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Extended Mathematical Programs

Optimization models improve understanding of underlying systems
and facilitate operational/strategic improvements under resource
constraints

Problem format is old/traditional

min
x

f (x) s.t. g(x) ≤ 0, h(x) = 0

Extended Mathematical Programs allow annotations of constraint
functions to augment this format.

Give three examples of this: complementarity problems, multi-agent
competitive models and bilevel programming
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The PIES Model (Hogan)

minx cT x cost
s.t. Ax ≥ d(p) balance

Bx = b technical constr
x ≥ 0

Issue is that p is the multiplier on the “balance” constraint of LP

Extended Mathematical Programming (EMP) facilitates annotations
of models to describe additional structure

Can solve the problem by writing down the KKT conditions of this
LP, forming an LCP and exposing p to the model

EMP does this automatically from the annotations
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Reformulation details

0 ≤ Ax − d(p) ⊥ µ ≥ 0
0 = Bx − b ⊥ λ
0 ≤ −ATµ− BTλ+ c ⊥ x ≥ 0

empinfo: dualvar p balance

replaces µ ≡ p

LCP/MCP is then solvable using PATH

z =

pλ
x

 , F (z) =

 A
B

−AT −BT

pλ
x

+

−d(p)
−b
c
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Complementarity Problems in Economics (MCP)

p represents prices, x represents activity levels

System model: given prices, (agent) i determines activities xi

Gi (xi , x−i , p) = 0

x−i are the decisions of other agents.

Walras Law: market clearing

0 ≤ S(x , p)− D(x , p) ⊥ p ≥ 0

Key difference: optimization assumes you control the complete system

Complementarity determines what activities run, and who produces
what
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Use of complementarity

Pricing electricity markets and options

Video games: model contact problems
I Friction only occurs if bodies are in contact

Structure design
I how springy is concrete
I optimal sailboat rig design

Computer/traffic networks (Wardrop)
I The price of anarchy measures difference between “system optimal”

(MPCC) and “individual optimization” (MCP)

Complementarity facilitates modeling of competition, nonsmoothness
and “switching”

Large scale models involving complementarity now solvable

Do you (or should you) care?
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Walras meets Wardrop
Increasing 
Labor
Demand

Increasing

Housing

What is the effect on housing prices of increasing 
capacity on the red arcs?
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Features

We buy a house to “optimize” some measure
I Price driven by market
I We compete against each other

Driver’s choose routes to “optimize” travel time
I Choices affect congestion
I Your choice affects me!

Production processes are “optimized”

But the road designer does not control any of these!

Other models allow for parking policy design for street and ramp
options
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Simplified AGE model

(P) : min
y≥0

cT y

s.t. Ay ≥ d (⊥ p ≥ 0)

(C ) : max
d≥0

u(d)

s.t. pTd ≤ I

In equilibrium, the optimal demand d from (C) will be the demand in
(P), and the sales price p in (C) will be the marginal price on
production from (P)

Complementarity conditions of (P) and (C) have both primal and
dual variables

Optimization models linked by variables and multipliers

Equilibrium problem solvable as a complementarity problem

Can add “other features” such as taxation, transportation, tolls.
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Model building with EMP

Take one system of (nonlinear) equations and annotate them to:
I form a simple nonlinear program (no annotations)
I form a complementarity problem from an embedded optimization

problem (nlp with side constraints outside of optimizers control)
I form an equilibrium model consisting of optimality conditions of several

nlp’s along with equilibrium constraints (MOPEC)
I form a bilevel program (an optimization problem with optimization

problems as constraints)
I Can assign multipliers (prices) from one sub-model as variables in

another model
I Can reformulate nonsmooth models using duality
I Can introduce random variables into a model

The annotations essentially detail who controls which equations and
variables
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Spatial Price Equilibrium
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n ∈ {1, 2, 3, 4, 5, 6}
L ∈ {1, 2, 3}

Supply quantity: SL
Production cost: Ψ(SL) = ..

Demand: DL

Unit demand price: θ(DL) = ..
Transport: Tij

Unit transport cost: cij(Tij) = ..

