Übungsaufgaben 2

Lineare Räume

Aufgabe 1. Für welche Wahl des Parameters $t \in \mathbb{R}$ wird durch die drei Vektoren

$$\begin{pmatrix} 1 \\ 2 \\ 2t \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 2t \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ t \\ 1+t \end{pmatrix}$$

(6)

eine Basis im \mathbb{R}^3 gebildet?

Lösung. Die drei Vektoren bilden genau dann eine Basis im \mathbb{R}^3 , wenn sie linear unabhängig sind. Die Aufgabe besteht also darin, zu bestimmen, für welche $t \in \mathbb{R}$ das lineare homogene Gleichungssystem

$$x_1 + x_2 + x_3 = 0$$
 $2x_1 + 2tx_2 + tx_3 = 0$
 $+ (t+1)x_3 = 0$

nur die Lösung $x = 0 \in \mathbb{R}^3$ besitzt. Geeignete Umformungen führen auf

$$x_1 + x_2 + x_3 = 0$$

 $(2-t)x_1 + tx_2 = 0$
 $(t-1)x_1 - (t+1)x_2 = 0 \leftarrow +$

sowie desweiteren

und somit schließlich

$$2x_1 + x_3 = 0 \leftarrow + x_3 = 0$$

 $2x_1 = 0 \mid : 2 \mid \cdot (-2) \mid \cdot (-1) \quad \text{und damit} \quad x_1 = 0$
 $x_1 - x_2 = 0 \leftarrow + x_3 = 0$

Das System hat für *jedes* $t \in \mathbb{R}$ nur $x = 0 \in \mathbb{R}^3$ als Lösung. Somit bilden die drei vorgegebenen Vektoren für *alle* $t \in \mathbb{R}$ eine Basis im \mathbb{R}^3 .

Aufgabe 2. Seien vier Vektoren $v_1, v_2, v_3 \in \mathbb{R}^3$ und $u \in \mathbb{R}^3$ wie folgt gegeben:

$$v_1 = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}, v_2 = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ -1 \\ -4 \end{pmatrix} \text{ und } u = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$

- 1. Man zeige, daß $\{v_1, v_2, v_3\}$ eine Basis im \mathbb{R}^3 ist!
- 2. Man berechne die Koordinaten $x_1, x_2, x_3 \in \mathbb{R}$ des Vektors $u = \sum_{\ell=1}^3 x_\ell v_\ell$ bezüglich der Basis $\{v_1, v_2, v_3\}!$

Lösung. Zur Darstellung des Vektors $u \in \mathbb{R}^3$ in der vermeintlichen Basis $\{v_1, v_2, v_3\}$ sucht man nach Lösungen $x \in \mathbb{R}^3$ der Vektorgleichung $x_1v_1 + x_2v_2 + x_3v_3 = u$, das heißt, nach Lösungen $x \in \mathbb{R}^3$ des linearen Gleichungssystems

$$2x_1 - x_2 = 1 \leftarrow +
-x_1 + x_2 - x_3 = 0 \xrightarrow{\cdot 2} \cdot (-1)
-x_1 + 2x_2 - 4x_3 = 0. \leftarrow +$$

Elementare Umformungen liefern

sowie desweiteren

$$x_2 - 2x_3 = 1$$
 $+ x_3 = -1$ $+ x_3 = -1$ und somit $-x_1 = -2$ $-x_3 = -1$.

Dieselben elementaren Umformungen ergeben, daß das entsprechende lineare homogene Gleichungssystem nur die Lösung $x=0\in\mathbb{R}^3$ besitzt. Damit ist gezeigt, daß die Menge $\{v_1,v_2,v_3\}$ linear unabhängig und somit eine Basis im \mathbb{R}^3 ist. Der Vektor u hat die Koordinaten $x_1=2, x_2=3$ und $x_3=1$ bezüglich der Basis $\{v_1,v_2,v_3\}$. \square

Aufgabe 3. Ist V der lineare Raum aller stetigen Funktionen $u:[0,1] \to \mathbb{R}$ über dem Körper \mathbb{R} , so betrachtet man dessen lineare Teilräume

$$V_0 = \{ u \in V \mid \int_0^1 u(x) \, dx = 0 \}$$
 und $V_1 = \{ u \in V \mid u(x) = u(0) \text{ für alle } x \in [0, 1] \}.$

- 1. Man zeige, daß die Beziehungen $V=V_0+V_1$ und $V_0\cap V_1=\{0\}$ gelten!
- 2. Man bestimme die Dimension dim V_0 und die Codimension codim $V_0 = \dim V_1$ des linearen Teilraums V_0 von V!

