Übungsaufgaben 13

Kurven und Wege in der Ebene

Aufgabe 1. Sei ein Parameter $\delta > 0$ gegeben und der uneigentliche Weg $\gamma : \mathbb{R} \to \mathbb{C}$ längs einer *Kettenlinie* mittels

$$\gamma(t) = (t, \delta \cosh \frac{t}{\delta})$$
 für $t \in \mathbb{R}$ definiert.

1. Wird die Längenfunktion $\varphi : \mathbb{R} \to \mathbb{R}$ des uneigentlichen Weges γ durch

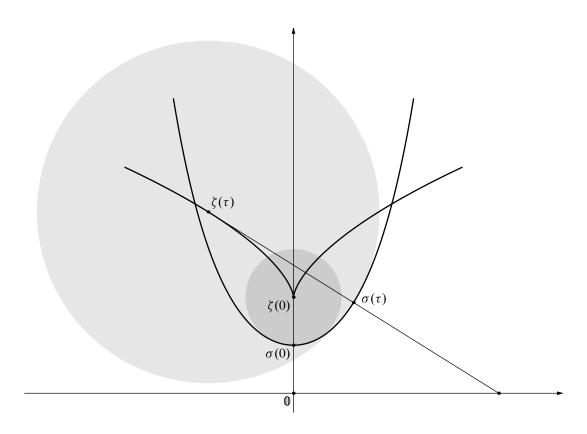
$$\varphi(t) = \int_0^t |D\gamma(s)| ds \in \mathbb{R}$$
 für $t \in \mathbb{R}$ gegeben,

so bestimme man den durch Verkettung $\gamma = \sigma \circ \varphi$ definierten und nach seiner Länge parametrisierten uneigentlichen Weg $\sigma : \mathbb{R} \to \mathbb{C}$ entlang der Kettenlinie!

- 2. Man berechne die Krümmung $\kappa(\tau) \in \mathbb{R}$ des uneigentlichen Weges σ sowie den Mittelpunkt $\zeta(\tau) \in \mathbb{C}$ des Krümmungskreises an σ in $\tau \in \mathbb{R}$!
- 3. Man zeige, daß der uneigentliche Weg $\zeta : \mathbb{R} \to \mathbb{C}$ der Krümmungsmittelpunkte differenzierbar ist und für jedes $\tau \in \mathbb{R}$ stets ein Faktor $\lambda(\tau) \in \mathbb{R}$ mit

$$D\zeta(\tau) = \lambda(\tau)(\zeta(\tau) - \sigma(\tau))$$
 existient!

4. Man überzeuge sich davon, daß die Weglängen für jedes $\tau \in \mathbb{R}$ die Beziehung $|\zeta(\tau) - \sigma(\tau)| = \delta + \left| \int_0^\tau |D\zeta(t)| \, dt \right|$ erfüllen!



Aufgabe 2. Sei ein Radius $\delta > 0$ und die Funktion $\kappa :]0, \infty[\to \mathbb{R}$ durch

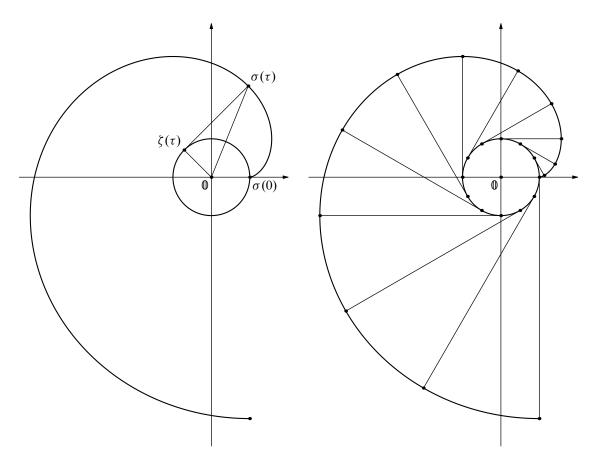
$$\kappa(\tau) = \frac{1}{\sqrt{2\delta\tau}}$$
 für $\tau \in]0, \infty[$ gegeben.

1. Man bestimme den durch

$$\theta(\tau) = \int_0^{\tau} \kappa(t) dt, \quad v(\tau) = (\cos \theta(\tau), \sin \theta(\tau)) \quad \text{und} \quad \sigma(\tau) = (\delta, 0) + \int_0^{\tau} v(t) dt$$

für $\tau \in]0, \infty[$ definierten *uneigentlichen* Weg $\sigma :]0, \infty[\to \mathbb{C},$ welcher nach seiner Länge parametrisiert ist und in jedem Punkt $\tau \in]0, \infty[$ die Krümmung $\kappa(\tau)$ besitzt!

2. Man berechne in jedem Punkt $\tau \in]0, \infty[$ jeweils den Mittelpunkt $\zeta(\tau) \in \mathbb{C}$ des Krümmungskreises an σ und zeige, daß der uneigentliche Weg $\zeta:]0, \infty[\to \mathbb{C}$ dieser Krümmungsmittelpunkte längs einer *Kreislinie* mit dem Radius $\delta > 0$ verläuft!



Aufgabe 3. Welche Länge hat der durch

$$\gamma(t) = \delta t \operatorname{Exp}(2\pi i t) = \delta t (\cos 2\pi t, \sin 2\pi t) \in \mathbb{C}$$
 für $t \in [0, n]$

gegebene Weg $\gamma:[0,n]\to\mathbb{C}$ längs der *Archimedischen Spirale* mit $n\in\mathbb{N}$ Windungen, welche jeweils den Abstand $\delta>0$ voneinander haben?