Vorlesung 9

Differenzierbare Funktionen

Es wird der Begriff der Differenzierbarkeit von Funktionen $f: X \to \mathbb{L}$ eingeführt, welche auf einer Teilmenge $X \subset \mathbb{K}$ des Körpers $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ definiert sind, der im Körper $\mathbb{L} \in \{\mathbb{R}, \mathbb{C}\}$ enthalten ist.

Differenzierbarkeit. 1. Eine Funktion $f: X \to \mathbb{L}$ heißt differenzierbar in $x_0 \in X$, wenn x_0 ein Häufungspunkt von X ist und der Grenzwert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = Df(x_0) \in \mathbb{L}$$

existiert. Dieser Grenzwert $Df(x_0) \in \mathbb{L}$ heißt Ableitung von f in $x_0 \in X$.

- 2. Wenn die Funktion $f: X \to \mathbb{L}$ in $x_0 \in X$ differenzierbar ist, dann ist die Funktion f in x_0 auch stetig.
- 3. Die Funktion $f: X \to \mathbb{L}$ heißt differenzierbar, wenn sie differenzierbar in jedem Punkt $x_0 \in X$ ist. Diejenige Funktion $Df: X \to \mathbb{L}$, die jedem $x_0 \in X$ die Ableitung $Df(x_0) \in \mathbb{L}$ zuordnet, wird Ableitung von f genannt.

Linearisierung. Ist die Funktion $f: X \to \mathbb{L}$ in $x_0 \in X$ differenzierbar, dann erhält man für die durch

$$g(x) = f(x_0) + Df(x_0)(x - x_0)$$
 für $x \in \mathbb{K}$

definierte Linearisierung $g: \mathbb{K} \to \mathbb{L}$ von f in $x_0 \in X$ die Grenzwertbeziehung

$$\lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} = Dg(x_0) = Df(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

der tangentialen Berührung von f und g in $x_0 \in X$.

Rechtsseitige Differenzierbarkeit. Ist $X \subset \mathbb{R}$ eine Teilmenge, dann nennt man eine Funktion $f: X \to \mathbb{L}$ rechtsseitig differenzierbar in $x_0 \in X$, wenn x_0 ein Häufungspunkt von $X \cap [x_0, \infty[$ ist und der rechtsseitige Grenzwert

$$\lim_{x \downarrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = D_{\oplus} f(x_0) \in \mathbb{L}$$

existiert. Dieser Grenzwert heißt rechtsseitige Ableitung von f in $x_0 \in X$.

Linksseitige Differenzierbarkeit. Ist $X \subset \mathbb{R}$ eine Teilmenge, dann heißt eine Funktion $f: X \to \mathbb{L}$ linksseitig differenzierbar in $x_0 \in X$, wenn x_0 ein Häufungspunkt von $X \cap]-\infty, x_0]$ ist und der linksseitige Grenzwert

$$\lim_{x \uparrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = D_{\Theta} f(x_0) \in \mathbb{L}$$

existiert. Dieser Grenzwert wird linksseitige Ableitung von f in $x_0 \in X$ genannt.

Operationen mit differenzierbaren Funktionen. Sind die Funktionen $f: X \to \mathbb{L}$ und $h: X \to \mathbb{L}$ im Punkt $x_0 \in X$ differenzierbar, dann gilt:

1. Die Summe f + h und das Produkt fh sind in x_0 differenzierbar, und es gelten

$$D(f + h)(x_0) = Df(x_0) + Dh(x_0) \in \mathbb{L},$$

$$D(fh)(x_0) = h(x_0)Df(x_0) + f(x_0)Dh(x_0) \in \mathbb{L}.$$

2. Im Falle $h(x_0) \neq \emptyset$ ist der Quotient $\frac{f}{h}$ in x_0 differenzierbar, und es gilt

$$D\left(\frac{f}{h}\right)(x_0) = \frac{h(x_0)Df(x_0) - f(x_0)Dh(x_0)}{h^2(x_0)} \in \mathbb{L}.$$

Differenzierbarkeit rationaler Funktionen. 1. Für jedes $a_0 \in \mathbb{K}$ hat die durch $f_0(x) = a_0$ für $x \in \mathbb{K}$ definierte Funktion $f_0 : \mathbb{K} \to \mathbb{K}$ die Ableitung $Df_0 = 0$.

