} u_{\ell} \right\| = \left\| \sum_{\ell=1}^{k+m} u_{\ell} - \sum_{\ell=1}^{k} u_{\ell} \right\| \le \varepsilon$$

für alle $k \in \mathbb{N}$, $k \ge k_0$ und $m \in \mathbb{N}$ gilt.

2. Ist umgekehrt diese Bedingung erfüllt und $(V, \| \|)$ ein Banach-Raum, das heißt, ist die Reihe $\{\sum_{\ell=1}^k u_\ell\}_{k\in\mathbb{N}} \subset V$ eine Cauchy-Folge im vollständigen linearen normierten Raum $(V, \| \|)$, dann konvergiert die Reihe in V.

Absolut konvergente Reihen. Sei $(V, \| \|)$ ein Banach-Raum.

- 1. Eine Reihe $\{\sum_{\ell=1}^k u_\ell\}_{k\in\mathbb{N}}\subset V$ mit den Gliedern der Folge $\{u_\ell\}_{\ell\in\mathbb{N}}\subset V$ heißt absolut konvergent in V, wenn die Reihe $\{\sum_{\ell=1}^k \|u_\ell\|\}_{k\in\mathbb{N}}\subset\mathbb{R}$ in \mathbb{R} konvergiert.
- 2. Konvergiert die Reihe $\left\{\sum_{\ell=1}^k u_\ell\right\}_{k\in\mathbb{N}}\subset V$ absolut in V, dann konvergiert die Reihe $\left\{\sum_{\ell=1}^k u_\ell\right\}_{k\in\mathbb{N}}\subset V$ in V, und für deren Summe gilt die Normabschätzung

$$\left\| \sum_{\ell=1}^{\infty} u_{\ell} \right\| \leq \sum_{\ell=1}^{\infty} \|u_{\ell}\|.$$

Beweis. Wegen der absoluten Konvergenz der Reihe $\left\{\sum_{\ell=1}^k u_\ell\right\}_{k\in\mathbb{N}}\subset V$ in V konvergiert die Reihe $\left\{\sum_{\ell=1}^k \|u_\ell\|\right\}_{k\in\mathbb{N}}\subset\mathbb{R}$ in \mathbb{R} gegen $\sum_{\ell=1}^\infty \|u_\ell\|\in\mathbb{R}$. Somit folgt nach dem Cauchy-Kriterium für Reihen in \mathbb{R} für jedes $\varepsilon>0$ die Existenz eines $k_0\in\mathbb{N}$, so daß die Ungleichung

$$\sum_{\ell=k+1}^{k+m} \|u_{\ell}\| = \sum_{\ell=1}^{k+m} \|u_{\ell}\| - \sum_{\ell=1}^{k} \|u_{\ell}\| \le \varepsilon$$

für alle $k \in \mathbb{N}$, $k \ge k_0$ und $m \in \mathbb{N}$ gilt, woraus sich

$$\left\| \sum_{\ell=1}^{k+m} u_{\ell} - \sum_{\ell=1}^{k} u_{\ell} \right\| = \left\| \sum_{\ell=k+1}^{k+m} u_{\ell} \right\| \le \sum_{\ell=k+1}^{k+m} \|u_{\ell}\| \le \varepsilon$$

ergibt. Da $(V, \| \ \|)$ ein Banach-Raum ist, konvergiert die Reihe $\left\{\sum_{\ell=1}^k u_\ell\right\}_{k\in\mathbb{N}}\subset V$ in V nach dem Cauchy-Kriterium für Reihen in V gegen die Summe $\sum_{\ell=1}^\infty u_\ell\in V$.

Aufgrund der Stetigkeit der Norm kann man in der Beziehung

$$\left\|\sum_{\ell=1}^{k} u_{\ell}\right\| \leq \sum_{\ell=1}^{k} \left\|u_{\ell}\right\|$$
 für alle $k \in \mathbb{N}$

den Grenzübergang $k \to \infty$ durchführen und erhält $\left\| \sum_{\ell=1}^{\infty} u_{\ell} \right\| \le \sum_{\ell=1}^{\infty} \|u_{\ell}\|$.

Raum der zur p-ten Potenz summierbaren Zahlenfolgen. Sei $p \in \mathbb{R}, p \ge 1$.

