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Abstract

We review recent probabilistic results on covariant Schrödinger
operators on vector bundles over (possibly locally infinite) weighted
graphs, and explain applications like semiclassical limits. We also clar-
ify the relationship between these results and their formal analogues
on smooth (possibly noncompact) Riemannian manifolds.

1 A review of covariant Schrödinger opera-

tors on smooth Riemannian manifolds

Let us start by taking a look at covariant Schrödinger-type operators on
Riemannian manifolds: Assume that E →M is a smooth finite dimensional
Hermitian vector bundle over a possibly noncompact smooth Riemannian
manifold M without boundary, with a Hermitian covariant derivative ∇ on
E, which means that ∇ is a complex linear map

∇ : ΓC∞(M,E) −→ Ω1
C∞(M,E), such that for all Ψ1,Ψ2 ∈ ΓC∞(M,E) one has:

d(Ψ1,Ψ2) = (∇Ψ1,Ψ2) + (Ψ1,∇Ψ2). (1)

Then the symmetric nonnegative sesquilinear form

Q̃∇,0(Ψ1,Ψ2) =

∫
M

(
∇Ψ1(x),∇Ψ2(x)

)
x
vol(dx), Ψ1,Ψ2 ∈ ΓC∞c (M,E), (2)
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is closable in the Hilbert space ΓL2(M,E), as this form corresponds to a

non-negative symmetric operator. If Q∇,0 := Q̃∇,0, and if V : M → End(E)
is a potential (= a measurable self-adjoint section in End(E) → M) with
V = V + − V − for some potentials V ± ≥ 0 such that |V +| ∈ L1

loc(M) and
|V −| ∈ K (M) (the Kato class on M), then the form Q∇,V := Q∇,0 + QV

(where QV is the maximally defined form given by V ), is symmetric, densely
defined, closed, and semibounded (from below), and we can consider the
corresponding self-adjoint operator H∇,V . In this full generality, these op-
erators appear as the nonrelativistic Hamilton operators corresponding to
atoms in a magnetic field, possibly with the electron’s spin taken into ac-
count [4]. A fundamental result in this context is the Feynman-Kac formula:
Namely, the integral kernel of the underlying covariant Schrödinger semi-
group (e−tH∇,V )t≥0 is given [3] by the well-defined path integral formula

e−tH∇,V (x, y) = p(t, x, y)Ex
[
A ∇,V
t //∇,−1

t

∣∣Xt = y
]
∈ Hom(Ey, Ex), (3)

where the process X is a (scaled) Brownian motion on M under Px with
transition density p(t, x, y), where

//∇t ∈ Hom(EX0 , EXt)

is the (unitary) stochastic ∇-parallel transport along the Brownian paths,
and

A ∇,V
t ∈ End(EX0) is the path ordered exponential

A ∇,V
t = 1X0 +

∞∑
n=1

(−1)n
∫
tσn

//∇,−1
s1

V (Xs1)//∇s1 · · · //
∇,−1
sn V (Xsn)//∇sn ds1 · · · dsn,

with tσn ⊂ Rn the t-scaled standard n-simplex. Along with many other
applications, the Feynman-Kac formula can be used to prove the following
quantum mechanical result: One has a semiclassical behaviour of the quan-
tum partition function, in the sense that for all β > 0 one has [2, 10]

tr
(
e−β~H∇,V/~

)
(2π)− dim(M)~− dim(M)/2

∫
M

∫
T∗xM

trEx (e−β(|v|2+V (x))) dv vol(dx)

~→0+−−−→ 1, (4)

which is in fact equivalent to

(2π~)dim(M)/2tr
(
e−β~H∇,V/~

) ~→0+−−−→
∫
M

trEx
(
e−βV (x)

)
vol(dx). (5)
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In (4), dv stands for the Lebesgue measure on T∗xM , and it should be noted
that in general this result requires some additional global Golden-Thompson
control[10] on V , like∫

M

p(β~, x, x)e−βmin{eigenvalues of V (x)}vol(dx) <∞.

The aim of this note is to translate all of the above data into the setting of
infinite graphs, and to present recently obtained weighted graph-analogues
of these results.

2 Covariant Schrödinger operators on infinite

graphs: Recent results

Let (X, b,m) be an arbitrary weighted graph, that is, X is a countable set, b
is a symmetric function

b : X×X −→ [0,∞) which satisfies b(x, x) = 0,
∑
y∈X

b(x, y) <∞ for all x ∈ X,

and m : X → (0,∞) is an arbitrary function. We shall interpret b as an
edge weight function and write x ∼b y, if b(x, y) > 0, and m is interpreted
as a vertex weight function. In this setting, a complex vector bundle F → X
(over the countable set X) with rank(F ) = ν ∈ N is given by a family
F =

⊔
x∈X Fx of ν-dimensional complex linear spaces, with the corresponding

space of sections

Γ(X,F ) =
{
f
∣∣ f : X → F, f(x) ∈ Fx

}
,

which is a C(X)-module, with C(X) the complex algebra of functions on X.
If additionally each fiber Fx comes equipped with a complex scalar product
(•, •)x = (•, •)Fx , then F → X is referred to as a Hermitian vector bundle,
and the norm and operator norm corresponding to (•, •)x will be denoted
with | • |x.

