Model-Method Iteration:
 Solving Good Problems and Detecting Bad Ones

Todd Munson
Mathematics and Computer Science Division Argonne National Laboratory

August 4, 2014

Mixed Complementarity Problems

Focus on complementarity problems with equalities

$$
\begin{array}{rll}
0 \leq x & \perp & F(x, y) \geq 0 \\
y & & G(x, y)=0
\end{array}
$$

where $F: \Re^{n+m} \rightarrow n$ and $G: \Re^{n+m} \rightarrow m$ are continuously differentiable.

Mixed Complementarity Problems

Focus on complementarity problems with equalities

$$
\begin{array}{rll}
0 \leq x & \perp & F(x, y) \geq 0 \\
y & & G(x, y)=0
\end{array}
$$

where $F: \Re^{n+m} \rightarrow n$ and $G: \Re^{n+m} \rightarrow m$ are continuously differentiable.
Good algorithms couple a Newton method to a globalization strategy.
PATH solves mixed linear complementarity problems

$$
\begin{array}{rll}
0 \leq x & \perp & M x+N y+q \geq 0 \\
y & & A x+B y+c=0
\end{array}
$$

with a line search on a suitable merit function.

Mixed Complementarity Problems

Focus on complementarity problems with equalities

$$
\begin{array}{rll}
0 \leq x & \perp & F(x, y) \geq 0 \\
y & & G(x, y)=0
\end{array}
$$

where $F: \Re^{n+m} \rightarrow n$ and $G: \Re^{n+m} \rightarrow m$ are continuously differentiable.
Good algorithms couple a Newton method to a globalization strategy.
PATH solves mixed linear complementarity problems

$$
\begin{array}{rll}
0 \leq x & \perp & M x+N y+q \geq 0 \\
y & & A x+B y+c=0
\end{array}
$$

with a line search on a suitable merit function.

- In great models, B^{-1} exists and $M-N B^{-1} A$ is positive semidefinite.

Mixed Complementarity Problems

Focus on complementarity problems with equalities

$$
\begin{array}{rll}
0 \leq x & \perp & F(x, y) \geq 0 \\
y & & G(x, y)=0
\end{array}
$$

where $F: \Re^{n+m} \rightarrow n$ and $G: \Re^{n+m} \rightarrow m$ are continuously differentiable.
Good algorithms couple a Newton method to a globalization strategy.
PATH solves mixed linear complementarity problems

$$
\begin{array}{rll}
0 \leq x & \perp & M x+N y+q \geq 0 \\
y & & A x+B y+c=0
\end{array}
$$

with a line search on a suitable merit function.

- In great models, B^{-1} exists and $M-N B^{-1} A$ is positive semidefinite.
- In good models, $(B+\delta I)^{-1}$ exists and

$$
M+\delta I-N(B+\delta I)^{-1} A
$$

is positive definite for any $\delta>0$.

Outline

1. Modeling Complementarity Problems
2. Analyzing Complementarity Problems
3. Solving Complementarity Problems

Part I

Modeling Complementarity Problems

Motivation

- What constitutes a good model?
- How are they constructed?
-Why are they good?

Relevant for most of the available algorithms

Section 1

Linear Problems

Bimatrix Games

Problem Specification

- Players select strategies to minimize expected loss
- $p \in \Re^{n}$ is the probability player 1 chooses each strategy
- $q \in \Re^{m}$ is the probability player 2 chooses each strategy
- $A \in \Re^{n \times m}$ is the loss matrix for player 1
- $B \in \Re^{m \times n}$ is the loss matrix for player 2

Bimatrix Games

Problem Specification

- Players select strategies to minimize expected loss
- $p \in \Re^{n}$ is the probability player 1 chooses each strategy
- $q \in \Re^{m}$ is the probability player 2 chooses each strategy
- $A \in \Re^{n \times m}$ is the loss matrix for player 1
- $B \in \Re^{m \times n}$ is the loss matrix for player 2
- Optimization problem for player 1 given q^{*}

$$
\begin{array}{ll}
\min _{0 \leq p} & p^{T} A q^{*} \\
\text { subject to } & e^{T} p=1
\end{array}
$$

Bimatrix Games

Problem Specification

- Players select strategies to minimize expected loss
- $p \in \Re^{n}$ is the probability player 1 chooses each strategy
- $q \in \Re^{m}$ is the probability player 2 chooses each strategy
- $A \in \Re^{n \times m}$ is the loss matrix for player 1
- $B \in \Re^{m \times n}$ is the loss matrix for player 2
- Optimization problem for player 1 given q^{*}

$$
\begin{array}{ll}
\min _{0 \leq p} & p^{T} A q^{*} \\
\text { subject to } & e^{T} p=1
\end{array}
$$

- Optimization problem for player 2 given p^{*}

$$
\begin{array}{ll}
\min _{0 \leq q} & q^{T} B p^{*} \\
\text { subject to } & e^{T} q=1
\end{array}
$$

Bimatrix Games

Mixed Complementarity Formulations

- Assemble first-order optimality conditions

$$
\begin{array}{rll}
0 \leq p & \perp & A q-\lambda_{1} \geq 0 \\
0 \leq q & \perp & B p-\lambda_{2} \geq 0 \\
\lambda_{1} & & e^{T} p=1 \\
\lambda_{2} & & e^{T} q=1
\end{array}
$$

Bimatrix Games

Mixed Complementarity Formulations

- Assemble first-order optimality conditions

$$
\begin{array}{rll}
0 \leq p & \perp & A q-\lambda_{1} \geq 0 \\
0 \leq q & \perp & B p-\lambda_{2} \geq 0 \\
\lambda_{1} & & e^{T} p=1 \\
\lambda_{2} & & e^{T} q=1
\end{array}
$$

- Equivalent formulation (negative multipliers)

$$
\begin{array}{rll}
0 \leq p & \perp & A q+\lambda_{1} \geq 0 \\
0 \leq q & \perp & B p+\lambda_{2} \geq 0 \\
\lambda_{1} & & e^{T} p=1 \\
\lambda_{2} & & e^{T} q=1
\end{array}
$$

Bimatrix Games

Equation Sign Important

For hard models, solvers will add a diagonal perturbation to regularize the model. They generally employ a single positive perturbation independent of the structure of your particular problem.

- First formulation can be a good model

$$
\begin{array}{rll}
0 \leq x & \perp & (M+\delta I) x-A^{T} \lambda+q \geq 0 \\
\lambda & & A x+\delta \lambda+b=0
\end{array}
$$

has the reduced formulation

$$
0 \leq x \quad \perp \quad\left(M+\delta I+\frac{1}{\delta} A^{T} A\right) x+q+\frac{1}{\delta} A^{T} b \geq 0
$$

that inherits the properties of M.

Bimatrix Games

Equation Sign Important

For hard models, solvers will add a diagonal perturbation to regularize the model. They generally employ a single positive perturbation independent of the structure of your particular problem.

- Second formulation is not a good model

$$
\begin{array}{rll}
0 \leq x & \perp & (M+\delta I) x+A^{T} \lambda+q \geq 0 \\
\lambda & & A x+\delta \lambda+b=0
\end{array}
$$

has reduced formulation

$$
0 \leq x \quad \perp \quad\left(M+\delta I-\frac{1}{\delta} A^{T} A\right) x+q-\frac{1}{\delta} A^{T} b \geq 0
$$

that does not inherit properties of M.

Bimatrix Games

A Family of Equivalent Problems

- Players select strategies to minimize expected loss
- $p \in \Re^{n}$ is the probability player 1 chooses each strategy
- $q \in \Re^{m}$ is the probability player 2 chooses each strategy
- $A \in \Re^{n \times m}$ is the loss matrix for player 1
- $B \in \Re^{m \times n}$ is the loss matrix for player 2

Bimatrix Games

A Family of Equivalent Problems

- Players select strategies to minimize expected loss
- $p \in \Re^{n}$ is the probability player 1 chooses each strategy
- $q \in \Re^{m}$ is the probability player 2 chooses each strategy
- $A \in \Re^{n \times m}$ is the loss matrix for player 1
- $B \in \Re^{m \times n}$ is the loss matrix for player 2
- Optimization problem for player 1 given q^{*}

$$
\begin{array}{ll}
\min _{0 \leq p} & p^{T}\left(A+\alpha_{2} E\right) q^{*} \\
\text { subject to } & e^{T} p=1
\end{array}
$$

Bimatrix Games

A Family of Equivalent Problems

- Players select strategies to minimize expected loss
- $p \in \Re^{n}$ is the probability player 1 chooses each strategy
- $q \in \Re^{m}$ is the probability player 2 chooses each strategy
- $A \in \Re^{n \times m}$ is the loss matrix for player 1
- $B \in \Re^{m \times n}$ is the loss matrix for player 2
- Optimization problem for player 1 given q^{*}

$$
\begin{array}{ll}
\min _{0 \leq p} & p^{T}\left(A+\alpha_{2} E\right) q^{*} \\
\text { subject to } & e^{T} p=1
\end{array}
$$

- Optimization problem for player 2 given p^{*}

$$
\begin{array}{ll}
\min _{0 \leq q} & q^{T}\left(B+\alpha_{1} E\right) p^{*} \\
\text { subject to } & e^{T} q=1
\end{array}
$$

Bimatrix Games

Knowledge is Not Always Power
If $A+\alpha_{2} E<0$ and $B+\alpha_{1} E<0$, then

$$
\begin{array}{rll}
0 \leq p & \perp & \left(A+\alpha_{2} E\right) q+\lambda_{1} \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p+\lambda_{2} \geq 0 \\
\lambda_{1} & & e^{T} p=1 \\
\lambda_{2} & & e^{T} q=1
\end{array}
$$

is equivalent to

$$
\begin{array}{lll}
0 \leq p & \perp & \left(A+\alpha_{2} E\right) q+\lambda_{1} \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p+\lambda_{2} \geq 0 \\
0 \leq \lambda_{1} & \perp & e^{T} p-1 \geq 0 \\
0 \leq \lambda_{2} & \perp & e^{T} q-1 \geq 0
\end{array}
$$