Lösung. 1.1. Tatsächlich sind V_0 und V_1 lineare Teilräume von V, denn es gilt

$$\int_0^1 (\lambda u + \mu v)(x) \, dx = \lambda \int_0^1 u(x) \, dx + \mu \int_0^1 v(x) \, dx = 0$$

und somit $\lambda u + \mu v \in V_0$ für alle $\lambda, \mu \in \mathbb{R}, u, v \in V_0$ sowie die Konstanz

$$(\lambda u + \mu v)(x) = \lambda u(x) + \mu v(x) = \lambda u(0) + \mu v(0) = (\lambda u + \mu v)(0)$$

für alle $\lambda, \mu \in \mathbb{R}, u, v \in V_1$ und $x \in [0, 1]$, also $\lambda u + \mu v \in V_1$.

1.2. Ferner läßt sich jede stetige Funktion $v:[0,1] \to \mathbb{R}$ durch

$$v_0(x) = v(x) - \int_0^1 v(\xi) d\xi, \quad v_1(x) = \int_0^1 v(\xi) d\xi \quad \text{für } x \in [0, 1]$$

in eine Summe $v = v_0 + v_1$ von stetigen Funktionen $v_0, v_1 : [0, 1] \to \mathbb{R}$ zerlegen, wobei für alle $x \in [0, 1]$ sowohl

$$\int_0^1 v_0(x) \, dx = \int_0^1 \left(v(x) - \int_0^1 v(\xi) \, d\xi \right) dx = \int_0^1 v(x) \, dx - \int_0^1 v(\xi) \, d\xi = 0$$

als auch die Konstanz

$$v_1(x) = \int_0^1 v(\xi) d\xi = v_1(0)$$

gilt. Daraus folgt $v_0 \in V_0$ sowie $v_1 \in V_1$, das heißt, V ist die Summe der beiden Teilräume V_0 und V_1 . Um einzusehen, daß V_0 und V_1 in V komplementär sind, genügt der Nachweis der Beziehung $V_0 \cap V_1 = \{0\}$: Für jedes $v \in V_0 \cap V_1$ gilt die Konstanz

$$v(x) = v(0) = \int_0^1 v(0) d\xi = \int_0^1 v(\xi) d\xi = 0$$
 für alle $x \in [0, 1]$

und somit tatsächlich v = 0.

2. Definiert man die Funktionen $u_{\ell}: [0,1] \to \mathbb{R}$ durch $u_{\ell}(x) = x^{\ell}$ für $x \in [0,1]$ und $\ell \in \mathbb{N} \cup \{0\}$, dann gilt $\int_0^1 u_{\ell}(x) dx = \frac{1}{\ell+1}$ für jedes $\ell \in \mathbb{N} \cup \{0\}$, woraus

$$\lim \left\{ u_{\ell} - \frac{1}{\ell+1} u_0 \mid \ell \in \{1, \dots, n\} \right\} \subset V_0 \quad \text{für alle } n \in \mathbb{N}$$

folgt. Ein Koeffizientenvergleich liefert zudem die lineare Unabhängigkeit der Menge $\{u_{\ell} - \frac{1}{\ell+1}u_0 \mid \ell \in \mathbb{N}\}$ in V. Somit ist V_0 ein unendlichdimensionaler linearer Teilraum von V. Wegen der Darstellung $V_1 = \lim\{u_0\}$ hat der lineare Teilraum V_1 die Dimension dim $V_1 = 1$, woraus sich codim $V_0 = 1$ ergibt.

Aufgabe 4. Seien drei Vektoren $v_1, v_2, u \in \mathbb{R}^3$ wie folgt gegeben:

$$v_1 = \begin{pmatrix} 2 \\ 3 \\ 3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, \quad u = \begin{pmatrix} -6 \\ 5 \\ 1 \end{pmatrix}.$$

- 1. Man zeige, daß die Menge $\{v_1, v_2\}$ in \mathbb{R}^3 linear unabhängig ist und der lineare Teilraum $U_1 = \lim\{v_1, v_2\}$ von \mathbb{R}^3 somit zweidimensional ist!
- 2. Man überzeuge sich davon, daß der Vektor u zum linearen Teilraum U_1 gehört und berechne seine Koordinaten $\lambda_1, \lambda_2 \in \mathbb{R}$ bezüglich der Basis $\{v_1, v_2\}$ von U_1 !
 - 3. Man stelle den linearen Teilraum U_1 von \mathbb{R}^3 in der Form

$$\{x \in \mathbb{R}^3 \mid c_1 x_1 + c_2 x_2 + c_3 x_3 = 0\}$$

für geeignete Koeffizienten $c_1, c_2, c_3 \in \mathbb{R}$ dar!

4. Man zeige, daß der Vektor $v_3 \in \mathbb{R}^3$ mit den Komponenten $c_1, c_2, c_3 \in \mathbb{R}$ einen linearen Teilraum $U_2 = \lim\{v_3\}$ von \mathbb{R}^3 erzeugt, der zu U_1 komplementär ist!