One large system of equations and inequalities to describe this (GAMS).
(Assume for ease that Si = Di = 0 for i ∈ n \ L)
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Nonlinear Program Model (Monopolist)

One producer controlling all regions

Full knowledge of demand system

Full knowledge of transportation system

max
(D,S ,T )∈F

∑
l∈L

θl(Dl)Dl −
∑
l∈L

Ψl(Sl)−
∑
i ,j

cij(Tij)Tij

s.t. Sl +
∑
i

Til = Dl +
∑
j

Tlj , ∀l ∈ n

EMP = NLP
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2 agents: NLP + VI Model (Monopolist)

One producer controlling all regions

Full knowledge of demand system

Price-taker in transportation system

pij

max
(D,S ,T )∈F

∑
l∈L

θl(Dl)Dl −
∑
l∈L

Ψl(Sl)−
∑
i ,j

���
�XXXXcij(Tij)Tij (1)

s.t. Sl +
∑
i

Til = Dl +
∑
j

Tlj , ∀l ∈ n

pij = cij(Tij) (2)

empinfo: vi tcDef tc

EMP = MOPEC =⇒ MCP

Ferris (Univ. Wisconsin) MOPEC ICCP 14 13 / 68



2 agents: NLP + VI Model (Monopolist)

One producer controlling all regions

Full knowledge of demand system

Price-taker in transportation system

pij

max
(D,S ,T )∈F

∑
l∈L

θl(Dl)Dl −
∑
l∈L

Ψl(Sl)−
∑
i ,j

���
�XXXXcij(Tij)Tij (1)

s.t. Sl +
∑
i

Til = Dl +
∑
j

Tlj , ∀l ∈ n

pij = cij(Tij) (2)

empinfo: vi tcDef tc

EMP = MOPEC =⇒ MCP

Ferris (Univ. Wisconsin) MOPEC ICCP 14 13 / 68



EMP(iii): MOPEC
Model has the format:

Agent o: min
x

f (x , y)

s.t. g(x , y) ≤ 0 (⊥ λ ≥ 0)

Agent v: H(x , y , λ) = 0 (⊥ y free)

Difficult to implement correctly (multiple optimization models)
Can do automatically - simply annotate equations
empinfo: equilibrium
min f x defg
vi H y dualvar λ defg
EMP tool automatically creates an MCP

∇x f (x , y) + λT∇g(x , y) = 0

0 ≤ −g(x , y) ⊥ λ ≥ 0

H(x , y , λ) = 0
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World Bank Project (Uruguay Round)

24 regions, 22 commodities
I Nonlinear complementarity

problem
I Size: 2200 x 2200

Short term gains $53 billion p.a.
I Much smaller than previous

literature

Long term gains $188 billion p.a.
I Number of less developed

countries loose in short term

Unpopular conclusions - forced
concessions by World Bank

Region/commodity structure not
apparent to solver

Application: Uruguay Round
• World Bank Project with 

Harrison and Rutherford
• 24 regions, 22 commodities

– 2200 x 2200 (nonlinear)
• Short term gains $53 billion p.a.

– Much smaller than previous 
literature

• Long term gains $188 billion p.a.
– Number of less developed 

countries loose in short term
• Unpopular conclusions – forced 

concessions by World Bank

Ferris (Univ. Wisconsin) MOPEC ICCP 14 15 / 68



Classic SPE Model (NLP + VI agents)

One producer controlling all regions

Price-taker in demand system

Price-taker in transportation system

πl pij

max
(D,S ,T )∈F

∑
l∈L
���

�XXXXθl(Dl)Dl −
∑
l∈L

Ψl(Sl)−
∑
i ,j

��
��XXXXcij(Tij)Tij (1)

s.t. Sl +
∑
i

Til = Dl +
∑
j

Tlj , ∀l ∈ n

pij = cij(Tij) (2)

πl = θl(Dl) (3)

empinfo: vi tcDef tc
vi pricedef price

EMP = MOPEC =⇒ MCP
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Cournot-Nash equilibrium (multiple agents)

Assumes that each agent (producer):

Treats other agent decisions as fixed

Is a price-taker in transport and demand

EMP info file
equilibrium
max obj(’one’) vars(’one’) eqns(’one’)
max obj(’two’) vars(’two’) eqns(’two’)
max obj(’three’) vars(’three’) eqns(’three’)
vi tcDef tc
vi pricedef price

EMP = MOPEC =⇒ MCP
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Nash Equilibria

Nash Games: x∗ is a Nash Equilibrium if

x∗i ∈ arg min
xi∈Xi

`i (xi , x
∗
−i , q),∀i ∈ I

x−i are the decisions of other players.

Quantities q given exogenously, or via complementarity:

0 ≤ H(x , q) ⊥ q ≥ 0

empinfo: equilibrium
min loss(i) x(i) cons(i)
vi H q

Applications: Discrete-Time Finite-State Stochastic Games.
Specifically, the Ericson & Pakes (1995) model of dynamic
competition in an oligopolistic industry.
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How to combine: Nash Equilibria

Non-cooperative game: collection of players a ∈ A whose individual
objectives depend not only on the selection of their own strategy
xa ∈ Ca = domfa(·, x−a) but also on the strategies selected by the
other players x−a = {xa : o ∈ A \ {a}}.
Nash Equilibrium Point:

x̄A = (x̄a, a ∈ A) : ∀a ∈ A : x̄a ∈ argminxa∈Ca
fa(xa, x̄−a).