Bimatrix Games

Knowledge is Not Always Power
If $A+\alpha_{2} E<0$ and $B+\alpha_{1} E<0$, then

$$
\begin{array}{rll}
0 \leq p & \perp & \left(A+\alpha_{2} E\right) q+\lambda_{1} \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p+\lambda_{2} \geq 0 \\
\lambda_{1} & & e^{T} p=1 \\
\lambda_{2} & & e^{T} q=1
\end{array}
$$

is equivalent to

$$
\begin{array}{lll}
0 \leq p & \perp & \left(A+\alpha_{2} E\right) q+\lambda_{1} \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p+\lambda_{2} \geq 0 \\
0 \leq \lambda_{1} & \perp & e^{T} p-1 \geq 0 \\
0 \leq \lambda_{2} & \perp & e^{T} q-1 \geq 0
\end{array}
$$

which can be further reduced to finding nonzero p and q with

$$
\begin{array}{lll}
0 \leq p & \perp & \left(A+\alpha_{2} E\right) q+e \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p+e \geq 0
\end{array}
$$

Bimatrix Games

Knowledge is Not Always Power
If $A+\alpha_{2} E<0$ and $B+\alpha_{1} E<0$, then

$$
\begin{array}{rll}
0 \leq p & \perp & \left(A+\alpha_{2} E\right) q+\lambda_{1} \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p+\lambda_{2} \geq 0 \\
\lambda_{1} & & e^{T} p=1 \\
\lambda_{2} & & e^{T} q=1
\end{array}
$$

is equivalent to

$$
\begin{aligned}
& 0 \leq p \quad \perp \quad\left(A+\alpha_{2} E\right) q+\lambda_{1} \geq 0 \\
& 0 \leq q \quad \perp \quad\left(B+\alpha_{1} E\right) p+\lambda_{2} \geq 0 \\
& 0 \leq \lambda_{1} \quad \perp \quad e^{T} p-1 \geq 0 \\
& 0 \leq \lambda_{2} \quad \perp \quad e^{T} q-1 \geq 0
\end{aligned}
$$

which can be further reduced to finding nonzero p and q with

$$
\begin{array}{lll}
0 \leq p & \perp & \left(A+\alpha_{2} E\right) q+e \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p+e \geq 0
\end{array}
$$

and the matrix class is not pleasant.

Bimatrix Games

Knowledge is Sometimes Power
If $A+\alpha_{2} E>0$ and $B+\alpha_{1} E>0$, then

$$
\begin{array}{rll}
0 \leq p & \perp & \left(A+\alpha_{2} E\right) q-\lambda_{1} \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p-\lambda_{2} \geq 0 \\
\lambda_{1} & & e^{T} p=1 \\
\lambda_{2} & & e^{T} q=1
\end{array}
$$

is equivalent to

$$
\begin{array}{lll}
0 \leq p & \perp & \left(A+\alpha_{2} E\right) q-\lambda_{1} \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p-\lambda_{2} \geq 0 \\
0 \leq \lambda_{1} & \perp & e^{T} p-1 \geq 0 \\
0 \leq \lambda_{2} & \perp & e^{T} q-1 \geq 0
\end{array}
$$

Bimatrix Games

Knowledge is Sometimes Power
If $A+\alpha_{2} E>0$ and $B+\alpha_{1} E>0$, then

$$
\begin{array}{rll}
0 \leq p & \perp & \left(A+\alpha_{2} E\right) q-\lambda_{1} \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p-\lambda_{2} \geq 0 \\
\lambda_{1} & & e^{T} p=1 \\
\lambda_{2} & & e^{T} q=1
\end{array}
$$

is equivalent to

$$
\begin{array}{lll}
0 \leq p & \perp & \left(A+\alpha_{2} E\right) q-\lambda_{1} \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p-\lambda_{2} \geq 0 \\
0 \leq \lambda_{1} & \perp & e^{T} p-1 \geq 0 \\
0 \leq \lambda_{2} & \perp & e^{T} q-1 \geq 0
\end{array}
$$

which can be further reduced to

$$
\begin{array}{lll}
0 \leq p & \perp & \left(A+\alpha_{2} E\right) q-e \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p-e \geq 0
\end{array}
$$

Bimatrix Games

Knowledge is Sometimes Power
If $A+\alpha_{2} E>0$ and $B+\alpha_{1} E>0$, then

$$
\begin{array}{rll}
0 \leq p & \perp & \left(A+\alpha_{2} E\right) q-\lambda_{1} \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p-\lambda_{2} \geq 0 \\
\lambda_{1} & & e^{T} p=1 \\
\lambda_{2} & & e^{T} q=1
\end{array}
$$

is equivalent to

$$
\begin{array}{lll}
0 \leq p & \perp & \left(A+\alpha_{2} E\right) q-\lambda_{1} \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p-\lambda_{2} \geq 0 \\
0 \leq \lambda_{1} & \perp & e^{T} p-1 \geq 0 \\
0 \leq \lambda_{2} & \perp & e^{T} q-1 \geq 0
\end{array}
$$

which can be further reduced to

$$
\begin{array}{lll}
0 \leq p & \perp & \left(A+\alpha_{2} E\right) q-e \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p-e \geq 0
\end{array}
$$

and a special Lemke method can be applied.

Bimatrix Games

Strictly Positive Matrix Formulation
If $A+\alpha_{2} E>0$ and $B+\alpha_{1} E>0$, then

$$
\begin{array}{rll}
0 \leq p & \perp & \alpha_{1} E p+\left(A+\alpha_{2} E\right) q-\lambda_{1} \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p+\alpha_{2} E q-\lambda_{2} \geq 0 \\
\lambda_{1} & & e^{T} p=1 \\
\lambda_{2} & & e^{T} q=1
\end{array}
$$

is equivalent to

$$
\begin{array}{lll}
0 \leq p & \perp & \alpha_{1} E p+\left(A+\alpha_{2} E\right) q-\lambda_{1} \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p+\alpha_{2} E q-\lambda_{2} \geq 0 \\
0 \leq \lambda_{1} & \perp & e^{T} p-1 \geq 0 \\
0 \leq \lambda_{2} & \perp & e^{T} q-1 \geq 0
\end{array}
$$

Bimatrix Games

Strictly Positive Matrix Formulation

If $A+\alpha_{2} E>0$ and $B+\alpha_{1} E>0$, then

$$
\begin{array}{rll}
0 \leq p & \perp & \alpha_{1} E p+\left(A+\alpha_{2} E\right) q-\lambda_{1} \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p+\alpha_{2} E q-\lambda_{2} \geq 0 \\
\lambda_{1} & & e^{T} p=1 \\
\lambda_{2} & & e^{T} q=1
\end{array}
$$

is equivalent to

$$
\begin{array}{lll}
0 \leq p & \perp & \alpha_{1} E p+\left(A+\alpha_{2} E\right) q-\lambda_{1} \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p+\alpha_{2} E q-\lambda_{2} \geq 0 \\
0 \leq \lambda_{1} & \perp & e^{T} p-1 \geq 0 \\
0 \leq \lambda_{2} & \perp & e^{T} q-1 \geq 0
\end{array}
$$

which can be further reduced to

$$
\begin{array}{lll}
0 \leq p & \perp & \alpha_{1} E p+\left(A+\alpha_{2} E\right) q-e \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p+\alpha_{2} E q-e \geq 0
\end{array}
$$

Bimatrix Games

Strictly Positive Matrix Formulation

If $A+\alpha_{2} E>0$ and $B+\alpha_{1} E>0$, then

$$
\begin{array}{rll}
0 \leq p & \perp & \alpha_{1} E p+\left(A+\alpha_{2} E\right) q-\lambda_{1} \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p+\alpha_{2} E q-\lambda_{2} \geq 0 \\
\lambda_{1} & & e^{T} p=1 \\
\lambda_{2} & & e^{T} q=1
\end{array}
$$

is equivalent to

$$
\begin{array}{lll}
0 \leq p & \perp & \alpha_{1} E p+\left(A+\alpha_{2} E\right) q-\lambda_{1} \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p+\alpha_{2} E q-\lambda_{2} \geq 0 \\
0 \leq \lambda_{1} & \perp & e^{T} p-1 \geq 0 \\
0 \leq \lambda_{2} & \perp & e^{T} q-1 \geq 0
\end{array}
$$

which can be further reduced to

$$
\begin{array}{lll}
0 \leq p & \perp & \alpha_{1} E p+\left(A+\alpha_{2} E\right) q-e \geq 0 \\
0 \leq q & \perp & \left(B+\alpha_{1} E\right) p+\alpha_{2} E q-e \geq 0
\end{array}
$$

and a Lemke's method (with lexicographic pivoting) can be applied.

Bimatrix Games

Symmetric Diagonal Scaling

Symmetric can be applied to

- Improve condition number of matrices
- Reduce degeneracy with Lemke's method without changing matrix properties or affecting rank.

Bimatrix Games

Symmetric Diagonal Scaling

Symmetric can be applied to

- Improve condition number of matrices
- Reduce degeneracy with Lemke's method without changing matrix properties or affecting rank.

For our problem we have

$$
\begin{array}{lll}
0 \leq p & \perp & \alpha_{1} S_{1} E S_{1} p+S_{1}\left(A+\alpha_{2} E\right) S_{2} q-S_{1} e \geq 0 \\
0 \leq q & \perp & S_{2}\left(B+\alpha_{1} E\right) S_{1} p+\alpha_{2} S_{2} E S_{2} q-S_{2} e \geq 0
\end{array}
$$

for positive diagonal matrices S_{1} and S_{2}.