Lösung. 1. Um die Koordinaten des Vektors $u \in \mathbb{R}^3$ in der vermeintlichen Basis $\{v_1, v_2\}$ von U_1 zu berechnen, sucht man nach Lösungen $\lambda_1, \lambda_2 \in \mathbb{R}$ der Vektorgleichung $\lambda_1 v_1 + \lambda_2 v_2 = u$, also des linearen Gleichungssystems

$$2\lambda_1 + 3\lambda_2 = -6$$

$$3\lambda_1 + \lambda_2 = 5$$

$$3\lambda_1 + 2\lambda_2 = 1$$

$$2\lambda_1 + 3\lambda_2 = -6$$

$$3\lambda_1 + \lambda_2 = 5$$

$$\lambda_2 = -4$$

$$\lambda_2 = -4$$

$$(-1)$$

Elementare Umformungen liefern

$$2\lambda_1 = 6 \mid : 2 \xrightarrow{\cdot (-1)}$$

$$3\lambda_1 = 9 \mid : 3 \xleftarrow{+} \xleftarrow{-}$$
 und somit
$$\lambda_2 = -4$$

$$\lambda_2 = -4 \xleftarrow{-}$$

$$0 = 0.$$

Dieselben elementaren Umformungen ergeben, daß das entsprechende lineare homogene Gleichungssystem nur die Lösung $x=0\in\mathbb{R}^3$ besitzt. Damit ist gezeigt, daß die Menge $\{v_1,v_2\}$ linear unabhängig und somit eine Basis des zweidimensionalen linearen Teilraums $U_1=\ln\{v_1,v_2\}$ von \mathbb{R}^3 ist. Damit hat $u\in U_1$ die Koordinaten $\lambda_1=3, \lambda_2=-4$ bezüglich der Basis $\{v_1,v_2\}$ von U_1 .

2. Zur Darstellung des linearen Teilraums $U_1 = \{\lambda_1 v_1 + \lambda_2 v_2 \in \mathbb{R}^3 \mid \lambda_1, \lambda_2 \in \mathbb{R}\}$ von \mathbb{R}^3 in der Form $\{x \in \mathbb{R}^3 \mid c_1 x_1 + c_2 x_2 + c_3 x_3 = 0\}$ sucht man nach Koeffizienten $c_1, c_2, c_3 \in \mathbb{R}$, so daß

$$c_1(2\lambda_1 + 3\lambda_2) + c_2(3\lambda_1 + \lambda_2) + c_3(3\lambda_1 + 2\lambda_2) = 0$$

und damit

$$\lambda_1(2c_1 + 3c_2 + 3c_3) + \lambda_2(3c_1 + c_2 + 2c_3) = 0$$

für alle $\lambda_1, \lambda_2 \in \mathbb{R}$ gilt. Dies ist nur dann möglich, wenn sowohl $2c_1 + 3c_2 + 3c_3 = 0$ als auch $3c_1 + c_2 + 2c_3 = 0$ gilt. Gesucht sind also Lösungen $c_1, c_2, c_3 \in \mathbb{R}$ des linearen homogenen Gleichungssystems

$$2c_1 + 3c_2 + 3c_3 = 0$$
 + $3c_1 + c_2 + 2c_3 = 0$. | · 3 | · (-1)

Äquivalente Umformungen liefern

$$-7c_1$$
 $-3c_3 = 0$ -2 sowie $-7c_1$ $-3c_3 = 0$ $-5c_1 + 3c_2 = 0$.

Alle Lösungen dieses Systems haben die Gestalt $c_1 = 3\lambda$, $c_2 = 5\lambda$, $c_3 = -7\lambda \in \mathbb{R}$, wobei $\lambda \in \mathbb{R}$ frei wählbar ist. Da die gesuchte Darstellung nur bis auf ein gemeinsames Vielfaches der Koeffizienten eindeutig bestimmt ist, kann man $\lambda = 1$ wählen und erhält somit $c_1 = 3$, $c_2 = 5$, $c_3 = -7 \in \mathbb{R}$ sowie $U_1 = \{x \in \mathbb{R}^3 \mid 3x_1 + 5x_2 - 7x_3 = 0\}$.