2. Sei für $m \in \mathbb{N}$ die Funktion $h : \mathbb{K} \to \mathbb{K}$ durch $h(x) = x^m$ für $x \in \mathbb{K}$ definiert. Dann besitzt h in $x_0 \in \mathbb{K}$ wegen der binomischen Formel die Ableitung

$$Dh(x_0) = \lim_{x \to x_0} \frac{x^m - x_0^m}{x - x_0} = \lim_{x \to x_0} \sum_{k=0}^{m-1} x^k x_0^{m-1-k} = \sum_{k=0}^{m-1} x_0^{m-1} = m x_0^{m-1} \in \mathbb{K}.$$

Für die durch $\frac{1}{h(x)} = x^{-m}$ für $x \in \mathbb{K} \setminus \{0\}$ definierte Funktion $\frac{1}{h} : \mathbb{K} \setminus \{0\} \to \mathbb{K}$ gilt

$$D\left(\frac{1}{h}\right)(x_0) = -\frac{Dh(x_0)}{h^2(x_0)} = -mx_0^{-m-1} \in \mathbb{K}.$$

3. Für $m \in \mathbb{N}$ und $a_0, a_1, \dots, a_m \in \mathbb{K}$ hat die durch $f(x) = \sum_{k=0}^m a_k x^k$ für $x \in \mathbb{K}$ definierte ganze rationale Funktion $f : \mathbb{K} \to \mathbb{K}$ in $x_0 \in \mathbb{K}$ die Ableitung

$$Df(x_0) = \sum_{k=1}^{m} k a_k x_0^{k-1} = \sum_{k=0}^{m-1} (k+1) a_{k+1} x_0^k \in \mathbb{K}.$$

Sind ferner $\ell \in \mathbb{N}$, $b_0, b_1, \ldots, b_\ell \in \mathbb{K}$ und eine Menge $X \subset \mathbb{K}$ gegeben, so daß die durch $h(x) = \sum_{k=0}^{\ell} b_k x^k$ für $x \in X$ definierte Funktion $h: X \to \mathbb{K}$ keine Nullstellen in X besitzt, so ist die gebrochene rationale Funktion $\frac{f}{h}: X \to \mathbb{K}$ differenzierbar.

Kettenregel. Seien $X \subset \mathbb{K}$ sowie $f: X \to \mathbb{L}$ eine in $x_0 \in X$ differenzierbare Funktion. Ist $Y \subset \mathbb{L}$ derart, daß $f[X] \subset Y$ gilt sowie $g: Y \to \mathbb{M}$ eine in $f(x_0) \in Y$ differenzierbare Funktion mit Werten in einem \mathbb{L} umfassenden Körper $\mathbb{M} \in \{\mathbb{R}, \mathbb{C}\}$, so ist die Verkettung $g \circ f: X \to \mathbb{M}$ in $x_0 \in X$ differenzierbar, und es gilt

$$D(g \circ f)(x_0) = Dg(f(x_0)) \cdot Df(x_0) \in \mathbb{M}.$$

Ableitung der inversen Funktion. Sei $f: X \to \mathbb{K}$ im Punkt $x_0 \in X$ differenzierbar, wobei $Df(x_0) \neq \emptyset$ gilt. Ist f injektiv und die inverse Funktion $f^{-1}: f[X] \to \mathbb{K}$ in $f(x_0) \in \mathbb{K}$ stetig, dann ist f^{-1} in $f(x_0)$ differenzierbar, und es gilt

$$D(f^{-1})(f(x_0)) = \frac{1}{Df(x_0)} \in \mathbb{K}.$$

Differenzierbarkeit von Potenzfunktionen. 1. Sind $X =]0, \infty[$ sowie $\beta \in \mathbb{N}$ gegeben, so ist die durch $f(x) = x^{\beta}$ für $x \in X$ definierte Potenzfunktion $f: X \to X$ bijektiv und differenzierbar, woraus die strenge Monotonie von f folgt.