Complementarity Between Functions

Problem Formulations

Find an x such that

$$
0 \leq M x+q \quad \perp \quad N x+r \geq 0
$$

Complementarity Between Functions

Problem Formulations

Find an x such that

$$
0 \leq M x+q \quad \perp \quad N x+r \geq 0
$$

Add one slack variable to obtain the problem

$$
\begin{array}{lll}
x & & M x-s+q=0 \\
0 \leq s \quad \perp & N x+r \geq 0
\end{array}
$$

with the reduced, perturbed problem

$$
0 \leq s \quad \perp \quad\left(N(M+\delta I)^{-1}+\delta I\right) s+\tilde{r} \geq 0
$$

that may be a good model.

Complementarity Between Functions

Alternative Formulations

Add two slack variables to obtain

$$
\begin{array}{ll}
& M x-s+q=0 \\
& \\
& t-N x-r=0 \\
0 \leq s \quad \perp \quad & t \geq 0
\end{array}
$$

where solver matches variables to equations.

- Good match

$$
\begin{array}{rll}
x & & M x-s+q=0 \\
t & & t-N x-r=0 \\
0 \leq s & \perp & t \geq 0
\end{array}
$$

may result in a good reduced, perturbed model

$$
0 \leq s \quad \perp \quad\left(N(M+\delta l)^{-1}+\delta(1+\delta) I\right) s+\tilde{r} \geq 0
$$

Complementarity Between Functions

Alternative Formulations

Add two slack variables to obtain

$$
\begin{array}{ll}
& M x-s+q=0 \\
& t-N x-r=0 \\
0 \leq s \quad \perp \quad & t \geq 0
\end{array}
$$

where solver matches variables to equations.

- Unfortunate match

$$
\begin{array}{rll}
t & & M x-s+q=0 \\
x & & t-N x-r=0 \\
0 \leq s & \perp & t \geq 0
\end{array}
$$

may result in a "bad" reduced, perturbed model

$$
0 \leq s \quad \perp \quad\left((N-\delta I)\left(M+\delta N-\delta^{2} I\right)^{-1}+\delta I\right) s+\tilde{r} \geq 0
$$

- Do not rely on the solver to perform a good match!

Summary

- Always match equations to appropriate variables
- Automatically performing a good match is difficult
- Modeler knows their problem and should convey the match

Summary

- Always match equations to appropriate variables
- Automatically performing a good match is difficult
- Modeler knows their problem and should convey the match
- Always prefer a monotone formulation over other formulations
- Sign on the equations matters when perturbing
- Use skew symmetric version of optimality conditions
- Use problem knowledge if the result is a "better" problem

Summary

- Always match equations to appropriate variables
- Automatically performing a good match is difficult
- Modeler knows their problem and should convey the match
- Always prefer a monotone formulation over other formulations
- Sign on the equations matters when perturbing
- Use skew symmetric version of optimality conditions
- Use problem knowledge if the result is a "better" problem
- Use symmetric scaling to
- Improve condition number of matrices
- Reduce degeneracy with Lemke's method
- Beware when using unscaled solution!

Summary

- Always match equations to appropriate variables
- Automatically performing a good match is difficult
- Modeler knows their problem and should convey the match
- Always prefer a monotone formulation over other formulations
- Sign on the equations matters when perturbing
- Use skew symmetric version of optimality conditions
- Use problem knowledge if the result is a "better" problem
- Use symmetric scaling to
- Improve condition number of matrices
- Reduce degeneracy with Lemke's method
- Beware when using unscaled solution!
- Rank deficiency can still be an issue
- Solver can sometimes identify and eliminate dependencies
- Solver may add a positive diagonal perturbation
- Improve condition number of matrices
- Eliminate dependencies for good models

Summary

- Always match equations to appropriate variables
- Automatically performing a good match is difficult
- Modeler knows their problem and should convey the match
- Always prefer a monotone formulation over other formulations
- Sign on the equations matters when perturbing
- Use skew symmetric version of optimality conditions
- Use problem knowledge if the result is a "better" problem
- Use symmetric scaling to
- Improve condition number of matrices
- Reduce degeneracy with Lemke's method
- Beware when using unscaled solution!
- Rank deficiency can still be an issue
- Solver can sometimes identify and eliminate dependencies
- Solver may add a positive diagonal perturbation
- Improve condition number of matrices
- Eliminate dependencies for good models
- Always check the solution reported!

Section 2

Nonlinear Problems

Nash Games

Problem Formulation

- Non-cooperative game played by n individuals
- Each player selects a strategy to optimize their objective
- Strategies for the other players are fixed
- Equilibrium reached when no improvement is possible

Nash Games

Problem Formulation

- Non-cooperative game played by n individuals
- Each player selects a strategy to optimize their objective
- Strategies for the other players are fixed
- Equilibrium reached when no improvement is possible
- Characterization of two player equilibrium $\left(x^{*}, y^{*}\right)$

Nash Games

Problem Formulation

- Non-cooperative game played by n individuals
- Each player selects a strategy to optimize their objective
- Strategies for the other players are fixed
- Equilibrium reached when no improvement is possible
- Characterization of two player equilibrium $\left(x^{*}, y^{*}\right)$
- Many applications
- Walrasian (traffic) equilibrium
- Arrow-Debreau (economic) models
- Cournot duopoly models

Nash Games

Complementarity Formulation

- Assume each optimization problem is convex
- $f_{1}(\cdot, y)$ is convex for each y
- $f_{2}(x, \cdot)$ is convex for each x
- $c_{1}(\cdot)$ and $c_{2}(\cdot)$ convex and satisfy constraint qualification
- Then the first-order conditions are necessary and sufficient
$\begin{array}{ll}\min _{x \geq 0} & f_{1}\left(x, y^{*}\right) \\ \text { subject to } & c_{1}(x) \leq 0\end{array} \Leftrightarrow \quad \begin{array}{lll}0 \leq x & \perp & \nabla_{x} f_{1}\left(x, y^{*}\right)+\lambda_{1}^{T} \nabla_{x} c_{1}(x) \geq 0 \\ 0 \leq \lambda_{1} & \perp & -c_{1}(x) \geq 0\end{array}$

Nash Games

Complementarity Formulation

- Assume each optimization problem is convex
- $f_{1}(\cdot, y)$ is convex for each y
- $f_{2}(x, \cdot)$ is convex for each x
- $c_{1}(\cdot)$ and $c_{2}(\cdot)$ convex and satisfy constraint qualification
- Then the first-order conditions are necessary and sufficient
$\begin{array}{ll}\min _{y \geq 0} & f_{2}\left(x^{*}, y\right) \\ \text { subject to } & c_{2}(y) \leq 0\end{array} \Leftrightarrow \quad \begin{array}{lll}0 \leq y & \perp & \nabla_{y} f_{2}\left(x^{*}, y\right)+\lambda_{2}^{T} \nabla_{y} c_{2}(y) \geq 0 \\ 0 \leq \lambda_{2} & \perp & -c_{2}(y) \geq 0\end{array}$

Nash Games

Complementarity Formulation

- Assume each optimization problem is convex
- $f_{1}(\cdot, y)$ is convex for each y
- $f_{2}(x, \cdot)$ is convex for each x
- $c_{1}(\cdot)$ and $c_{2}(\cdot)$ convex and satisfy constraint qualification
- Then the first-order conditions are necessary and sufficient

$$
\begin{array}{lll}
0 \leq x & \perp & \nabla_{x} f_{1}(x, y)+\lambda_{1}^{T} \nabla_{x} c_{1}(x) \geq 0 \\
0 \leq y & \perp & \nabla_{y} f_{2}(x, y)+\lambda_{2}^{T} \nabla_{y} c_{2}(y) \geq 0 \\
0 \leq \lambda_{1} & \perp & -c_{1}(x) \geq 0 \\
0 \leq \lambda_{2} & \perp & -c_{2}(y) \geq 0
\end{array}
$$

- Nonlinear complementarity problem
- Each solution is an equilibrium for the Nash game
- Formulation is not correct for nonconvex problems
- Writing the first-order conditions is error prone
- Recommend using the MOPEC machinery

Nash Games

Constant Elasticity of Substitution
Ensure functions and Jacobians are defined

- Confront and reformulate at the modeling stage
- Report remaining domain violations to solver
- Function undefined will cause backtrack in line search
- Function defined and Jacobian undefined will abort solve
- Provide a starting point where functions are defined

Nash Games

Constant Elasticity of Substitution

Ensure functions and Jacobians are defined

- Confront and reformulate at the modeling stage
- Report remaining domain violations to solver
- Function undefined will cause backtrack in line search
- Function defined and Jacobian undefined will abort solve
- Provide a starting point where functions are defined

Common in economics for the objective function to use

$$
\left(\alpha_{1} x_{1}^{\gamma}+\alpha_{2} x_{2}^{\gamma}\right)^{\frac{1}{\gamma}}
$$

where $x_{1} \geq 0$ and $x_{2} \geq 0$

Nash Games

Constant Elasticity of Substitution

Ensure functions and Jacobians are defined

- Confront and reformulate at the modeling stage
- Report remaining domain violations to solver
- Function undefined will cause backtrack in line search
- Function defined and Jacobian undefined will abort solve
- Provide a starting point where functions are defined

Common in economics for the objective function to use

$$
\left(\alpha_{1} x_{1}^{\gamma}+\alpha_{2} x_{2}^{\gamma}\right)^{\frac{1}{\gamma}}
$$

where $x_{1} \geq 0$ and $x_{2} \geq 0$

- Function not defined when $x_{1}=0$ or $x_{2}=0$

$$
\left(\alpha_{1}\left(x_{1}+\epsilon\right)^{\gamma}+\alpha_{2}\left(x_{2}+\epsilon\right)^{\gamma}-\left(\alpha_{1}+\alpha_{2}\right) \epsilon^{\gamma}\right)^{\frac{1}{\gamma}}
$$

Nash Games

Constant Elasticity of Substitution

Ensure functions and Jacobians are defined

- Confront and reformulate at the modeling stage
- Report remaining domain violations to solver
- Function undefined will cause backtrack in line search
- Function defined and Jacobian undefined will abort solve
- Provide a starting point where functions are defined