1 for all x ∈ A, fa(·, x−a) is convex

2 C =
∏

a∈A Ca and for all a ∈ A, Ca is closed convex.
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VI reformulation

Define
G : RN 7→ RN by Ga(xA) = ∂afa(xa, x−a), a ∈ A

where ∂a denotes the subgradient with respect to xa. Generally, the
mapping G is set-valued.

Theorem

Suppose the objectives satisfy (1) and (2), then every solution of the
variational inequality

xA ∈ C such that − G (xA) ∈ NC (xA)

is a Nash equilibrium point for the game.
Moreover, if C is compact and G is continuous, then the variational
inequality has at least one solution that is then also a Nash equilibrium
point.
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Key point: models generated correctly solve quickly
Here S is mesh spacing parameter

S Var rows non-zero dense(%) Steps RT (m:s)

20 2400 2568 31536 0.48 5 0 : 03
50 15000 15408 195816 0.08 5 0 : 19
100 60000 60808 781616 0.02 5 1 : 16
200 240000 241608 3123216 0.01 5 5 : 12

Convergence for S = 200 (with new basis extensions in PATH)

Iteration Residual

0 1.56(+4)
1 1.06(+1)
2 1.34
3 2.04(−2)
4 1.74(−5)
5 2.97(−11)
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General Equilibrium models

(C ) : max
xk∈Xk

Uk(xk) s.t. pT xk ≤ ik(y , p)

(I ) :ik(y , p) = pTωk +
∑
j

αkjp
Tgj(yj)

(P) : max
yj∈Yj

pTgj(yj)

(M) : max
p≥0

pT

∑
k

xk −
∑
k

ωk −
∑
j

gj(yj)

 s.t.
∑
l

pl = 1

KKT(C) + (I) + KKT(P) + KKT(M) form an MCP

Loose structure for solution

EMP facilitates modeling as (C) + (I) + (P) + (M) and either forms
MCP automatically, or allows different solution method that exploits
underlying structure
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Negishi Weights

Can reformulate (GE) as an embedded problem (Ermoliev et al):

max
x∈X ,y∈Y

∑
k

tk
βk

logUk(xk)

s.t.
∑
k

xk ≤
∑
k

ωk +
∑
j

gj(yj)

tk = ik(y , p) where p is multiplier on NLP constraint

KKT(NLP) + tk definitional constraint form an alternative MCP

this MCP often solves faster than the original MCP from Nash game
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Water rights pricing (Britz/F./Kuhn)
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The model AO (cooperative firms)

max
qi ,xi ,woi≥0

∑
i

qi · p −
∑

f ∈{int,lab}

xi ,f · wf


s.t. qi ≤

∏
f

(xi ,f + ei ,f )εi,f

xi ,land ≤ ei ,land
woi−1 = xi ,wat + woi

0 ≤ p ⊥
∑
i

qi − d(p) ≥ 0

0 ≤ wlab ⊥
∑
i

ei ,lab −
∑
i

xi ,lab ≥ 0
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The model AO (this is not an MPEC)
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(M)OPEC

max
x
θ(x , p) s.t. g(x , p) ≤ 0

0 ≤ p ⊥ h(x , p) ≥ 0

equilibrium

max theta x g

vi h p

x ⊥ −∇xθ(x , p) + λT∇xg(x , p)

0 ≤ λ ⊥ −g(x , p) ≥ 0

0 ≤ p ⊥ h(x , p) ≥ 0

Solved concurrently (in a Nash manner)

Requires global solutions of agents problems (or theory to guarantee
KKT are equivalent)

Theory of existence, uniqueness and stability based in variational
analysis
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The model IO (independent firms)

max
qi ,xi ,woi≥0

(
qi · p −

∑
f

xi ,f · wf

)
s.t. qi ≤

∏
f

(xi ,f + ei ,f )εi,f

xi ,land ≤ ei ,land
woi−1 = xi ,wat + woi

0 ≤ p ⊥
∑
i

qi − d(p) ≥ 0

0 ≤ wlab ⊥
∑
i

ei ,lab −
∑
i

xi ,lab ≥ 0
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IO vs AO (price of anarchy)
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The model IO + trade (mechanism design)

max
qi ,xi ,woi ,wr

b
i ,wr

s
i ≥0

(
qi · p −

∑
f

xi ,f · wf − wrbi · (wwr + τ) + wr si · wwr

)
s.t. qi ≤

∏
f

(xi ,f + ei ,f )εi,f

xi ,land ≤ ei ,land
woi−1 = xi ,wat + woi
wri + wrbi ≥ xi ,wat + wr si

0 ≤ p ⊥
∑
i

qi − d(p) ≥ 0

0 ≤ wlab ⊥
∑
i

ei ,lab −
∑
i

xi ,lab ≥ 0

0 ≤ wwr ⊥
∑
i

wr si −
∑
i

wrbi ≥ 0
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Different Management Strategies
Figure 4
Click here to download high resolution image
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MOPEC

min
xi
θi (xi , x−i , p) s.t. gi (xi , x−i , p) ≤ 0,∀i

p solves VI(h(x , ·),C )

equilibrium

min theta(1) x(1) g(1)

