Model-Method Iteration: Solving Good Problems and Detecting Bad Ones

Todd Munson

Mathematics and Computer Science Division Argonne National Laboratory

August 4, 2014

Focus on complementarity problems with equalities

$$\begin{array}{rrr} 0 \leq x & \perp & F(x,y) \geq 0 \\ y & & G(x,y) = 0 \end{array}$$

where $F : \Re^{n+m} \to n$ and $G : \Re^{n+m} \to m$ are continuously differentiable.

Focus on complementarity problems with equalities

$$0 \le x \perp F(x,y) \ge 0$$

 $y \qquad G(x,y) = 0$

where $F : \Re^{n+m} \to n$ and $G : \Re^{n+m} \to m$ are continuously differentiable.

Good algorithms couple a Newton method to a globalization strategy.

PATH solves mixed linear complementarity problems

$$\begin{array}{rrrr} 0 \leq x & \bot & Mx + Ny + q \geq 0 \\ y & Ax + By + c = 0 \end{array}$$

with a line search on a suitable merit function.

Focus on complementarity problems with equalities

$$0 \le x \perp F(x,y) \ge 0$$

 $y \qquad G(x,y) = 0$

where $F : \Re^{n+m} \to n$ and $G : \Re^{n+m} \to m$ are continuously differentiable.

Good algorithms couple a Newton method to a globalization strategy.

PATH solves mixed linear complementarity problems

$$\begin{array}{rrrr} 0 \leq x & \perp & Mx + Ny + q \geq 0 \\ y & Ax + By + c = 0 \end{array}$$

with a line search on a suitable merit function.

▶ In great models, B^{-1} exists and $M - NB^{-1}A$ is positive semidefinite.

Focus on complementarity problems with equalities

$$0 \le x \perp F(x,y) \ge 0$$

 $y \qquad G(x,y) = 0$

where $F : \Re^{n+m} \to n$ and $G : \Re^{n+m} \to m$ are continuously differentiable.

Good algorithms couple a Newton method to a globalization strategy.

PATH solves mixed linear complementarity problems

$$\begin{array}{rrrr} 0 \leq x & \perp & Mx + Ny + q \geq 0 \\ y & & Ax + By + c = 0 \end{array}$$

with a line search on a suitable merit function.

- ▶ In great models, B^{-1} exists and $M NB^{-1}A$ is positive semidefinite.
- In good models, $(B + \delta I)^{-1}$ exists and

$$M + \delta I - N(B + \delta I)^{-1}A$$

is positive definite for any $\delta > 0$.

Outline

- 1. Modeling Complementarity Problems
- 2. Analyzing Complementarity Problems
- 3. Solving Complementarity Problems

Part I

Modeling Complementarity Problems

Motivation

- What constitutes a good model?
- How are they constructed?
- ► Why are they good?

Relevant for most of the available algorithms

Section 1

Linear Problems

Problem Specification

- Players select strategies to minimize expected loss
 - ▶ $p \in \Re^n$ is the probability player 1 chooses each strategy
 - ▶ $q \in \Re^m$ is the probability player 2 chooses each strategy
 - $A \in \Re^{n imes m}$ is the loss matrix for player 1
 - $B \in \Re^{m imes n}$ is the loss matrix for player 2

Problem Specification

- Players select strategies to minimize expected loss
 - ▶ $p \in \Re^n$ is the probability player 1 chooses each strategy
 - ▶ $q \in \Re^m$ is the probability player 2 chooses each strategy
 - $A \in \Re^{n imes m}$ is the loss matrix for player 1
 - $B \in \Re^{m \times n}$ is the loss matrix for player 2

• Optimization problem for player 1 given q^*

$$\min_{\substack{0 \le p \\ \text{subject to}}} p^T A q^*$$

Problem Specification

- Players select strategies to minimize expected loss
 - ▶ $p \in \Re^n$ is the probability player 1 chooses each strategy
 - ▶ $q \in \Re^m$ is the probability player 2 chooses each strategy
 - $A \in \Re^{n imes m}$ is the loss matrix for player 1
 - $B \in \Re^{m \times n}$ is the loss matrix for player 2

• Optimization problem for player 1 given q^*

$$egin{array}{ccc} \min & p^{\mathcal{T}}Aq^* \ \mathbb{subject} ext{ to } e^{\mathcal{T}}p = 1 \end{array}$$

• Optimization problem for player 2 given p^*

$$\min_{\substack{0 \leq q \ }} q^T B p^*$$

subject to $e^T q = 1$

Mixed Complementarity Formulations

Assemble first-order optimality conditions

$$egin{array}{rcl} 0 \leq p & \perp & Aq - \lambda_1 \geq 0 \ 0 \leq q & \perp & Bp - \lambda_2 \geq 0 \ \lambda_1 & e^{\mathsf{T}}p = 1 \ \lambda_2 & e^{\mathsf{T}}q = 1 \end{array}$$

