Übungsaufgaben 12

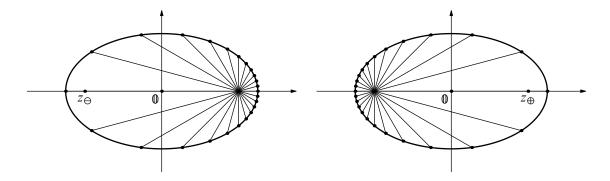
Uneigentliche Integrale

Aufgabe 1. Seien beliebige Parameter ω , $\beta > 0$ und Grenzen $a, b \in \mathbb{R}$ mit a < b gegeben. Man berechne die beiden Integrale

$$\int_{a}^{b} e^{-\omega t} \sin \beta t \, dt \quad \text{und} \quad \int_{a}^{b} e^{-\omega t} \cos \beta t \, dt$$

6)

und führe die Grenzübergänge $a \to 0$ und $b \to \infty$ aus!



Aufgabe 2. Seien reelle Zahlen $a \ge b > 0$ sowie $\delta = \sqrt{a^2 - b^2}$ vorgegeben und die Ellipse $\{s(\theta) \in \mathbb{C} \mid \theta \in [-\pi, \pi]\}$ mit den Halbachsen a und b sowie den beiden Brennpunkten $z_{\oplus} = (\delta, 0) \in \mathbb{C}$ und $z_{\ominus} = (-\delta, 0) \in \mathbb{C}$ mit Hilfe der durch

$$\rho(\theta) = \frac{b^2}{a + \delta \cos \theta} \quad \text{und} \quad s(\theta) = z_{\oplus} + \rho(\theta)(\cos \theta, \sin \theta) \quad \text{für } \theta \in [-\pi, \pi]$$

definierten Funktionen $\rho: [-\pi, \pi] \to]0, \infty[$ und $s: [-\pi, \pi] \to \mathbb{C}$ in Polarkoordinaten bezüglich des Pols z_{\oplus} dargestellt. Man berechne den integralen Mittelwert

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \rho(\theta) d\theta = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{b^2 d\theta}{a + \delta \cos \theta}$$

der Abstandsfunktion ρ über alle Polarwinkel $\theta \in [-\pi, \pi]$, indem man durch eine Variablentransformation zu einem Integral über eine rationale Funktion gelangt! ®

Aufgabe 3. Man berechne das uneigentliche Integral

$$\int_0^\infty \frac{2\xi \ln(\xi) \, d\xi}{(1+\xi^2)^2}$$

durch teilweise Integration, die eine Zurückführung auf ein Integral über eine rationale Funktion ermöglicht, das durch Teilbruchzerlegung berechnet werden kann! ®