...

min theta(m) x(m) g(m)

vi h p cons

Reformulate
optimization problem as
first order conditions
(complementarity)

Use nonsmooth Newton
methods to solve
complementarity problem

Precondition using
“individual optimization”
with fixed externalities

Trade/Policy Model (MCP) 

•  Split model (18,000 vars) via region 

•  Gauss-Seidel, Jacobi, Asynchronous 
•  87 regional subprobs, 592 solves 

= + 
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Hydro-Thermal System (Philpott/F./Wets)

Let us assume that �1 > 0 and p(!)�2(!) > 0 for every ! 2 
. This corresponds to
a solution of SP meeting the demand constraints exactly, and being able to save money
by reducing demand in each time period and in each state of the world. Under this as-
sumption TP(i) and HP(i) also have unique solutions. Since they are convex optimization
problems their solution will be determined by their Karush-Kuhn-Tucker (KKT) condi-
tions. We de�ne the competitive equilibrium to be a solution to the following variational
problem:

CE: (u1(i); u2(i; !)) 2 argmaxHP(i), i 2 H
(v1(j); v2(j; !)) 2 argmaxTP(j), j 2 T
0 �

P
i2H Ui (u1(i)) +

P
j2T v1(j)� d1 ? �1 � 0;

0 � +
P

i2H Ui (u2(i; !)) +
P

j2T v2(j; !)� d2(!) ? �2(!) � 0; ! 2 
:

This gives the following result.

Proposition 2 Suppose every agent is risk neutral and has knowledge of all deterministic
data, as well as sharing the same probability distribution for in�ows. Then the solution
to SP is the same as the solution to CE.

3.1 Example

Throughout this paper we will illustrate the concepts using the hydro-thermal system
with one reservoir and one thermal plant, as shown in Figure 1. We let thermal cost be

Figure 1: Example hydro-thermal system.

C (v) = v2, and de�ne

U(u) = 1:5u� 0:015u2

V (x) = 30� 3x+ 0:025x2

We assume in�ow 4 in period 1, and in�ows of 1; 2; : : : ; 10 with equal probability in each
scenario in period 2. With an initial storage level of 10 units this gives the competitive
equilibrium shown in Table 1. The central plan that maximizes expected welfare (by
minimizing expected generation and future cost) is shown in Table 2. One can observe
that the two solutions are identical, as predicted by Proposition 2.

6
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Simple electricity “system optimization” problem

SO: max
dk ,ui ,vj ,xi≥0

∑
k∈K

Wk(dk)−
∑
j∈T

Cj(vj) +
∑
i∈H

Vi (xi )

s.t.
∑
i∈H

Ui (ui ) +
∑
j∈T

vj ≥
∑
k∈K

dk ,

xi = x0i − ui + h1i , i ∈ H

ui water release of hydro reservoir i ∈ H
vj thermal generation of plant j ∈ T
xi water level in reservoir i ∈ H
prod fn Ui (strictly concave) converts water release to energy

Cj(vj) denote the cost of generation by thermal plant

Vi (xi ) future value of terminating with storage x (assumed separable)

Wk(dk) utility of consumption dk
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SO equivalent to CE

Consumers k ∈ K solve CP(k): max
dk≥0

Wk (dk)− pTdk

Thermal plants j ∈ T solve TP(j): max
vj≥0

pT vj − Cj(vj)

Hydro plants i ∈ H solve HP(i): max
ui ,xi≥0

pTUi (ui ) + Vi (xi )

s.t. xi = x0i − ui + h1i

Perfectly competitive (Walrasian) equilibrium is a MOPEC

CE: dk ∈ arg max CP(k), k ∈ K,
vj ∈ arg max TP(j), j ∈ T ,

ui , xi ∈ arg max HP(i), i ∈ H,

0 ≤ p ⊥
∑
i∈H

Ui (ui ) +
∑
j∈T

vj ≥
∑
k∈K

dk .
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Agents have stochastic recourse?

Two stage stochastic programming, x1 is here-and-now decision,
recourse decisions x2 depend on realization of a random variable

R is a risk measure (e.g. expectation, CVaR)

SP: max cT x1 + R[qT x2]

s.t. Ax1 = b, x1 ≥ 0,

T (ω)x1 + W (ω)x2(ω) ≥ d(ω),

x2(ω) ≥ 0,∀ω ∈ Ω.

