Exercises in Global Analysis II

University of Bonn, Winter Semester 2018-2019

Professor: Batu Güneysu

Assistant: Koen van den Dungen

Rheinische Friedrich-Wilhelms-Universität Bonn

Sheet 5: due on Friday 16 November at 12:00 in Room 1.032.

1 Partitions of unity [5 points]

Given any open cover $(U_{\alpha})_{\alpha \in A}$ of a smooth (paracompact) manifold X, a partition of unity (subordinate to $(U_{\alpha})_{\alpha \in A}$) is a collection of smooth maps $(\phi_{\alpha})_{\alpha \in A} \subset C^{\infty}(X, \mathbb{R})$ such that

- for each $\alpha \in A$ one has $0 \le \phi_{\alpha} \le 1$ and supp $(\phi_{\alpha}) \subset U_{\alpha}$;
- $(\operatorname{supp}(\phi_{\alpha}))_{\alpha \in A}$ is a locally finite collection of sets;
- for each $x \in X$ one has $\sum_{\alpha \in A} \phi_{\alpha}(x) = 1$.

Claim: For any open cover $(U_{\alpha})_{{\alpha}\in A}$ of X, there exists a partition of unity subordinate to it.

- (a) Prove the claim for a *finite* open cover.
- (b) Explain (without giving the full proof) the additional difficulty in extending the proof from finite to infinite open covers.

2 The sheaf of distributions [5 points]

Consider an open subset $\Omega \subset \mathbb{R}^m$. For any open subsets $V \subset U \subset \Omega$ we consider the restriction map $\mathscr{D}'(U,\mathbb{C}^l) \to \mathscr{D}'(V,\mathbb{C}^l)$ given by $T \mapsto T|_V := T|_{\mathscr{D}(V,\mathbb{C}^l)}$. Show that the assignment $U \mapsto \mathscr{D}'(U,\mathbb{C}^l)$ gives $\mathscr{D}'(\Omega,\mathbb{C}^l)$ the structure of a sheaf. Hint: you may use the claim of Exercise 1.

3 Compactly supported distributions [5 points]

Consider a distribution $T \in \mathcal{D}'(\Omega, \mathbb{C}^l)$. Prove that T lies in the subspace $\mathcal{E}'(\Omega, \mathbb{C}^l)$ if and only if supp(T) is compact.

4 An application of the Fourier transform [5 points]

- (a) Calculate the Fourier transform of the L^1 -function $f(x) := e^{-|x|}$.
- (b) Use part (a) to prove the identity

$$\int_0^\infty \frac{1}{1+t^2} dt = \frac{\pi}{2}.$$

(c) Use part (a) to prove for any x > 0 that

$$\int_0^\infty \frac{t\sin(tx)}{1+t^2}dt = \frac{\pi}{2}e^{-x}.$$