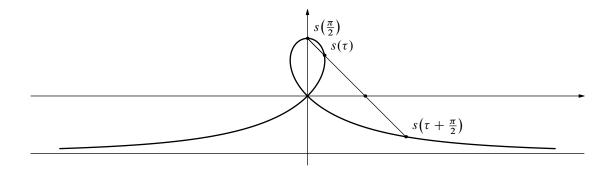
Übungsaufgaben 10

Stammfunktionen reeller Funktionen

Aufgabe 1. Man berechne für alle $k, m \in \mathbb{N}$ die Integrale

$$\int_0^{2\pi} \cos kx \cos mx \, dx, \quad \int_0^{2\pi} \cos kx \sin mx \, dx, \quad \int_0^{2\pi} \sin kx \sin mx \, dx$$
mit Hilfe der Additionstheoreme!

6)



Aufgabe 2. Sei eine Längeneinheit $\delta > 0$ sowie die Funktion $\rho :]0, \pi[\to \mathbb{R}$ durch

$$\rho(t) = -\frac{\delta \cos 2t}{\sin t} \quad \text{für } t \in]0, \pi[\text{ gegeben}.$$

Sei ferner die *Strophoide* durch die Funktion $s:]0, \pi[\to \mathbb{C}$ in Polarkoordinaten

$$s(t) = \rho(t)(\cos t, \sin t)$$
 für $t \in]0, \pi[$

sowie ein beliebiger Punkt $\tau \in \left]0, \frac{\pi}{2}\right[$ vorgegeben.

1. Man zeige, daß die Punkte $s(\tau)$, $s(\frac{\pi}{2})$ und $s(\tau + \frac{\pi}{2})$ auf einer Strecke liegen und

$$\left| s(\tau) - s\left(\frac{\pi}{2}\right) \right| \cdot \left| s\left(\tau + \frac{\pi}{2}\right) - s\left(\frac{\pi}{2}\right) \right| = \delta^2$$
 gilt!

2. Man beweise, daß der Punkt $\frac{1}{2}(s(\tau) + s(\tau + \frac{\pi}{2}))$ auf der reellen Achse liegt und

$$\frac{1}{2}\left|s(\tau) + s\left(\tau + \frac{\pi}{2}\right)\right| = \frac{1}{2}\left|s(\tau) - s\left(\tau + \frac{\pi}{2}\right)\right| \quad \text{gilt!}$$

3. Man berechne den Flächeninhalt jener Teilmenge der Ebene, welche von der Schleife $\{s(t) \in \mathbb{C} \mid t \in \left[\frac{\pi}{4}, \frac{3\pi}{4}\right]\}$ der Strophoide umschlungen wird!

Aufgabe 3. Sei die gebrochene rationale Funktion $g: \mathbb{R} \to \mathbb{R}$ durch

$$g(x) = \frac{2x^2 + 4}{((x-1)^2 + 1)((x+1)^2 + 1)}$$
 für $x \in \mathbb{R}$ gegeben.

Man berechne das Integral $\int_a^b g(x) dx$ für beliebige Intervallgrenzen $a, b \in \mathbb{R}$ durch eine Zerlegung von g in Teilbrüche und deren anschließende Integration!