A 

T W 

T 

igure Constraints matrix structure of 15) 

problem by suitable subgradient methods in an outer loop. In the inner loop, the second-stage 
problem is solved for various r i g h t h a n d sides. Convexity of the master is inherited from the 
convexity of the value function in linear programming. In dual decomposition, (Mulvey and 
Ruszczyhski 1995, Rockafellar and Wets 1991), a convex non-smooth function of Lagrange 
multipliers is minimized in an outer loop. Here, convexity is granted by fairly general reasons 
that would also apply with integer variables in 15). In the inner loop, subproblems differing 
only in their r i g h t h a n d sides are to be solved. Linear (or convex) programming duality is 
the driving force behind this procedure that is mainly applied in the multi-stage setting. 

When following the idea of primal decomposition in the presence of integer variables one 
faces discontinuity of the master in the outer loop. This is caused by the fact that the 
value function of an MILP is merely lower semicontinuous in general Computations have to 
overcome the difficulty of lower semicontinuous minimization for which no efficient methods 
exist up to now. In Car0e and Tind (1998) this is analyzed in more detail. In the inner 
loop, MILPs arise which differ in their r i g h t h a n d sides only. Application of Gröbner bases 
methods from computational algebra has led to first computational techniques that exploit 
this similarity in case of pure-integer second-stage problems, see Schultz, Stougie, and Van 
der Vlerk (1998). 

With integer variables, dual decomposition runs into trouble due to duality gaps that typ
ically arise in integer optimization. In L0kketangen and Woodruff (1996) and Takriti, Birge, 
and Long (1994, 1996), Lagrange multipliers are iterated along the lines of the progressive 
hedging algorithm in Rockafellar and Wets (1991) whose convergence proof needs continuous 
variables in the original problem. Despite this lack of theoretical underpinning the compu
tational results in L0kketangen and Woodruff (1996) and Takriti, Birge, and Long (1994 
1996), indicate that for practical problems acceptable solutions can be found this way. A 
branch-and-bound method for stochastic integer programs that utilizes stochastic bounding 
procedures was derived in Ruszczyriski, Ermoliev, and Norkin (1994). In Car0e and Schultz 
(1997) a dual decomposition method was developed that combines Lagrangian relaxation of 
non-anticipativity constraints with branch-and-bound. We will apply this method to the 
model from Section and describe the main features in the remainder of the present section. 

The idea of scenario decomposition is well known from stochastic programming with 
continuous variables where it is mainly used in the mul t i s tage case. For stochastic integer 
programs scenario decomposition is advantageous already in the two-stage case. The idea is 

EMP/SP extensions to facilitate these models
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Two stage stochastic MOPEC

CP(k): max
d1
k

,d2
k (ω)

≥0
Wk

(
d1
k

)
− p1d1

k

+ R[Wk

(
d2
k (ω)

)
− p2(ω)d2

k (ω)]

TP(j): max
v1
j

,v2
j (ω)

≥0
p1v1j − Cj(v

1
j )

+ R[p2(ω)v2j (ω)− Cj

(
v2j (ω)

)
]

HP(i): max
u1i ,x

1
i ≥0

u2i (ω),x
2
i (ω)≥0

p1Ui (u
1
i )

+ R[p2(ω)Ui (u
2
i (ω)) + Vi (x

2
i (ω))]

s.t. x1i = x0i − u1i + h1i ,

x2i (ω) = x1i − u2i (ω) + h2i (ω)

0 ≤ p1 ⊥
∑
i∈H

Ui

(
u1i
)

+
∑
j∈T

v1j ≥
∑
k∈K

d1
k

0 ≤ p2(ω) ⊥
∑
i∈H

Ui

(
u2i (ω)

)
+
∑
j∈T

v2j (ω) ≥
∑
k∈K

d2
k (ω),∀ω
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Results

Suppose every agent is risk neutral and has knowledge of all
deterministic data, as well as sharing the same probability distribution
for inflows. SO solution is same as CE solution

Using coherent risk measure (weighted sum of expected value and
conditional value at risk), 10 scenarios for rain

1 High initial storage: risk-averse central plan (RSO) and the risk-averse
competitive equilibrium (RCE) have same solution (but different to risk
neutral case)

2 Low initial storage: RSO and RCE are very different. Since the hydro
generator and the system do not agree on a worst-case outcome, the
probability distributions that correspond to an equivalent risk neutral
decision will not be common.