Common in economics for the objective function to use

$$
\left(\alpha_{1} x_{1}^{\gamma}+\alpha_{2} x_{2}^{\gamma}\right)^{\frac{1}{\gamma}}
$$

where $x_{1} \geq 0$ and $x_{2} \geq 0$

- Function not defined when $x_{1}=0$ or $x_{2}=0$

$$
\left(\alpha_{1}\left(x_{1}+\epsilon\right)^{\gamma}+\alpha_{2}\left(x_{2}+\epsilon\right)^{\gamma}-\left(\alpha_{1}+\alpha_{2}\right) \epsilon^{\gamma}\right)^{\frac{1}{\gamma}}
$$

- Jacobian not defined when $x_{1}=x_{2}=0$

$$
\left(\alpha_{1}\left(x_{1}+\epsilon\right)^{\gamma}+\alpha_{2}\left(x_{2}+\epsilon\right)^{\gamma}\right)^{\frac{1}{\gamma}}-\left(\alpha_{1}+\alpha_{2}\right)^{\frac{1}{\gamma}} \epsilon
$$

Nash Games

Constant Elasticity of Substitution
Ensure functions and Jacobians are defined

- Confront and reformulate at the modeling stage
- Report remaining domain violations to solver
- Function undefined will cause backtrack in line search
- Function defined and Jacobian undefined will abort solve
- Provide a starting point where functions are defined

Common in economics for the objective function to use

$$
\left(\alpha_{1} x_{1}^{\gamma}+\alpha_{2} x_{2}^{\gamma}\right)^{\frac{1}{\gamma}}
$$

where $x_{1} \geq 0$ and $x_{2} \geq 0$

- Function not defined when $x_{1}=0$ or $x_{2}=0$

$$
\left(\alpha_{1}\left(x_{1}+\epsilon\right)^{\gamma}+\alpha_{2}\left(x_{2}+\epsilon\right)^{\gamma}-\left(\alpha_{1}+\alpha_{2}\right) \epsilon^{\gamma}\right)^{\frac{1}{\gamma}}
$$

- Jacobian not defined when $x_{1}=x_{2}=0$

$$
\left(\alpha_{1}\left(x_{1}+\epsilon\right)^{\gamma}+\alpha_{2}\left(x_{2}+\epsilon\right)^{\gamma}\right)^{\frac{1}{\gamma}}-\left(\alpha_{1}+\alpha_{2}\right)^{\frac{1}{\gamma}} \epsilon
$$

- Smoothing the functions changes the answer
- Modeler needs to determine permissible perturbation
- Modeler may want to determine sensitivity to perturbation

Nash Games

Slack Variables and Equations

Permissible to add slack variables in the formulation

$$
\begin{array}{lll}
0 \leq x & \perp & \nabla_{x} f_{1}(x, y)+\lambda_{1}^{T} \nabla_{x} c_{1}(x) \geq 0 \\
0 \leq y & \perp & \nabla_{y} f_{2}(x, y)+\lambda_{2}^{T} \nabla_{y} c_{2}(y) \geq 0 \\
0 \leq s_{1} & \perp & \lambda_{1} \geq 0 \\
0 \leq s_{2} & \perp & \lambda_{2} \geq 0 \\
\lambda_{1} & & -c_{1}(x)-s_{1}=0 \\
\lambda_{2} & & \\
\hline & -c_{2}(y)-s_{2}=0
\end{array}
$$

provided skew symmetric form of optimality conditions used.

Nash Games

Slack Variables and Equations

Changing the sign of the equations

$$
\begin{array}{lll}
0 \leq x & \perp & \nabla_{x} f_{1}(x, y)+\lambda_{1}^{T} \nabla_{x} c_{1}(x) \geq 0 \\
0 \leq y & \perp & \nabla_{y} f_{2}(x, y)+\lambda_{2}^{T} \nabla_{y} c_{2}(y) \geq 0 \\
0 \leq s_{1} & \perp & \lambda_{1} \geq 0 \\
0 \leq s_{2} & \perp & \lambda_{2} \geq 0 \\
\lambda_{1} & & c_{1}(x)+s_{1}=0 \\
\lambda_{2} & & c_{2}(y)+s_{2}=0
\end{array}
$$

causes problems when positive diagonal perturbation added.

Nash Games

Slack Variables and Equations

For general mixed nonlinear complementarity problems, use

$$
\begin{array}{ll}
0 \leq x \quad \perp \quad & F(x)-A^{T} \lambda \geq 0 \\
\lambda & A x=b
\end{array}
$$

rather than

$$
\begin{aligned}
& 0 \leq x \quad \perp \quad F(x)+A^{T} \lambda \geq 0 \\
& \lambda \\
& \\
& A x=b
\end{aligned}
$$

and match the equations to the variables!

Nash Games

Scaling the Problem

- Any scaling can be applied to original optimization problems
- Ensure consistency in scaled variables across problems
- Form optimality conditions of the scaled problems

Nash Games

- Any scaling can be applied to original optimization problems
- Ensure consistency in scaled variables across problems
- Form optimality conditions of the scaled problems
- Apply only symmetric scaling to the complementarity problem

$$
\begin{array}{rlll}
0 \leq x & \perp & S F(S x, R y) \geq 0 \\
y & & R G(S x, R y)=0
\end{array}
$$

Nash Games

- Any scaling can be applied to original optimization problems
- Ensure consistency in scaled variables across problems
- Form optimality conditions of the scaled problems
- Apply only symmetric scaling to the complementarity problem

$$
\begin{array}{rll}
0 \leq x & \perp & S F(S x, R y) \geq 0 \\
y & & R G(S x, R y)=0
\end{array}
$$

- For linear constraints, R is the multiplier scaling

$$
\begin{array}{ll}
0 \leq x \quad & S F(S x)-S A^{T} R \lambda \geq 0 \\
\lambda & R A S x=R b
\end{array}
$$

Nash Games

- Any scaling can be applied to original optimization problems
- Ensure consistency in scaled variables across problems
- Form optimality conditions of the scaled problems
- Apply only symmetric scaling to the complementarity problem

$$
\begin{array}{rll}
0 \leq x & \perp & S F(S x, R y) \geq 0 \\
y & & R G(S x, R y)=0
\end{array}
$$

- For linear constraints, R is the multiplier scaling

$$
\begin{array}{ll}
0 \leq x \quad & S F(S x)-S A^{T} R \lambda \geq 0 \\
\lambda & R A S x=R b
\end{array}
$$

Beware when using unscaled solution!

Summary

- Always ensure functions and Jacobians are defined
- Confront and reformulate at the modeling stage
- Report remaining domain violations to solver
- Function undefined will cause backtrack in line search
- Function defined and Jacobian undefined will abort solve

Summary

- Always ensure functions and Jacobians are defined
- Confront and reformulate at the modeling stage
- Report remaining domain violations to solver
- Function undefined will cause backtrack in line search
- Function defined and Jacobian undefined will abort solve
- Recommend using the MOPEC machinery when possible
- Conveys more information that the solver can use
- Relieves modeler of writing code for the derivatives
- Formulates optimality conditions correctly for the solver

Summary

- Always ensure functions and Jacobians are defined
- Confront and reformulate at the modeling stage
- Report remaining domain violations to solver
- Function undefined will cause backtrack in line search
- Function defined and Jacobian undefined will abort solve
- Recommend using the MOPEC machinery when possible
- Conveys more information that the solver can use
- Relieves modeler of writing code for the derivatives
- Formulates optimality conditions correctly for the solver
- Always match equations to appropriate variables
- Always prefer a monotone formulation over other formulations
- Use scaling when appropriate
- Any consistent scaling for optimization problems
- Symmetric diagonal scaling for complementarity problems
- Beware when using unscaled solution!
- Rank deficiency can still be an issue
- Solver can sometimes identify and eliminate dependencies
- Solver may add a positive diagonal perturbation
- Always check the solution reported!

Part II

Analyzing Complementarity Problems

Motivation

Given a complementarity problem:

- What tools can be used to analyze it?
- What do the tools say about the problem?
- What can be done to address any issues uncovered?

Motivation

Given a complementarity problem:

- What tools can be used to analyze it?
- What do the tools say about the problem?
- What can be done to address any issues uncovered?

Based on PATH solver with specified options

Section 3

Variational Inequalities

Variational Inequalities

Definition

- Let $F: \Re^{n} \rightarrow \Re^{n}$ be continuously differentiable
- Let $X \subseteq \Re^{n}$ be a closed convex set
- Variational inequality is to find $x \in X$ such that

$$
\langle F(x), y-x\rangle \geq 0 \quad \forall y \in X
$$

Variational Inequalities

Definition

- Let $F: \Re^{n} \rightarrow \Re^{n}$ be continuously differentiable
- Let $X \subseteq \Re^{n}$ be a closed convex set
- Variational inequality is to find $x \in X$ such that

$$
\langle F(x), y-x\rangle \geq 0 \quad \forall y \in X
$$

- Equivalent formulation is the generalized equation

$$
0 \in F(x)+N_{X}(x)
$$

where the normal cone to X at $x \in X$ is

$$
N_{X}(x):=\{\bar{x} \mid\langle\bar{x}, y-x\rangle \leq 0 \forall y \in X\}
$$

Variational Inequalities

Definition

- Let $F: \Re^{n} \rightarrow \Re^{n}$ be continuously differentiable
- Let $X \subseteq \Re^{n}$ be a closed convex set
- Variational inequality is to find $x \in X$ such that

$$
\langle F(x), y-x\rangle \geq 0 \quad \forall y \in X
$$

- Equivalent formulation is the generalized equation

$$
0 \in F(x)+N_{X}(x)
$$

where the normal cone to X at $x \in X$ is

$$
N_{X}(x):=\{\bar{x} \mid\langle\bar{x}, y-x\rangle \leq 0 \forall y \in X\}
$$

- Special cases include
- Nonlinear equations when $X=\Re^{n}$
- Nonlinear complementarity when $X=\Re_{+}^{n}$
- Mixed complementarity when $X=[I, u]^{n}$

Variational Inequalities

Normal Cone

Variational Inequalities

Simplified Theory (Robinson)

- Let $F: \Re^{n} \rightarrow \Re^{n}, A \in \Re^{m \times n}$ and $b \in \Re^{m}$.