Damit ist auch die durch $f^{-1}(\xi) = \xi^p$ für $\xi \in X$ und $p = \frac{1}{\beta} \in \mathbb{Q}$ definierte Inverse $f^{-1}: X \to X$ stetig, bijektiv und streng monoton. Da $Df(x) = \beta x^{\beta-1} \neq 0$ für jedes $x \in X$ gilt, ist f^{-1} differenzierbar und hat für $\xi \in X$ und $x = \xi^p \in X$ die Ableitung

$$D(f^{-1})(\xi) = \frac{1}{Df(x)} = \frac{1}{\beta x^{\beta - 1}} = p\xi^{p(1 - \beta)} = p\xi^{p - 1} \in X.$$

2. Ist ein weiterer Exponent $\alpha \in \mathbb{Z}$ sowie die Funktion $g: X \to X$ durch $g(x) = x^{\alpha}$ für $x \in X$ gegeben, dann ist die durch $h(\xi) = (g \circ f^{-1})(\xi) = \xi^{\alpha p} = \xi^q$ für $\xi \in X$ definierte Potenzfunktion $h: X \to X$ mit dem rationalen Exponenten $q = \alpha p \in \mathbb{Q}$ differenzierbar, und die Kettenregel liefert die Ableitung

$$Dh(\xi) = Dg(f^{-1}(\xi)) \cdot D(f^{-1})(\xi) = \alpha \xi^{p(\alpha-1)} \cdot p \xi^{p-1} = q \xi^{q-1} \in X.$$

Mittelwertsatz. Seien $x, y \in \mathbb{K}$ zwei verschiedene Punkte und $X \subset \mathbb{K}$ eine Teilmenge, welche die abgeschlossene Strecke $S = \{(1 - \theta)x + \theta y \in \mathbb{K} \mid \theta \in [0, 1]\}$ enthält. Ist $f: X \to \mathbb{L}$ eine differenzierbare Funktion, dann gilt die Abschätzung

$$|f(x) - f(y)| \le |x - y| \sup_{z \in S} |Df(z)|.$$

Vertauschbarkeit von Grenzprozessen. Sei eine offene Menge $X \subset \mathbb{K}$ und eine Folge (f_n) differenzierbarer Funktionen $f_n: X \to \mathbb{L}$ gegeben, so daß die Folge (f_n) punktweise gegen eine Grenzfunktion $f: X \to \mathbb{L}$ und die Folge (Df_n) der Ableitungen $Df_n: X \to \mathbb{L}$ punktweise gegen eine Grenzfunktion $g: X \to \mathbb{L}$ konvergiert.

Gibt es zu jedem $x_0 \in X$ ein $r_0 > 0$, so daß $B(x_0) = \{x \in \mathbb{K} \mid |x - x_0| < r_0\}$ in X liegt und (Df_n) in $B(x_0)$ gleichmäßig gegen $g: X \to \mathbb{L}$ konvergiert, dann konvergiert auch (f_n) für jedes $x_0 \in X$ in $B(x_0)$ gleichmäßig gegen $f: X \to \mathbb{L}$. In diesem Falle ist die Grenzfunktion $f: X \to \mathbb{L}$ differenzierbar und besitzt die Ableitung Df = g.

Differenzierbarkeit der Grenzfunktion von Potenzreihen. 1. Ist (s_n) eine Potenzreihe um den Mittelpunkt $x_0 \in \mathbb{K}$ mit den Koeffizienten (a_k) in \mathbb{K} und dem Konvergenzradius R > 0, so konvergiert (s_n) in $X = \{x \in \mathbb{K} \mid |x - x_0| < R\}$ gegen eine differenzierbare Grenzfunktion $s: X \to \mathbb{K}$.

- 2. Die summandenweise differenzierte Potenzreihe (Ds_n) um $x_0 \in \mathbb{K}$ mit den Koeffizienten $((k+1)a_{k+1})$ in \mathbb{K} hat ebenfalls den Konvergenzradius R > 0 und konvergiert in X gegen die Ableitung $Ds : X \to \mathbb{K}$ der Grenzfunktion $s : X \to \mathbb{K}$.
- 3. Die Potenzreihe (f_n) um $x_0 \in \mathbb{K}$ mit den Koeffizienten (b_k) in \mathbb{K} , welche durch $kb_k = a_{k-1}$ für $k \in \mathbb{N}$ sowie eine beliebige Konstante $b_0 \in \mathbb{K}$ vorgegeben sind, hat ebenso den Konvergenzradius R > 0 und konvergiert in X gegen eine differenzierbare Grenzfunktion $f: X \to \mathbb{K}$ mit der Ableitung Df = s.