3 Extension: Construct MOPEC models for trading risk
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Contracts in MOPEC (F./Wets)

Competing agents (consumers, or generators in energy market)

Each agent minimizes objective independently (cost)

Market prices are function of all agents activities

Additional twist: model must “hedge” against uncertainty

Facilitated by allowing contracts bought now, for goods delivered later

Conceptually allows to transfer goods from one period to another
(provides wealth retention or pricing of ancilliary services in energy
market)

Can investigate new instruments to mitigate risk, or move to system
optimal solutions from equilibrium (or market) solutions
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Example as MOPEC: agents solve a Stochastic Program

Buy yi contracts in period 1, to deliver D(ω)yi in period 2, scenario ω
Each agent i :

min C (x1i ) +
∑
ω

πωC (x2i (ω))

s.t. p1x1i + vyi ≤ p1e1i (budget time 1)

p2(ω)x2i (ω) ≤ p2(ω)(D(ω)yi + e2i (ω)) (budget time 2)

0 ≤ v ⊥ −
∑
i

yi ≥ 0 (contract)

0 ≤ p1 ⊥
∑
i

(
e1i − x1i

)
≥ 0 (walras 1)

0 ≤ p2(ω) ⊥
∑
i

(
D(ω)yi + e2i (ω)− x2i (ω)

)
≥ 0 (walras 2)
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Observations

Examples from literature solved using homotopy continuation seem
incorrect - need transaction costs to guarantee solution

Solution possible via disaggregation only seems possible in special
cases

I When problem is block diagonally dominant
I When overall (complementarity) problem is monotone
I (Pang): when problem is a potential game

Progressive hedging possible to decompose in these settings by agent
and scenario

Research challenge: develop reliable algorithms for large scale
decomposition approaches to MOPEC
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Bilevel Program (Stackelberg)

Assumes one leader firm, the rest follow

Leader firm optimizes subject to expected follower behavior

Follower firms act in a Nash manner

All firms are price-takers in transport and demand

EMP info file

bilevel obj(’one’) vars(’one’) eqns(’one’)
max obj(’two’) vars(’two’) eqns(’two’)
max obj(’three’) vars(’three’) eqns(’three’)
vi tcDef tc
vi pricedef price

EMP = bilevel =⇒ MPEC =⇒ (via NLPEC) NLP(µ)
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Hierarchical models

Bilevel programs:

min
x∗,y∗

f (x∗, y∗)

s.t. g(x∗, y∗) ≤ 0,
y∗ solves min

y
v(x∗, y) s.t. h(x∗, y) ≤ 0

model bilev /deff,defg,defv,defh/;
empinfo: bilevel min v y defv defh

EMP tool automatically creates the MPCC

min
x∗,y∗,λ

f (x∗, y∗)

s.t. g(x∗, y∗) ≤ 0,
0 ≤ ∇v(x∗, y∗) + λT∇h(x∗, y∗) ⊥ y∗ ≥ 0
0 ≤ −h(x∗, y∗) ⊥ λ ≥ 0
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The overall scheme!

Collection of algebraic equations

Form a bilevel program via emp

EMP tool automatically creates the MPCC (model transformation)

NLPEC tool automatically creates (a series of) NLP models (model
transformation)

GAMS automatically rewrites NLP models for global solution via
BARON (model transformation)

Is this global? What’s the hitch?

Note that heirarchical structure is available to solvers for analysis or
utilization
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Optimal Yacht Rig Design

Current mast design trends use
a large primary spar that is
supported laterally by a set of
tension and compression
members, generally termed the
rig

Reduction in either the weight
of the rig or the height of the
VCG will improve performance

Design must work well under a
variety of weather conditions

Optimal Yacht Rig Design
• Current mast design 

trends use a large 
primary spar that is 
supported laterally by a 
set of tension and 
compression members, 
generally termed the rig

• Reduction in either the 
weight of the rig or the 
height of the VCG will 
improve performance
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Complementarity feature

Stays are tension only
members (in practice) -
Hookes Law

When tensile load becomes
zero, the stay goes slack
(low material stiffness)

0 ≥ s ⊥ s − kδ ≤ 0
I s axial load
I k member spring constant
I δ member extension

Either si = 0 or si = kδi

Complementarity Feature

• Stays are tension-
only members (in 
practice) – Hookes
Law

• When tensile load 
becomes zero, the 
stay goes slack (low 
material stiffness)

s: axial load
k: member spring constant
dl: member length extension
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EMP(ii): MPCC: complementarity constraints

min
x ,s

f (x , s)

s.t. g(x , s) ≤ 0,
0 ≤ s ⊥ h(x , s) ≥ 0

g , h model “engineering” expertise: finite elements, etc

⊥ models complementarity, disjunctions

Complementarity “⊥” constraints available in AIMMS, AMPL and
GAMS

NLPEC: use the convert tool to automatically reformulate as a
parameteric sequence of NLP’s

Solution by repeated use of standard NLP software
I Problems solvable, local solutions, hard
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Complementarity Problems via Graphs

T = NR+ = (R+ × {0})
⋃

({0} × R−)