Variational Inequalities

Simplified Theory (Robinson)

- Let $F: \Re^{n} \rightarrow \Re^{n}, A \in \Re^{m \times n}$ and $b \in \Re^{m}$.
- If x and λ solve

$$
\begin{array}{rll}
0 \leq x & \perp & F(x)-A^{T} \lambda \geq 0 \tag{1}\\
\lambda & & A x+b=0
\end{array}
$$

then

$$
\begin{equation*}
0 \in F(x)+N_{X}(x) \tag{2}
\end{equation*}
$$

where $X=\{x \mid x \geq 0$ and $A x+b=0\}$.

Variational Inequalities

Simplified Theory (Robinson)

- Let $F: \Re^{n} \rightarrow \Re^{n}, A \in \Re^{m \times n}$ and $b \in \Re^{m}$.
- If x and λ solve

$$
\begin{array}{rll}
0 \leq x & \perp & F(x)-A^{T} \lambda \geq 0 \tag{1}\\
\lambda & & A x+b=0
\end{array}
$$

then

$$
\begin{equation*}
0 \in F(x)+N_{X}(x) \tag{2}
\end{equation*}
$$

where $X=\{x \mid x \geq 0$ and $A x+b=0\}$.

- If x solves (2), then multipliers λ exist such that x and λ solve (1).

Variational Inequalities

Simplified Theory (Robinson)

- Let $F: \Re^{n} \rightarrow \Re^{n}, A \in \Re^{m \times n}$ and $b \in \Re^{m}$.
- If x and λ solve

$$
\begin{array}{rll}
0 \leq x & \perp & F(x)-A^{\top} \lambda \geq 0 \tag{1}\\
\lambda & & A x+b=0
\end{array}
$$

then

$$
\begin{equation*}
0 \in F(x)+N_{X}(x) \tag{2}
\end{equation*}
$$

where $X=\{x \mid x \geq 0$ and $A x+b=0\}$.

- If x solves (2), then multipliers λ exist such that x and λ solve (1).

Note: X and $N_{X}(\cdot)$ are geometric objects and we are free to choose among equivalent algebraic representations.

Variational Inequalities

Basic Preprocessing Methodology

- Given an arbitrary complementarity problem

Variational Inequalities

Basic Preprocessing Methodology

- Given an arbitrary complementarity problem
- Discover skew symmetric structure within the problem

Variational Inequalities

Basic Preprocessing Methodology

- Given an arbitrary complementarity problem
- Discover skew symmetric structure within the problem
- Convert the problem into the equivalent variational inequality
- Choose representation of the polyhedral constraint set
- Reduce model size and complexity
- Improve algorithm performance
- Detect unsolvable models

Variational Inequalities

Basic Preprocessing Methodology

- Given an arbitrary complementarity problem
- Discover skew symmetric structure within the problem
- Convert the problem into the equivalent variational inequality
- Choose representation of the polyhedral constraint set
- Reduce model size and complexity
- Improve algorithm performance
- Detect unsolvable models
- Recover reduced complementarity problem

Variational Inequalities

Discovering Generalized Skew Symmetry

- Provided with a list of linear rows and columns for the problem
- For each linear row we perform the following
- Check that the column is linear
- Reject rows having a diagonal entry
- Establish nonzero pattern is identical
- Ensure elements have the opposite signs

Variational Inequalities

Discovering Generalized Skew Symmetry

- Provided with a list of linear rows and columns for the problem
- For each linear row we perform the following
- Check that the column is linear
- Reject rows having a diagonal entry
- Establish nonzero pattern is identical
- Ensure elements have the opposite signs
- Can negate rows corresponding to equalities

$$
\begin{array}{rll}
0 \leq x & \perp & x+y+z \geq 0 \\
y & & x+y+\frac{1}{3} z=4 \\
z & & 2 x-y=5
\end{array}
$$

is equivalent to

$$
\begin{array}{rll}
0 \leq x & \perp & 2 x+2 y+2 z \geq 0 \\
y & & -3 x-3 y-z=-12 \\
z & & -2 x+y=-5
\end{array}
$$

Variational Inequalities

Discovering Generalized Skew Symmetry

- Provided with a list of linear rows and columns for the problem
- For each linear row we perform the following
- Check that the column is linear
- Reject rows having a diagonal entry
- Establish nonzero pattern is identical
- Ensure elements have the opposite signs
- Can negate rows corresponding to equalities

$$
\begin{array}{rll}
0 \leq x & \perp & x+y+z \geq 0 \\
y & & x+y+\frac{1}{3} z=4 \\
z & & 2 x-y=5
\end{array}
$$

is equivalent to

$$
\begin{array}{rll}
0 \leq x & \perp & 2 x+2 y+2 z \geq 0 \\
y & & -3 x-3 y-z=-12 \\
z & & -2 x+y=-5
\end{array}
$$

The check_skew_symmetry option will report findings and can be used to check the correctness of your formulation!

Variational Inequalities

Single Constraint Reductions

- Reductions on a single constraint include
- Singleton rows
- Doubleton rows with a column singleton
- Forcing conditions

Variational Inequalities

Single Constraint Reductions

- Reductions on a single constraint include
- Singleton rows
- Doubleton rows with a column singleton
- Forcing conditions
- An example of a singleton row

1. Complementarity problem

$$
\begin{array}{ll}
0 \leq x & \perp \\
x^{2}-y+1 \geq 0 \\
0 \leq y & \perp
\end{array} \quad x-1 \geq 0
$$

Variational Inequalities

Single Constraint Reductions

- Reductions on a single constraint include
- Singleton rows
- Doubleton rows with a column singleton
- Forcing conditions
- An example of a singleton row

1. Complementarity problem

$$
\begin{array}{ll}
0 \leq x & \perp \\
x^{2}-y+1 \geq 0 \\
0 \leq y & \perp
\end{array} \quad x-1 \geq 0
$$

2. Form equivalent polyhedral problem

$$
0 \in x^{2}+1+N_{x}(x)
$$

where $X=\{x \mid x \geq 0$ and $x \geq 1\}$

Variational Inequalities

Single Constraint Reductions

- Reductions on a single constraint include
- Singleton rows
- Doubleton rows with a column singleton
- Forcing conditions
- An example of a singleton row

1. Complementarity problem

$$
\begin{array}{ll}
0 \leq x & \perp \\
x^{2}-y+1 \geq 0 \\
0 \leq y & \perp \\
x-1 \geq 0
\end{array}
$$

2. Form equivalent polyhedral problem

$$
0 \in x^{2}+1+N_{x}(x)
$$

where $X=\{x \mid x \geq 0$ and $x \geq 1\}$
3. Recover reduced complementarity problem

$$
1 \leq x \quad \perp \quad x^{2}+1 \geq 0
$$

with the solution $x=1$

Variational Inequalities

Single Constraint Reductions

- Reductions on a single constraint include
- Singleton rows
- Doubleton rows with a column singleton
- Forcing conditions
- An example of a singleton row

1. Complementarity problem

$$
\begin{array}{ll}
0 \leq x & \perp \\
x^{2}-y+1 \geq 0 \\
0 \leq y & \perp \\
x-1 \geq 0
\end{array}
$$

2. Form equivalent polyhedral problem

$$
0 \in x^{2}+1+N_{x}(x)
$$

where $X=\{x \mid x \geq 0$ and $x \geq 1\}$
3. Recover reduced complementarity problem

$$
1 \leq x \quad \perp \quad x^{2}+1 \geq 0
$$

with the solution $x=1$
4. Compute multiplier $y=2$

Variational Inequalities

Assembling Polyhedral Sets

- Given skew symmetric rows and columns
- Reject those requiring scaling or sign changes (can be relaxed)
- Use a greedy heuristic to assemble maximal polyhedral set
- Choose a remaining skew symmetric row
- Add next row sharing some nonzero entries if possible
- Continue adding rows until no more rows can be added
- Repeat to identify multiple polyhedral sets

Variational Inequalities

Assembling Polyhedral Sets

- Given skew symmetric rows and columns
- Reject those requiring scaling or sign changes (can be relaxed)
- Use a greedy heuristic to assemble maximal polyhedral set
- Choose a remaining skew symmetric row
- Add next row sharing some nonzero entries if possible
- Continue adding rows until no more rows can be added
- Repeat to identify multiple polyhedral sets
- Reductions using polyhedral sets include
- Duplicate rows
- Implied variable bounds

Variational Inequalities

Assembling Polyhedral Sets

- Given skew symmetric rows and columns
- Reject those requiring scaling or sign changes (can be relaxed)
- Use a greedy heuristic to assemble maximal polyhedral set
- Choose a remaining skew symmetric row
- Add next row sharing some nonzero entries if possible
- Continue adding rows until no more rows can be added
- Repeat to identify multiple polyhedral sets
- Reductions using polyhedral sets include
- Duplicate rows
- Implied variable bounds
- Structure can be conveyed to capable solvers
- A primal/dual structure recovered for optimization problems
- Polyhedral variational inequalities for other problems

Variational Inequalities

Duplicate Rows Example

1. Identify the polyhedral constraints

$$
\begin{array}{llr}
0 \leq x & \perp & Q x-A^{T} \lambda+c \geq 0 \\
0 \leq y & \perp & -b^{T} \lambda+d \geq 0 \\
0 \leq z & \perp & b^{T} \lambda-d \geq 0 \\
0 \leq \lambda & \perp & A x+b y-b z \geq 0
\end{array}
$$