- 1. Man bildet die Menge ℓ^p derjenigen Zahlenfolgen $u=\{x_\ell\}_{\ell\in\mathbb{N}}\subset\mathbb{K}$, für welche die Reihe $\{\sum_{\ell=1}^k|x_\ell|^p\}_{k\in\mathbb{N}}$ in \mathbb{R} konvergiert, also die Summe $\sum_{\ell=1}^\infty|x_\ell|^p$ endlich ist.
- 2. Definiert man die Addition zweier Zahlenfolgen $u, v \in \ell^p$ sowie die Multiplikation eines Skalars $\alpha \in \mathbb{K}$ mit einer Zahlenfolge $u \in \ell^p$ mit Hilfe der ensprechenden Operationen bezüglich jedes Folgegliedes in \mathbb{K} , dann ist $(\ell^p, \| \|_p)$ ein linearer normierter Raum, wenn die Norm von $u \in \ell^p$ durch $\|u\|_p^p = \sum_{\ell=1}^\infty |x_\ell|^p$ erklärt wird.
- Beweis. 1. Seien eine Folge $u = \{x_\ell\}_{\ell \in \mathbb{N}} \in \ell^p \text{ sowie } \alpha \in \mathbb{K} \text{ vorgegeben. Offenbar gilt } \|u\|_p \ge 0 \text{ und } \|\alpha u\|_p = |\alpha| \|u\|_p \text{ sowie } \|u\|_p = 0 \text{ genau dann, wenn } u = 0 \text{ ist.}$
- 2. Sind $p, q \in (1, \infty)$ mit $\frac{1}{p} + \frac{1}{q} = 1$ gegeben sowie $v = \{y_\ell\}_{\ell \in \mathbb{N}} \in \ell^q$ eine weitere Folge, dann liefert die für alle $a, b \geq 0$ geltende Young-Ungleichung $ab \leq \frac{1}{p} a^p + \frac{1}{q} b^q$ im Falle $\|u\|_p > 0$ und $\|v\|_q > 0$ für $a = \frac{1}{\|u\|_p} |x_\ell|$ und $b = \frac{1}{\|v\|_q} |y_\ell|$ die Abschätzung

$$\frac{|x_{\ell}y_{\ell}|}{\|u\|_{p}\|v\|_{q}} \leq \frac{|x_{\ell}|^{p}}{p\|u\|_{p}^{p}} + \frac{|y_{\ell}|^{q}}{q\|v\|_{q}^{q}} \quad \text{für alle } \ell \in \mathbb{N}.$$

Somit folgt $uv \in \ell^1$ aus $u \in \ell^p$ und $v \in \ell^q$. Durch Summation über $\ell \in \mathbb{N}$ erhält man

$$\frac{\sum_{\ell=1}^{\infty} |x_{\ell} y_{\ell}|}{\|u\|_{p} \|v\|_{q}} \le \frac{\sum_{\ell=1}^{\infty} |x_{\ell}|^{p}}{p \|u\|_{p}^{p}} + \frac{\sum_{\ell=1}^{\infty} |y_{\ell}|^{q}}{q \|v\|_{q}^{q}} = \frac{1}{p} + \frac{1}{q} = 1$$

und somit die Hölder-Ungleichung $||uv||_1 \le ||u||_p ||v||_q$, die auch im Falle $||u||_p = 0$ oder $||v||_q = 0$ richtig ist.

3. Seien zwei Folgen $u = \{x_\ell\}_{\ell \in \mathbb{N}} \in \ell^p \text{ und } v = \{y_\ell\}_{\ell \in \mathbb{N}} \in \ell^p \text{ gegeben. Im Falle } p = 1 \text{ ergibt sich aus der Dreiecksungleichung } |x_\ell + y_\ell| \le |x_\ell| + |y_\ell| \text{ für alle } \ell \in \mathbb{N} \text{ auch } u + v \in \ell^1 \text{ sowie } ||u + v||_1 \le ||u||_1 + ||v||_1 \text{ nach Summation über } \ell \in \mathbb{N}.$

Im Falle $p \in (1, \infty)$ folgt zunächst $u + v \in \ell^p$ durch Summation von

$$|x_{\ell} + y_{\ell}|^p \le (|x_{\ell}| + |y_{\ell}|)^p \le 2^{p-1}(|x_{\ell}|^p + |y_{\ell}|^p)$$
 über alle $\ell \in \mathbb{N}$.

Hat $q \in (1, \infty)$ die Eigenschaft $\frac{1}{p} + \frac{1}{q} = 1$, dann ergibt sich mit Hilfe der Ungleichung

$$|x_{\ell} + y_{\ell}|^p \le |x_{\ell}| |x_{\ell} + y_{\ell}|^{p-1} + |y_{\ell}| |x_{\ell} + y_{\ell}|^{p-1}$$
 für alle $\ell \in \mathbb{N}$

und der Hölder-Ungleichung aus $u, v, u + v \in \ell^p$ und q(p-1) = p auch im Falle $p \in (1, \infty)$ die Ungleichung

$$||u+v||_{p}^{p} \leq \sum_{\ell=1}^{\infty} (|x_{\ell}| |x_{\ell}+y_{\ell}|^{p-1} + |y_{\ell}| |x_{\ell}+y_{\ell}|^{p-1}) \leq (||u||_{p} + ||v||_{p}) ||u+v||_{p}^{p-1}$$
 und somit die Dreiecksungleichung $||u+v||_{p} \leq ||u||_{p} + ||v||_{p}$.