Definition 2.1. Let F → X be a complex vector bundle with rank ν ∈ N.
(i) An assignment Φ which assigns to any x ∼b y an isomorphism of complex
vector spaces Φx,y : Fx → Fy is called a b-connection on F → X, if one has
Φy,x = Φ−1

x,y for all x ∼b y.
(ii) If F → X is Hermitian, then a b-connection Φ on F → X is called
unitary, if Φ∗x,y = Φ−1

x,y for all x ∼b y.
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We fix a Hermitian vector bundle F → X of rank ν ∈ N, with a unitary
b-connection Φ defined on it. These data determine the sesquilinear form

Q̃Φ,0(Ψ1,Ψ2) =
1

2

∑
x∼by

b(x, y)
(
Ψ1(x)− Φy,xΨ1(y),Ψ2(x)− Φy,xΨ2(y)

)
x

in the Hilbert space Γ`2m(X,F ) given by the sections Ψ ∈ Γ(X,F ) such that

‖Ψ‖2
m :=

∑
x∈X

|Ψ(x)|2xm(x) <∞,

with domain of Q̃Φ,0 consisting of finitely supported sections Γc(X,F ). Clearly,
Q̃Φ,0 is densely defined, symmetric, and nonnegative, and in fact it is closable
(although, in contrast to the Riemannian setting, Q̃Φ,0 need not come from a
symmetric operator). Furthermore, we point out that in general Q̃Φ,0 is not
bounded. However, with

C(b,m) := sup
x∈X

1

m(x)

∑
y∈X

b(x, y)

one always has
Q̃Φ,0(f, f) ≤ 2C(b,m)‖f‖2

m,

and one often has C(b,m) < ∞ in applications (cf. [5] and the references
therein for more details on these facts). Let us explain the analogy of Q̃Φ,0

to the Riemannian case (2): Firstly, we have the edge vector bundle

F b :=
⊔

(x,y)∈Xb

F b
(x,y) :=

⊔
(x,y)∈Xb

Fx −→ Xb := {b > 0} ⊂ X ×X,

which with Ω1(X,F ; b) := Γ(Xb, F b) carries the canonical Hermitian struc-
ture(

α1(x, y), α2(x, y)
)

(x,y)
:=
(
α1(x, y), α2(x, y)

)F
x
, α1, α2 ∈ Ω1(X,F ; b).

Then Φ induces the complex linear map

∇Φ : Γ(X,F ) −→ Ω1(X,F ; b), ∇ΦΨ(x, y) := Φy,xΨ(y)−Ψ(x),

which satisfies the Leibnitz rule

∇Φ(fΨ)(x, y) = df(x, y)Ψ(x) + f(y)∇ΦΨ(x, y), f ∈ C(X),

where d : C(X) −→ Ω1(X; b) := C(Xb), df(x, y) := f(y)− f(x)
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is the covariant derivative corresponding to the identity connection on the
trivial complex line bundle X × C→ X over X. Furthermore, the unitarity
of Φ implies that ∇Φ is Hermitian in the sense that for all Ψ1,Ψ2 ∈ Γ(X,F )
one has

d
(
Ψ1,Ψ2

)
(x, y) =

(
∇ΦΨ1(x, y),Ψ2(x)

)
x
−
(
Ψ1(y),∇Φ−1Ψ2(x, y)

)
y
,

which clearly is a discrete analogue to (1). Finally, for Ψ1,Ψ2 ∈ Γc(X,F )
one has

Q̃Φ,0(Ψ1,Ψ2) =
1

2

∑
x∼by

b(x, y)
(
∇ΦΨ1(x, y),∇ΦΨ2(x, y)

)
(x,y)

,

which is of type (2) in the situation of “unweighted edges” b(x, y) ∈ {0, 1}.
Let QΦ,0 := Q̃Φ,0, and note that the canonical scalar regular Dirichlet form
Q on `2

m(X) and its associated operator H arise as special cases of the above
construction, upon taking the identity connection on X × C → X. Given a
potential V on F → X, that is, V ∈ Γ(X,End(F )) is pointwise self-adjoint,
we can define a symmetric sesqui-linear form QV in Γ`2m(X,F ) by

QV (Ψ1,Ψ2) =
∑
x∈X

(
V (x)Ψ1(x),Ψ2(x)

)
x
m(x), D(QV ) = Γ`2m∩`2|V |·m(X,F ).

Let K (Q) ⊃ `∞(X) be the Kato class corresponding to Q, that is, w : X →
C is in K (Q), if and only if

lim
t→0+

sup
x∈X

∫ t

0

∫
X

e−sH(x, y)|w(y)|m(y)ds = 0.