−y ∈ T (λ) ⇐⇒ (λ,−y) ∈ T ⇐⇒ 0 ≤ λ ⊥ y ≥ 0

By approximating (smoothing) graph can generate interior point
algorithms for example yλ = ε, y , λ > 0

−F (z) ∈ NRn
+

(z) ⇐⇒ (z ,−F (z)) ∈ T n ⇐⇒ 0 ≤ z ⊥ F (z) ≥ 0
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Complementarity Systems (DVI)

dx
dt (t) = f (x(t), λ(t))

y(t) = h(x(t), λ(t))

0 ≤ y(t) ⊥ λ(t) ≥ 0
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Complementarity Systems (DVI)

dx
dt (t) = f (x(t), λ(t))

y(t) = h(x(t), λ(t))

(λ(t),−y(t)) ∈ T
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Operators and Graphs (C = [−1, 1], T = NC)

zi = −1,−Fi (z) ≤ 0 or zi ∈ (−1, 1),−Fi (z) = 0 or zi = 1,−Fi (z) ≥ 0
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T (λ) T −1(y) (I + T )−1(y) = PT (y)

PT (y) is the projection of y onto [−1, 1]
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Generalized Equations

Suppose T is a maximal monotone operator

0 ∈ F (z) + T (z) (GE )

Define PT = (I + T )−1

If T is polyhedral (graph of T is a finite union of convex polyhedral
sets) then PT is piecewise affine (continous, single-valued,
non-expansive)

0 ∈ F (z) + T (z) ⇐⇒ z ∈ F (z) + I(z) + T (z)

⇐⇒ z − F (z) ∈ (I + T )(z) ⇐⇒ PT (z − F (z)) = z

Use in fixed point iterations (cf projected gradient methods)

Ferris (Univ. Wisconsin) MOPEC ICCP 14 51 / 68



Normal Map

Suppose T is a maximal monotone operator

0 ∈ F (z) + T (z) (GE )

Define PT = (I + T )−1

0 ∈ F (z) + T (z) ⇐⇒ z ∈ F (z) + I(z) + T (z)

⇐⇒ z − F (z) = x and x ∈ (I + T )(z)

⇐⇒ z − F (z) = x and PT (x) = z

⇐⇒ PT (x)− F (PT (x)) = x

⇐⇒ 0 = F (PT (x)) + x − PT (x)

This is the so-called Normal Map Equation
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Key idea of algorithm T = NC
Homotopy: Easy solution for µ large, drive µ→ 0.

µr = F (πC(x(µ))) + x(µ)− πC(x(µ))

Define z(µ) = πC(x(µ)), then

µr = F (z(µ)) + x(µ)− z(µ)

x − z ∈ NC(z)

NC(z) = {−ATu − w + v}
such that Az(≥,=,≤)a ⊥ u(≥, free,≤)0

0 ≤ w ⊥ z − l ≥ 0

0 ≤ v ⊥ u − z ≥ 0
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EMP(iv): Extended nonlinear programs

min
x∈X

f0(x)+θ(f1(x), . . . , fm(x))

Examples of different θ

least squares, absolute value, Huber function
Solution reformulations are very different
Huber function used in robust statistics.
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More general θ functions

In general any piecewise linear penalty function can be used: (different
upside/downside costs).
General form:

θ(u) = sup
y∈Y
{yTu − k(y)}

θ nonsmooth due to the max term; θ separable in example.
θ is always convex.
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Solution Procedures

Solution uses reformulation - one way: first order conditions

VI

([
∇xL(x , y)
−∇yL(x , y)

]
,X × Y

)
based on extended form of the Lagrangian:

L(x , y) = f0(x) +
m∑
i=1

yi fi (x)− k(y)

EMP: allows “annotation” of constraints to facilitate library of
different θ functions to be applied

EMP tool automatically creates an MCP (or a smooth NLP)
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Choices for θ

inf
x∈X

f0 + θ[f (x)], θ(u) = sup
y∈Y
{yTu − k(y)}

θ is convex with values in (−∞,+∞]; may be nonsmooth

L2: k(u) = 1
4λu

2, Y = (−∞,+∞)

L1: k(u) = 0, Y = [−ρ, ρ]

L∞: k(u) = 0, Y = ∆, unit simplex in Rm
+

Linear-quad (Huber 1981): k(u) = 1
4λu

2, Y = [−ρ, rho]

Second order cone constraint: k(y) = 0, Y = C ◦

The new feature here is implementation and solution within the
GAMS modeling language framework, which produces a tool usable
without advanced knowledge in convex analysis and without
cumbersome “hand tailoring” to accommodate different penalizations
[Ferris, Dirkse, Jagla, and Meeraus 2008]

This makes the theoretical benefits accessible to users from a wide
variety of different fields
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Alternative Reformulations

Convert does symbolic/numeric reformulations. Alternative NLP
formulations also possible.

k(y) =
1

2
y ′Qy , X = {x : Rx ≤ r} , Y =

{
y : S ′y ≤ s

}
Defining

Q = DJ−1D ′, F (x) = (f1(x), . . . , fm(x))

min f0(x) + s ′z + 1
2wJw

s.t. Rx ≤ r , z ≥ 0,F (x)− Sz − Dw = 0

Can set up better (solver) specific formulation.
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Does it work at realistic scales: GTAP?