Variational Inequalities

Duplicate Rows Example

1. Identify the polyhedral constraints

$$
\begin{array}{llr}
0 \leq x & \perp & Q x-A^{T} \lambda+c \geq 0 \\
0 \leq y & \perp & -b^{T} \lambda+d \geq 0 \\
0 \leq z & \perp & b^{T} \lambda-d \geq 0 \\
0 \leq \lambda & \perp & A x+b y-b z \geq 0
\end{array}
$$

2. Construct the polyhedral problem

$$
\begin{aligned}
& 0 \in Q x-A^{T} \lambda+c+N_{\Re_{+}^{n}}(x) \\
& 0 \in A \lambda+c+N_{Y}(\lambda)
\end{aligned}
$$

where $Y=\left\{y \mid y \geq 0,-b^{T} y+d \geq 0\right.$, and $\left.b^{T} y-d \geq 0\right\}$

Variational Inequalities

Duplicate Rows Example

1. Identify the polyhedral constraints

$$
\begin{array}{llr}
0 \leq x & \perp & Q x-A^{T} \lambda+c \geq 0 \\
0 \leq y & \perp & -b^{T} \lambda+d \geq 0 \\
0 \leq z & \perp & b^{T} \lambda-d \geq 0 \\
0 \leq \lambda & \perp & A x+b y-b z \geq 0
\end{array}
$$

2. Construct the polyhedral problem

$$
\begin{aligned}
& 0 \in Q x-A^{T} \lambda+c+N_{\Re_{+}^{n}}(x) \\
& 0 \in A \lambda+c+N_{Y}(\lambda)
\end{aligned}
$$

where $Y=\left\{y \mid y \geq 0,-b^{T} y+d \geq 0\right.$, and $\left.b^{T} y-d \geq 0\right\}$
3. Replace the polyhedral set

$$
Y=\left\{y \mid y \geq 0 \text { and } b^{T} y-d=0\right\}
$$

Variational Inequalities

Duplicate Rows Example

1. Identify the polyhedral constraints

$$
\begin{array}{llr}
0 \leq x & \perp & Q x-A^{T} \lambda+c \geq 0 \\
0 \leq y & \perp & -b^{T} \lambda+d \geq 0 \\
0 \leq z & \perp & b^{T} \lambda-d \geq 0 \\
0 \leq \lambda & \perp & A x+b y-b z \geq 0
\end{array}
$$

2. Construct the polyhedral problem

$$
\begin{aligned}
& 0 \in Q x-A^{T} \lambda+c+N_{\Re{ }^{\Omega}}(x) \\
& 0 \in A \lambda+c+N_{Y}(\lambda)
\end{aligned}
$$

where $Y=\left\{y \mid y \geq 0,-b^{T} y+d \geq 0\right.$, and $\left.b^{T} y-d \geq 0\right\}$
3. Replace the polyhedral set

$$
Y=\left\{y \mid y \geq 0 \text { and } b^{T} y-d=0\right\}
$$

4. Recover reduced mixed complementarity problem

$$
\begin{array}{rlr}
0 \leq x & \perp & Q x-A^{T} \lambda+c \geq 0 \\
y & & -b^{T} \lambda+d=0 \\
0 \leq \lambda & \perp & A x+b y \geq 0
\end{array}
$$

Variational Inequalities

Summary

- Critical for preprocessing to correctly match equations and variables
- Automatically performing a good match is difficult
- Modeler knows their problem and should convey the match

Variational Inequalities

Summary

- Critical for preprocessing to correctly match equations and variables
- Automatically performing a good match is difficult
- Modeler knows their problem and should convey the match
- Skew symmetric form of optimality conditions is essential
- Needed to construct polyhedral variational inequalities
- Check your model to obtain a report on skew symmetry check_skew_symmetry yes

Variational Inequalities

Summary

- Critical for preprocessing to correctly match equations and variables
- Automatically performing a good match is difficult
- Modeler knows their problem and should convey the match
- Skew symmetric form of optimality conditions is essential
- Needed to construct polyhedral variational inequalities
- Check your model to obtain a report on skew symmetry check_skew_symmetry yes
- Reductions may determine model is infeasible
- Infeasible models should be fixed by the modeler
- List of preprocessing reductions can be obtained output_presolve_level 3

Section 4

Block Structure

Block Structure

Example

- Exploitation requires structural identification

x	x	0	0	0	0	0
x	x	0	0	0	0	0
\times	0	x	x	x	0	0
x	0	x	x	x	0	0
x	0	x	x	x	0	0
0	0	0	0	0	x	x
x	0	x	x	x	x	x

Block Structure

Example

- Exploitation requires structural identification

x	x	0	0	0	0	0
x	x	0	0	0	0	0
x	0	x	x	x	0	0
x	0	x	x	x	0	0
x	0	x	x	x	0	0
0	0	0	0	0	x	x
x	0	x	x	x	x	x

- Focus on small block sizes (at most 3×3)
- Start from a single row
- Add constraints for variables
- Stop when no constraints to add or block too big
- Equations removed via Schur complement when possible

Block Structure

Example

- Exploitation requires structural identification

x	x	0	0	0	0	0
x	x	0	0	0	0	0
x	0	x	x	x	0	0
x	0	x	x	x	0	0
x	0	x	x	x	0	0
0	0	0	0	0	x	x
x	0	x	x	x	x	x

- Focus on small block sizes (at most 3×3)
- Start from a single row
- Add constraints for variables
- Stop when no constraints to add or block too big
- Equations removed via Schur complement when possible
- Apply reductions
- Preblocks use uniqueness arguments
- Postblocks use existence arguments

Block Structure

Example

- Exploitation requires structural identification

x	x	0	0	0	0	0
x	x	0	0	0	0	0
x	0	x	x	x	0	0
x	0	x	x	x	0	0
x	0	x	x	x	0	0
0	0	0	0	0	x	x
x	0	x	x	x	x	x

- Focus on small block sizes (at most 3×3)
- Start from a single row
- Add constraints for variables
- Stop when no constraints to add or block too big
- Equations removed via Schur complement when possible
- Apply reductions
- Preblocks use uniqueness arguments
- Postblocks use existence arguments
- Matrix classes form the foundation for these methods

Block Structure

Preblocks and Uniqueness

- Small linear complementarity problem

$$
0 \leq x \leq u \quad \perp \quad M x+q
$$

- Existence and uniqueness for fixed vector q

Block Structure

Preblocks and Uniqueness

- Small linear complementarity problem

$$
0 \leq x \leq u \quad \perp \quad M x+q
$$

- Existence and uniqueness for fixed vector q
- Partial uniqueness for fixed vector q
- Remaining problem does not rely on non-unique components
- Remaining block can be reformulated

Block Structure

Preblocks and Uniqueness

- Small linear complementarity problem

$$
0 \leq x \leq u \quad \perp \quad M x+q
$$

- Existence and uniqueness for fixed vector q
- Partial uniqueness for fixed vector q
- Remaining problem does not rely on non-unique components
- Remaining block can be reformulated
- Computational method is applied for 2×2 blocks
- Compute all solutions
- Eliminate if solution is unique
- Check compact reformulation if not unique

Block Structure

Preblocks and Uniqueness

- Small linear complementarity problem

$$
0 \leq x \leq u \quad \perp \quad M x+q
$$

- Existence and uniqueness for fixed vector q
- Partial uniqueness for fixed vector q
- Remaining problem does not rely on non-unique components
- Remaining block can be reformulated
- Computational method is applied for 2×2 blocks
- Compute all solutions
- Eliminate if solution is unique
- Check compact reformulation if not unique
- For larger preblock matrices
- Test for P matrix
- Compute unique solution and eliminate

Block Structure

Postblocks and Existence

- Small linear complementarity problem

$$
0 \leq x \leq u \quad \perp \quad M x+Q
$$

- Existence for fixed set Q (lower and upper function bounds)

Block Structure

Postblocks and Existence

- Small linear complementarity problem

$$
0 \leq x \leq u \quad \perp \quad M x+Q
$$

- Existence for fixed set Q (lower and upper function bounds)
- Computational method can be applied for 2×2 blocks
- Evaluate each subproblem
- Determine sets for which solution exists
- If Q is a subset of the union, then eliminate
- Otherwise, compute Q for which no solution exists
- Use information to (sometimes) restrict remaining variables

Block Structure

Postblocks and Existence

- Small linear complementarity problem

$$
0 \leq x \leq u \quad \perp \quad M x+Q
$$

- Existence for fixed set Q (lower and upper function bounds)
- Computational method can be applied for 2×2 blocks
- Evaluate each subproblem
- Determine sets for which solution exists
- If Q is a subset of the union, then eliminate
- Otherwise, compute Q for which no solution exists
- Use information to (sometimes) restrict remaining variables
- For larger postblock matrices
- Existence of trivial solution when $Q \geq 0$
- Generalize condition for upper bounds
- Existence for compact sets $0 \leq x \leq u<\infty$
- Otherwise test for strictly semimonotone matrix

Block Structure

Embedded Blocks and Forcing Conditions

- Determine subproblems with unique solution
- Find a small index set α such that $M_{\alpha, \alpha}$ is strictly semimonotone
- Determine possible right-hand sides Q_{α}
- If $Q_{\alpha} \geq 0$, then fix $x_{\alpha}=0$ and eliminate

Block Structure

Embedded Blocks and Forcing Conditions

- Determine subproblems with unique solution
- Find a small index set α such that $M_{\alpha, \alpha}$ is strictly semimonotone
- Determine possible right-hand sides Q_{α}
- If $Q_{\alpha} \geq 0$, then fix $x_{\alpha}=0$ and eliminate
- All strictly semimonotone 2×2 matrices
- Positive diagonal for singletons
- Positive diagonals with one positive off diagonal for doubletons
- Positive diagonals with positive determinant for doubletons
- Identification based the Jacobian structure