Definition 2.2 (and Proposition). V is called Kato decomposable, if it admits
a decomposition V = V + − V − into potentials V ± ≥ 0 such that |V −| ∈
K (Q). In this situation, for any ~ > 0 the form QΦ,V/~ := QΦ,0 + QV/~ is
densely defined, symmetric, closed and semi-bounded, and the self-adjoint
operator corresponding to QΦ,V/~ will be denoted with HΦ,V/~.

We fix a Kato decomposable potential V on F → X, where we refer the reader
to [9] for essential self-adjointness properties of HΦ,V . Let us now prepare the
ingredients for the Feynman-Kac formula: As Q is a regular Dirichlet form
on a nice space, we can associate a reversible strong right-Markoff process to
it. A convenient version

X : [0, τ)× Ω −→ X, with lifetime τ : Ω −→ [0,∞],
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of this process has been constructed in [6] and the references therein, on a
filtered probability space (Ω,F ,F∗,P). Let τn : Ω→ [0,∞], n ∈ N0, denote
the n-th jump time of X, and let N(t) : Ω → N0 ∪ {∞} be its number of
jumps until t ≥ 0. Many path properties of this process have been derived
in [6, 7]. We shall need in the sequel that τ = supn τn and

P
(
b(Xτn ,Xτn+1) > 0 for all n ∈ N0

)
= 1, {N(t) <∞} = {t < τ} for all t ≥ 0.

(6)

In particular, the Φ-parallel transport along the paths of X is well-defined by

//Φ : [0, τ)× Ω −→ F � F ∗ =
⊔

(x,y)∈X×X

Hom(Fy, Fx)

//Φ
t :=


1X0 , if N(t) = 0

ΦXτN(t)−1
,XτN(t)

· · ·ΦXτ0 ,Xτ1 else

∈ Hom(FX0 , FXt),

which gives a pathwise unitary process, and we can also define the process

A Φ,V : [0, τ)× Ω −→ End(F )

as the path ordered exponential

A Φ,V
t − 1X0

=
∞∑
n=1

(−1)n
∫
tσn

//Φ,−1
s1

V (Xs1)//Φ
s1
· · · //Φ,−1

sn V (Xsn)//Φ
sn ds1 · · · dsn ∈ End(FX0).

Generalizing the scalar magnetic situation from[6], the following Feynman-
Kac formula, which is our discrete analogue of (3), has been proven in [7]:

Theorem 2.3. With Px := P(•|X0 = x), the integral kernel

[0,∞)×X ×X 3 (t, x, y) 7−→ e−tHΦ,V (x, y) ∈ Hom(Fy, Fx) ⊂ F � F ∗,

is given by

e−tHΦ,V (x, y) = m(y)−1Px(Xt = y)Ex
[
A Φ,V
t //Φ,−1

t

∣∣Xt = y
]
, (7)

in other words, one has the representation

e−tHΦ,V Ψ(x) =
∑
y∈X

e−tHΦ,V (x, y)Ψ(y)m(y), t ≥ 0, Ψ ∈ Γ`2m(X,F ), x ∈ X.
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And the following semiclassical limit is our discrete variant of (5):

Theorem 2.4. Assume that there is a scalar Kato decomposable function
w : X → R with V ≥ w. Then for all β > 0 with

∑
x∈X e−βw(x) < ∞, one

has

tr(e−β~HΦ,V/~) ≤
∑
x∈X

trx(e
−βV (x)) <∞, (8)

tr(e−~βHΦ,V/~)
~→0+−−−→

∑
x∈X

trx(e
−βV (x)). (9)

Let us remark here that (X, b,m) is completely arbitrary in these results (in
particular, (X, b) may be locally infinite, and we allow inf m = 0). Further-
more, if (X, b) does not support a symmetry which is respected by m and P•
appropriately, then the Golden-Thompson bound (8) does not follow directly
from (7), but rather from a combination of (7) for V = 0 with the abstract
operator variant of the Golden-Thompson bound[6, 5] (and a combination
of geometric and functional analytic approximation arguments). The proof
of (9) uses semigroup domination and the corresponding result in the scalar
“nonmagnetic” situation, which itself makes full use of the path properties
of X. Finally, we would like to point out that by combining the above results
with the fact that Brownian motion on (noncompact) Riemannian manifolds
can be approximated in law by time continuous geodesic random walks (cf.
[8], where even the situation of time-dependent Riemannian metrics is con-
sidered), it should be possible to approximate spectral data of the covariant
Schrödinger operators from Section 1 by the discrete ones of this Section.
This should be possible under very general assumptions on the underlying
data. We refer the reader to [1, 11] for special cases in the flat Euclidean
space.
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[2] C. Bär and F. Pfäffle, Asymptotic heat kernel expansion in the semi-
classical limit, Comm. Math. Phys. 294, 731–744 (2010).

7
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[5] B. Güneysu, Semiclassical limits of quantum partition functions on in-
finite graphs, arXiv:1402.2452.
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