Übungsaufgaben 1

Reelle Zahlen

Aufgabe 1. Man beweise, daß die Beziehung

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$

für jedes $n \in \mathbb{N}$ gilt!

Aufgabe 2. Sei \mathbb{K} ein geordneter Körper und $n \in \mathbb{N}$. Seien ferner *beliebige* Elemente $y_1, \ldots, y_n \in \mathbb{K}$ sowie *geordnete* Elemente $x_1, \ldots, x_n \in \mathbb{K}$ derart vorgegeben, daß

6

$$x_k \le x_\ell$$
 für alle $k, \ell \in \{1, ..., n\}$ mit $k \le \ell$

gilt. Ist $f:\{1,\ldots,n\}\to\{1,\ldots,n\}$ irgendeine bijektive Abbildung, die die Ordnung

$$y_{f(k)} \le y_{f(\ell)}$$
 für alle $k, \ell \in \{1, ..., n\}$ mit $k \le \ell$

herstellt, so zeige man, daß dann stets die Ungleichung

$$\sum_{k=1}^{n} x_k y_k \le \sum_{k=1}^{n} x_k y_{f(k)}$$

erfüllt ist!

Aufgabe 3. Man weise nach, daß in einem Körper K stets die Identität

$$\prod_{k=1}^{n} x_k - \prod_{k=1}^{n} y_k = \sum_{\ell=1}^{n} \left(\prod_{k=\ell+1}^{n+1} x_k \right) (x_\ell - y_\ell) \left(\prod_{k=0}^{\ell-1} y_k \right)$$

für alle $n \in \mathbb{N}$, $x_1, \dots, x_n \in \mathbb{K}$ sowie $y_1, \dots, y_n \in \mathbb{K}$ gilt, wenn die Voraussetzung $y_0 = x_{n+1} = 1$ erfüllt ist!