Block Structure

Embedded Blocks and Forcing Conditions

- Determine subproblems with unique solution
- Find a small index set α such that $M_{\alpha, \alpha}$ is strictly semimonotone
- Determine possible right-hand sides Q_{α}
- If $Q_{\alpha} \geq 0$, then fix $x_{\alpha}=0$ and eliminate
- All strictly semimonotone 2×2 matrices
- Positive diagonal for singletons
- Positive diagonals with one positive off diagonal for doubletons
- Positive diagonals with positive determinant for doubletons
- Identification based the Jacobian structure
- Currently implemented only for singleton subproblems

Block Structure

- Matrix classes are foundational in preprocessing blocks
- Evaluate small blocks - brute force is possible
- Otherwise look for identifiable submatrices
- P matrices
- Small strictly semimonotone matrices
- Make improvements to the model
- Only some rules are enabled by default
- More expensive rules turned on with options

Block Structure

- Matrix classes are foundational in preprocessing blocks
- Evaluate small blocks - brute force is possible
- Otherwise look for identifiable submatrices
- P matrices
- Small strictly semimonotone matrices
- Make improvements to the model
- Only some rules are enabled by default
- More expensive rules turned on with options
- Reductions may determine model is infeasible
- Infeasible models should be fixed by the modeler
- List of preprocessing reductions can be obtained output_presolve_level 3

Other Preprocessing Operations

- Duplicate rows
- Duplicate columns
- Inequality based reductions
- Forcing conditions
- Complicated by preserving squareness and no side inequalities
- Iterative procedure that constructs implications
- Analogous to logic tables in integer programs
- Implied bounds

Other Preprocessing Operations

- Duplicate rows
- Duplicate columns
- Inequality based reductions
- Forcing conditions
- Complicated by preserving squareness and no side inequalities
- Iterative procedure that constructs implications
- Analogous to logic tables in integer programs
- Implied bounds

Analysis can be very complicated!

Section 5

Diagnostics

Diagnostics

Produce Simple Report

```
INITIAL POINT STATISTICS
Maximum of X. . . . . . . . . . 3.0000e+02 var: (x(seattle,chicago))
Maximum of F. . . . . . . . . . 3.8922e+02 eqn: (prdemand(chicago))
Maximum of Grad F . . . . . . . 1.0811e+04 eqn: (prdemand(chicago))
    var: (p(chicago))
INITIAL JACOBIAN NORM STATISTICS
Maximum Row Norm. . . . . . . . 1.0813e+04 eqn: (prdemand(chicago))
Minimum Row Norm. . . . . . . . 2.0000e+00 eqn: (profit(seattle,new-york))
Maximum Column Norm . . . . . . 1.0813e+04 var: (p(chicago))
Minimum Column Norm . . . . . . 2.0000e+00 var: (x(seattle,new-york))
```


Summary

- Critical for preprocessing to correctly match equations and variables
- Automatically performing a good match is difficult
- Modeler knows their problem and should convey the match

Summary

- Critical for preprocessing to correctly match equations and variables
- Automatically performing a good match is difficult
- Modeler knows their problem and should convey the match
- Skew symmetric form of optimality conditions is essential
- Needed to construct polyhedral variational inequalities
- Check your model to obtain a report on skew symmetry
check_skew_symmetry yes

Summary

- Critical for preprocessing to correctly match equations and variables
- Automatically performing a good match is difficult
- Modeler knows their problem and should convey the match
- Skew symmetric form of optimality conditions is essential
- Needed to construct polyhedral variational inequalities
- Check your model to obtain a report on skew symmetry check_skew_symmetry yes
- Matrix classes are foundational in preprocessing blocks
- Evaluate small blocks - brute force is possible
- Otherwise look for identifiable submatrices

Summary

- Critical for preprocessing to correctly match equations and variables
- Automatically performing a good match is difficult
- Modeler knows their problem and should convey the match
- Skew symmetric form of optimality conditions is essential
- Needed to construct polyhedral variational inequalities
- Check your model to obtain a report on skew symmetry
check_skew_symmetry yes
- Matrix classes are foundational in preprocessing blocks
- Evaluate small blocks - brute force is possible
- Otherwise look for identifiable submatrices
- Reductions may determine model is infeasible
- Infeasible models should be fixed by the modeler
- List of preprocessing reductions can be obtained
output_presolve_level 3
- Analysis can be very complicated!

Summary

- Critical for preprocessing to correctly match equations and variables
- Automatically performing a good match is difficult
- Modeler knows their problem and should convey the match
- Skew symmetric form of optimality conditions is essential
- Needed to construct polyhedral variational inequalities
- Check your model to obtain a report on skew symmetry
check_skew_symmetry yes
- Matrix classes are foundational in preprocessing blocks
- Evaluate small blocks - brute force is possible
- Otherwise look for identifiable submatrices
- Reductions may determine model is infeasible
- Infeasible models should be fixed by the modeler
- List of preprocessing reductions can be obtained output_presolve_level 3
- Analysis can be very complicated!
- Diagnostics can help identify scaling problems

Part III

Solving Complementarity Problems

Motivation

Given an analyzed complementarity problem:

- What numerical methods are available?
- How does one know a solution is computed?
- What can be done to address any issues uncovered?

Motivation

Given an analyzed complementarity problem:

- What numerical methods are available?
- How does one know a solution is computed?
- What can be done to address any issues uncovered?

Based on PATH solver with specified options

Section 6

Numerical Methods

Numerical Methods

- Sequential linearization methods (PATH)

1. Solve the linear complementarity problem

$$
0 \leq x \quad \perp \quad F\left(x_{k}\right)+\nabla F\left(x_{k}\right)\left(x-x_{k}\right) \geq 0
$$

2. Perform a line search along merit function
3. Repeat until convergence

Numerical Methods

- Sequential linearization methods (PATH)

1. Solve the linear complementarity problem

$$
0 \leq x \quad \perp \quad F\left(x_{k}\right)+\nabla F\left(x_{k}\right)\left(x-x_{k}\right) \geq 0
$$

2. Perform a line search along merit function
3. Repeat until convergence

- Semismooth reformulation methods (SEMI)
- Solve linear system of equations to obtain direction
- Globalize with a trust region or line search
- Interior-point methods

Numerical Methods

Semismooth Reformulation

- Define Fischer-Burmeister function

$$
\phi(a, b):=a+b-\sqrt{a^{2}+b^{2}}
$$

- $\phi(a, b)=0$ iff $a \geq 0, b \geq 0$, and $a b=0$
- Define the system

$$
[\Phi(x)]_{i}=\phi\left(x_{i}, F_{i}(x)\right)
$$

- x^{*} solves complementarity problem iff $\Phi\left(x^{*}\right)=0$
- Nonsmooth system of equations

Numerical Methods

Semismooth Algorithm

1. Calculate $H^{k} \in \partial_{B} \Phi\left(x^{k}\right)$ and solve the following system for d^{k} :

$$
H^{k} d^{k}=-\Phi\left(x^{k}\right)
$$

If this system either has no solution, or

$$
\nabla \Psi\left(x^{k}\right)^{T} d^{k} \leq-p_{1}\left\|d^{k}\right\|^{p_{2}}
$$

is not satisfied, let $d^{k}=-\nabla \Psi\left(x^{k}\right)$.

Numerical Methods

1. Calculate $H^{k} \in \partial_{B} \Phi\left(x^{k}\right)$ and solve the following system for d^{k} :

$$
H^{k} d^{k}=-\Phi\left(x^{k}\right)
$$

If this system either has no solution, or

$$
\nabla \Psi\left(x^{k}\right)^{T} d^{k} \leq-p_{1}\left\|d^{k}\right\|^{p_{2}}
$$

is not satisfied, let $d^{k}=-\nabla \Psi\left(x^{k}\right)$.
2. Compute smallest nonnegative integer i^{k} such that

$$
\Psi\left(x^{k}+\beta^{i^{k}} d^{k}\right) \leq \Psi\left(x^{k}\right)+\sigma \beta^{i^{k}} \nabla \Psi\left(x^{k}\right) d^{k}
$$

3. Set $x^{k+1}=x^{k}+\beta^{i^{k}} d^{k}, k=k+1$, and go to 1 .

Section 7

PATH Algorithm

PATH Algorithm

1. Crash a basis and determine proximal point
2. Solve the linearized complementarity problem
3. Perform a search with semismooth merit function
4. Restart with different options when the method fails

PATH Algorithm

Crashing a Basis

- Compute reduced problem

$$
\begin{aligned}
J_{1} & =\left\{i \mid \ell_{i}<x_{i}<u_{i}\right\} \\
J_{2} & =\left\{i \mid \ell_{i}=x_{i} \text { and } F_{i}(x)<0\right\} \\
J_{3} & =\left\{i \mid u_{i}=x_{i} \text { and } F_{i}(x)>0\right\} \\
J & =J_{1} \cup J_{2} \cup J_{3}
\end{aligned}
$$

- Calculate modified direction

$$
[\nabla F(x)+\mu I]_{J, J} d_{J}=-F_{J}(x)
$$

- Perturbation $\mu>0$ chosen to prevent singularity
- Search along direction to minimize merit function
- Update x, μ and repeat

Relevant options: crash_method and crash_perturb.

PATH Algorithm

Solving Linearization

- Variant of Lemke's method for solving

$$
0 \in M x+q+N_{B}(x)
$$

- Construct a piecewise linear path
- Simplex method with complementarity pivoting

PATH Algorithm

Solving Linearization

- Variant of Lemke's method for solving

$$
0 \in M x+q+N_{B}(x)
$$

- Construct a piecewise linear path
- Simplex method with complementarity pivoting
- Regular starts
- Given initial starting point x^{k}
- Construct invertible basis
- Track path from x^{k} to \bar{x}^{k}
- Piecewise linear path may cycle

PATH Algorithm

- Variant of Lemke's method for solving

$$
0 \in M x+q+N_{B}(x)
$$

- Construct a piecewise linear path
- Simplex method with complementarity pivoting
- Regular starts
- Given initial starting point x^{k}
- Construct invertible basis
- Track path from x^{k} to \bar{x}^{k}
- Piecewise linear path may cycle
- Lemke ray starts
- Start from a ray
- Path does not cycle for nondegenerate problems
- Many pivots usually required from all slack basis
- Advanced basis can be chosen to reduce pivots
- Used during first major iteration if solve fails

Relevant options: lemke_start and lemke_start_type.