3. Die beiden Vektoren $v_1, v_2 \in \mathbb{R}^3$ sind nach Schritt 1 linear unabhängig. Um einzusehen, daß auch die drei Vektoren

$$v_1 = \begin{pmatrix} 2 \\ 3 \\ 3 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}, \quad v_3 = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ -7 \end{pmatrix}$$

linear unabhängig sind, genügt es nachzuweisen, daß die beiden linearen Teilräume $U_1 = \lim\{v_1, v_2\}$ und $U_2 = \lim\{v_3\}$ den Durchschnitt $U_1 \cap U_2 = \{0\}$ haben: Wird $u \in U_1 \cap U_2$ beliebig vorgegeben, dann existiert ein $\lambda \in \mathbb{R}$ mit $u = \lambda v_3 \in U_2$. Wegen Schritt 2 gilt somit $u = \lambda v_3 \in U_1 = \{x \in \mathbb{R}^3 \mid 3x_1 + 5x_2 - 7x_3 = 0\}$, das heißt,

$$0 = 3 \cdot 3\lambda + 5 \cdot 5\lambda - 7 \cdot (-7\lambda) = 83\lambda,$$

also u=0, woraus sich $U_1 \cap U_2 = \{0\}$ ergibt. Die Vektoren $\{v_1, v_2, v_3\}$ bilden eine Basis von \mathbb{R}^3 , und die beiden Teilräume U_1 und U_2 von \mathbb{R}^3 sind komplementär. \square

Aufgabe 5. Sei das Intervall $X = [-1, 1] \subset \mathbb{R}$ gegeben. Ist V der lineare Raum aller Funktionen $u: X \to \mathbb{R}$ über dem Körper \mathbb{R} , so betrachtet man

$$V_0 = \{ u \in V \mid u(-x) = u(x) \text{ für alle } x \in X \},$$

 $V_1 = \{ u \in V \mid u(-x) = -u(x) \text{ für alle } x \in X \}.$

- 1. Man weise nach, daß V_0 und V_1 komplementäre lineare Teilräume von V sind, das heißt, daß $V = V_0 + V_1$ und $V_0 \cap V_1 = \{0\}$ gilt!
 - 2. Man zeige, daß die linearen Teilräume V_0 und V_1 unendlichdimensional sind!

Lösung. 1.1. In der Tat sind V_0 und V_1 lineare Teilräume von V, denn es gilt

$$(\lambda u + \mu v)(-x) = \lambda u(-x) + \mu v(-x) = \lambda u(x) + \mu v(x) = (\lambda u + \mu v)(x)$$

für alle $\lambda, \mu \in \mathbb{R}, u, v \in V_0$ und $x \in X$, also $\lambda u + \mu v \in V_0$ sowie desweiteren

$$(\lambda u + \mu v)(-x) = \lambda u(-x) + \mu v(-x) = -\lambda u(x) - \mu v(x) = -(\lambda u + \mu v)(x)$$

für alle $\lambda, \mu \in \mathbb{R}, u, v \in V_1$ und $x \in X$, also $\lambda u + \mu v \in V_1$.

1.2. Ferner läßt sich jede Funktion $v: X \to \mathbb{R}$ durch die Vorschrift

$$v_0(x) = \frac{1}{2} (v(x) + v(-x)), \quad v_1(x) = \frac{1}{2} (v(x) - v(-x))$$
 für $x \in X$

in eine Summe $v=v_0+v_1$ von Funktionen $v_0:X\to\mathbb{R}$ und $v_1:X\to\mathbb{R}$ zerlegen, wobei für alle $x\in X$ sowohl

$$v_0(-x) = \frac{1}{2}(v(-x) + v(x)) = \frac{1}{2}(v(x) + v(-x)) = v_0(x)$$

als auch

$$v_1(-x) = \frac{1}{2}(v(-x) - v(x)) = -\frac{1}{2}(v(x) - v(-x)) = -v_1(x)$$

gilt. Daraus folgt $v_0 \in V_0$ sowie $v_1 \in V_1$, das heißt, V ist die Summe der beiden Teilräume V_0 und V_1 . Um einzusehen, daß V_0 und V_1 in V komplementär sind, genügt der Nachweis der Beziehung $V_0 \cap V_1 = \{0\}$: Für jedes $v \in V_0 \cap V_1$ gilt tatsächlich v(x) = v(-x) = -v(x), also 2v(x) = 0 für alle $x \in X$ und somit v = 0.

2. Definiert man die Funktionen $u_{\ell}: X \to \mathbb{R}$ durch $u_{\ell}(x) = x^{\ell}$ für $x \in X$ und $\ell \in \mathbb{N} \cup \{0\}$, dann gilt $u_{2\ell} \in V_0$ sowie $u_{2\ell+1} \in V_1$ für jedes $\ell \in \mathbb{N} \cup \{0\}$, woraus

$$\sum_{\ell=0}^{n} \ln\{u_{2\ell}\} \subset V_0 \quad \text{und} \quad \sum_{\ell=0}^{n} \ln\{u_{2\ell+1}\} \subset V_1$$

für alle $n \in \mathbb{N}$ folgt. Ein Koeffizientenvergleich liefert zudem die lineare Unabhängigkeit der Menge $\{u_{\ell} \mid \ell \in \mathbb{N} \cup \{0\}\}$ in V. Somit müssen V_0 und V_1 unendlichdimensionale linearen Teilräume von V sein.