The latest GTAP database represents global production and trade for
113 country/regions, 57 commodities and 5 primary factors.

Data characterizes intermediate demand and bilateral trade in 2007,
including tax rates on imports/exports and other indirect taxes.

The core GTAP model is a static, multi-regional model which tracks
the production and distribution of goods in the global economy.

In GTAP the world is divided into regions (typically representing
individual countries), and each region’s final demand structure is
composed of public and private expenditure across goods.
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The Model

The GTAP model may be posed as a system of nonlinear equations:

F (w , z ; t) = 0

in which: where

wr is a vector of regional welfare levels

z ∈ RN represents a vector of endogenous economic variables, e.g.

prices and quantities, z =

(
P
Q

)
.

t represents matrices of trade tax instruments – import tariffs (tMirs)
and export taxes (tXirs) for each commodity i and region r
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Optimal Sanctions

Coalition member states strategically choose trade taxes which minimize
Russian welfare:

min
tr :r∈C

wrus

s.t.

F (w , z ; t) = 0

tr = t̄r ∀r /∈ C

tMi ,rus,r ≤ t̄Mi ,r ,rus ∀r ∈ C

tXi ,r ,rus ≤ t̄Xi ,rus,r ∀r ∈ C
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Optimal Retaliation

Russia choose trade taxes which maximize Russian welfare in response to
the coalition actions:

max
trus

wrus

s.t.

F (w , z ; t) = 0

tr =

{
t̂r r ∈ C
t̄r r /∈ C

where t̂r represents trade taxes for coalition countries (r ∈ C) from the
optimal sanction calculation.
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Coalition Member States for Illustrative Calculation

usa United States

anz Australia and New Zealand

can Canada

fra France

deu Germany

ita Italy

jpn Japan

gbr United Kingdom

reu Rest of the European Union
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Welfare Changes (% Hicksian EV)

sanction retaliation tradewar

rus -4.4 -3.5 -9.8
C average 0.03 0.05 0.03

can 0.021 0.033 0.032
usa 0.007 -0.017 0.032
fra 0.042 0.020 0.032
deu 0.119 -0.047 0.032
ita 0.069 0.050 0.032
gbr 0.045 -0.002 0.032
reu 0.058 0.365 0.032
anz 0.011 0.003 0.032
jpn 0.012 -0.020 0.032

chn 0.115 0.057 0.290
sau 0.240 1.865 -0.892
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Scenarios and Key Insights

sanction If coalition states were to increases tariffs and export taxes
on Russia to the same level which is currently applied by
Russia on bilateral trade flows with the coalition, Russian
welfare could be substantially impacted with no economic
cost for any coalition members.

retaliation Russia could respond to such sanctions by changing it’s
own trade taxes, but optimal “retaliation” largely results in a
reduction rather than an increase in trade taxes on trade
flows to and from coalition states. These tariff changes can
only partially offset the adverse impact of the sanctions.

tradewar If sanctions and retaliation were to result in an unconstrained
trade war, Russia faces a drastic economic cost while the
coalition countries could even be slight better off.
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What is EMP?

Annotates existing equations/variables/models for modeler to
provide/define additional structure

equilibrium

vi (agents can solve min/max/vi)

bilevel (reformulate as MPEC, or as SOCP)

disjunction (or other constraint logic primitives)

randvar

dualvar (use multipliers from one agent as variables for another)

extended nonlinear programs (library of plq functions)

Currently available within GAMS
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But who cares?

Why aren’t you using my *********** algorithm?
(Michael Ferris, Boulder, CO, 1994)

Show me on a problem like mine

Must run on defaults

Must deal graciously with poorly specified cases

Must be usable from my environment (Matlab, R, GAMS, ...)

Must be able to model my problem easily

EMP provides annotations to an existing optimization model that convey
new model structures to a solver
NEOS is soliciting case studies that show how to do the above, and will
provide some tools to help
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Conclusions

Optimization helps understand what drives a system

Modern optimization within applications requires multiple model
formats, computational tools and sophisticated solvers

EMP model type is clear and extensible, additional structure available
to solver

Extended Mathematical Programming available within the GAMS
modeling system

Able to pass additional (structure) information to solvers

Embedded optimization models automatically reformulated for
appropriate solution engine

Exploit structure in solvers

Extend application usage further

Modeling, optimization, statistics and computation embedded within
the application domain is critical
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