PATH Algorithm

Linear Method I

1. Check given basis for rank deficiency

- Eliminate linearly dependent columns
- Replace with slack or artificial variables
- If process fails, then use all slack basis

2. Construct covering vector that enters basis
3. Determine leaving variable by ratio test

- Expand and devex ratio tests implemented
- Priority assigned to artificial variables
- If no leaving variable, then stop with ray termination

4. Determine entering variable by complementarity pivoting

- If x_{i} leaves basis, then corresponding slack enters
- If slack leaves basis, then corresponding x_{i} enters
- If covering vector leaves basis, then stop at solution

PATH Algorithm

5. Check for cycling in piecewise linear path

- Count number of times variable enters basis
- Reset counters when
- Artificial variable leaves basis
- Homotopy parameter larger than previous maximum
- If count larger than threshold, then stop with cycling

6. If iteration limit reached, then stop
7. Go to Step 3
8. Refine solution

- Project nonbasic variables onto bounds
- Refactor the basis
- Compute values for the basic variables
- Project basic variables onto bounds

PATH Algorithm

Linear Algebra and Options

- LUSOL used for factorization and updates (Saunders)
- Markovitz strategy for pivot selection
- Threshold partial pivoting
- Sparse rank-1 updates
- Relevant tolerance options
- factorization_small_tolerance
- factorization_pivot_tolerance
- factorization_zero_tolerance
- factorization_update_limit
- Diagnosing rank deficiency
- output_warnings
- output_factorization_singularities
- Cycling and artificial variables
- output_minor_iteration_frequency

PATH Algorithm

Additional Details

- Scale the linear problems

PATH Algorithm

Additional Details

- Scale the linear problems
- Globalize with Fischer-Burmeister merit function
- Nonmonotone search with watchdog strategy
- Gradient steps used when direction is not good
- Projections onto box within search

PATH Algorithm

Additional Details

- Scale the linear problems
- Globalize with Fischer-Burmeister merit function
- Nonmonotone search with watchdog strategy
- Gradient steps used when direction is not good
- Projections onto box within search
- Apply proximal point with resets
- Used to deal with singularity problems
- Modifies nonlinear problem with diagonal perturbation
- Reset when difficulty encountered by linear solver

PATH Algorithm

Additional Details

- Scale the linear problems
- Globalize with Fischer-Burmeister merit function
- Nonmonotone search with watchdog strategy
- Gradient steps used when direction is not good
- Projections onto box within search
- Apply proximal point with resets
- Used to deal with singularity problems
- Modifies nonlinear problem with diagonal perturbation
- Reset when difficulty encountered by linear solver
- Use spacer steps performed after each major iteration

PATH Algorithm

Additional Details

- Scale the linear problems
- Globalize with Fischer-Burmeister merit function
- Nonmonotone search with watchdog strategy
- Gradient steps used when direction is not good
- Projections onto box within search
- Apply proximal point with resets
- Used to deal with singularity problems
- Modifies nonlinear problem with diagonal perturbation
- Reset when difficulty encountered by linear solver
- Use spacer steps performed after each major iteration
- Restart when necessary
- Detect when algorithm is stalling
- Restart algorithm with alternate options

Most relevant options: nms_mstep_frequency and nms_memory_size.

PATH Algorithm

Merit Functions

- Many merit functions can be used to measure progress
- Complementarity error: \|($\left.-x_{+}\right),(-F(x))_{+}, x_{+} \odot F(x)_{+} \|$
- Normal map: $\left\|F\left(x_{+}\right)+x-x_{+}\right\|$
- Minimum map: $\|\min \{x, F(x)\}\|$
- Fischer-Burmeister function: \| $\mid(x, F(x)) \|$
- Gradient of Fischer-Burmeister function: $\nabla\left[\frac{1}{2}\|\Phi(x, F(x))\|_{2}^{2}\right]$

PATH Algorithm

Merit Functions

- Many merit functions can be used to measure progress
- Complementarity error: $\left\|\left(-x_{+}\right),(-F(x))_{+}, x_{+} \odot F(x)_{+}\right\|$
- Normal map: $\left\|F\left(x_{+}\right)+x-x_{+}\right\|$
- Minimum map: $\|\min \{x, F(x)\}\|$
- Fischer-Burmeister function: \| $\Phi(x, F(x)) \|$
- Gradient of Fischer-Burmeister function: $\nabla\left[\frac{1}{2}\|\Phi(x, F(x))\|_{2}^{2}\right]$
- Observe vastly different values for some problems
- Particularly when $x \rightarrow \infty$ or $F(x) \rightarrow \infty$
- Can happen when domain violations occur at solution

PATH Algorithm

Merit Functions

- Many merit functions can be used to measure progress
- Complementarity error: \|($\left.-x_{+}\right),(-F(x))_{+}, x_{+} \odot F(x)_{+} \|$
- Normal map: $\left\|F\left(x_{+}\right)+x-x_{+}\right\|$
- Minimum map: $\|\min \{x, F(x)\}\|$
- Fischer-Burmeister function: \| $\mid(x, F(x)) \|$
- Gradient of Fischer-Burmeister function: $\nabla\left[\frac{1}{2}\|\Phi(x, F(x))\|_{2}^{2}\right]$
- Observe vastly different values for some problems
- Particularly when $x \rightarrow \infty$ or $F(x) \rightarrow \infty$
- Can happen when domain violations occur at solution
- Want all to be near zero to trust the solution

```
Inf-Norm of Complementarity . . 1.0311e-11 eqn: (profit(san-diego,new-york))
Inf-Norm of Normal Map. . . . . 1.1369e-13 eqn: (prdemand(new-york))
Inf-Norm of Minimum Map . . . . 1.1369e-13 eqn: (prdemand(new-york))
Inf-Norm of Fischer Function. . 1.1369e-13 eqn: (prdemand(new-york))
Inf-Norm of Grad Fischer Fcn. . 2.4809e-10 eqn: (prdemand(topeka))
Two-Norm of Grad Fischer Fcn. . 3.4958e-10
```


PATH Algorithm

Convergence Behaviors

- Superlinear/quadratic convergence - best outcome

PATH Algorithm

Convergence Behaviors

- Superlinear/quadratic convergence - best outcome
- Linear convergence
- Far from a solution - merit function is large
- Jacobian is incorrect - disrupts quadratic convergence
- Jacobian is rank deficient - gradient of merit function is small
- Converge to local minimizer - guarantees rank deficiency
- Limits of finite precision arithmetic

1. Merit function converges quadratically to small number
2. Merit function hovers around that number with no progress

PATH Algorithm

Convergence Behaviors

- Superlinear/quadratic convergence - best outcome
- Linear convergence
- Far from a solution - merit function is large
- Jacobian is incorrect - disrupts quadratic convergence
- Jacobian is rank deficient - gradient of merit function is small
- Converge to local minimizer - guarantees rank deficiency
- Limits of finite precision arithmetic

1. Merit function converges quadratically to small number
2. Merit function hovers around that number with no progress

- Domain violations - excessive backtracking in line search

Summary I

- Always ensure functions and Jacobians are defined
- Confront and reformulate at the modeling stage
- Report remaining domain violations to solver
- Provide a good starting point

Summary I

- Always ensure functions and Jacobians are defined
- Confront and reformulate at the modeling stage
- Report remaining domain violations to solver
- Provide a good starting point
- Always match equations to appropriate variables
- Automatically performing a good match is difficult
- Modeler knows their problem and should convey the match
- Required for effective preprocessing

Summary I

- Always ensure functions and Jacobians are defined
- Confront and reformulate at the modeling stage
- Report remaining domain violations to solver
- Provide a good starting point
- Always match equations to appropriate variables
- Automatically performing a good match is difficult
- Modeler knows their problem and should convey the match
- Required for effective preprocessing
- Always prefer a monotone formulation over other formulations
- Use skew symmetric version of optimality conditions
- Required for preprocessing and proximal perturbation
- Check the skew symmetry report when in doubt

Summary II

- Analysis may determine model is infeasible
- Infeasible models should be fixed by the modeler
- List of preprocessing reductions can be obtained

Summary II

- Analysis may determine model is infeasible
- Infeasible models should be fixed by the modeler
- List of preprocessing reductions can be obtained
- Use scaling when appropriate
- Any consistent scaling for optimization problems
- Symmetric diagonal scaling for complementarity problems
- Beware when using unscaled solution!

Summary II

- Analysis may determine model is infeasible
- Infeasible models should be fixed by the modeler
- List of preprocessing reductions can be obtained
- Use scaling when appropriate
- Any consistent scaling for optimization problems
- Symmetric diagonal scaling for complementarity problems
- Beware when using unscaled solution!
- Rank deficiency can still be an issue
- Solver can sometimes identify and eliminate dependencies
- Solver may add a positive diagonal perturbation
- Use linear algebra options to obtain report

Summary II

- Analysis may determine model is infeasible
- Infeasible models should be fixed by the modeler
- List of preprocessing reductions can be obtained
- Use scaling when appropriate
- Any consistent scaling for optimization problems
- Symmetric diagonal scaling for complementarity problems
- Beware when using unscaled solution!
- Rank deficiency can still be an issue
- Solver can sometimes identify and eliminate dependencies
- Solver may add a positive diagonal perturbation
- Use linear algebra options to obtain report
- Always check the solution reported
- Look for convergence issues in the iteration log
- Make sure all the merit functions are close to zero