Mixed Complementarity Formulations

Assemble first-order optimality conditions

$$egin{array}{rcl} 0 \leq p & \perp & Aq - \lambda_1 \geq 0 \ 0 \leq q & \perp & Bp - \lambda_2 \geq 0 \ \lambda_1 & e^T p = 1 \ \lambda_2 & e^T q = 1 \end{array}$$

Equivalent formulation (negative multipliers)

$$\begin{array}{rrrr} 0 \leq p & \perp & Aq + \lambda_1 \geq 0 \\ 0 \leq q & \perp & Bp + \lambda_2 \geq 0 \\ \lambda_1 & e^T p = 1 \\ \lambda_2 & e^T q = 1 \end{array}$$

Equation Sign Important

For hard models, solvers will add a diagonal perturbation to regularize the model. They generally employ a single positive perturbation independent of the structure of *your* particular problem.

First formulation can be a good model

$$\begin{array}{rcl} 0 \leq x & \perp & (M + \delta I)x - A^{T}\lambda + q \geq 0 \\ \lambda & & Ax + \delta\lambda + b = 0 \end{array}$$

has the reduced formulation

$$0 \leq x \perp (M + \delta I + \frac{1}{\delta} A^T A) x + q + \frac{1}{\delta} A^T b \geq 0$$

that inherits the properties of M.

Equation Sign Important

For hard models, solvers will add a diagonal perturbation to regularize the model. They generally employ a single positive perturbation independent of the structure of *your* particular problem.

Second formulation is not a good model

$$\begin{array}{rcl} 0 \leq x & \perp & (M + \delta I)x + A^{T}\lambda + q \geq 0 \\ \lambda & & Ax + \delta\lambda + b = 0 \end{array}$$

has reduced formulation

$$0 \leq x \perp (M + \delta I - \frac{1}{\delta} A^T A) x + q - \frac{1}{\delta} A^T b \geq 0$$

that does not inherit properties of M.

A Family of Equivalent Problems

- Players select strategies to minimize expected loss
 - ▶ $p \in \Re^n$ is the probability player 1 chooses each strategy
 - ▶ $q \in \Re^m$ is the probability player 2 chooses each strategy
 - $A \in \Re^{n imes m}$ is the loss matrix for player 1
 - $B \in \Re^{m imes n}$ is the loss matrix for player 2

A Family of Equivalent Problems

- Players select strategies to minimize expected loss
 - ▶ $p \in \Re^n$ is the probability player 1 chooses each strategy
 - ▶ $q \in \Re^m$ is the probability player 2 chooses each strategy
 - $A \in \Re^{n imes m}$ is the loss matrix for player 1
 - $B \in \Re^{m \times n}$ is the loss matrix for player 2

• Optimization problem for player 1 given q^*

$$\min_{\substack{0 \le p \\ \text{subject to}}} p^T (A + \alpha_2 E) q$$

A Family of Equivalent Problems

- Players select strategies to minimize expected loss
 - ▶ $p \in \Re^n$ is the probability player 1 chooses each strategy
 - ▶ $q \in \Re^m$ is the probability player 2 chooses each strategy
 - $A \in \Re^{n imes m}$ is the loss matrix for player 1
 - $B \in \Re^{m \times n}$ is the loss matrix for player 2

• Optimization problem for player 1 given q^*

$$\min_{\substack{0 \le p \\ \text{subject to}}} p^T (A + \alpha_2 E) q^{*}$$

• Optimization problem for player 2 given p^*

$$\min_{0 \le q} \quad q^T (B + \alpha_1 E) p^*$$
subject to $e^T q = 1$

Knowledge is Not Always Power

If $A + \alpha_2 E < 0$ and $B + \alpha_1 E < 0$, then

$$egin{array}{rcl} 0 \leq p & ot & (A+lpha_2 E)q+\lambda_1 \geq 0 \ 0 \leq q & ot & (B+lpha_1 E)p+\lambda_2 \geq 0 \ \lambda_1 & e^T p = 1 \ \lambda_2 & e^T q = 1 \end{array}$$

is equivalent to

$$\begin{array}{lll} 0 \leq p & \perp & (A + \alpha_2 E)q + \lambda_1 \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E)p + \lambda_2 \geq 0 \\ 0 \leq \lambda_1 & \perp & e^T p - 1 \geq 0 \\ 0 \leq \lambda_2 & \perp & e^T q - 1 \geq 0 \end{array}$$

Knowledge is Not Always Power

If $A + \alpha_2 E < 0$ and $B + \alpha_1 E < 0$, then

$$\begin{array}{rcl} 0 \leq p & \perp & (A + \alpha_2 E)q + \lambda_1 \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E)p + \lambda_2 \geq 0 \\ \lambda_1 & e^T p = 1 \\ \lambda_2 & e^T q = 1 \end{array}$$

is equivalent to

$$\begin{array}{rcl} 0 \leq p & \perp & (A + \alpha_2 E)q + \lambda_1 \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E)p + \lambda_2 \geq 0 \\ 0 \leq \lambda_1 & \perp & e^T p - 1 \geq 0 \\ 0 \leq \lambda_2 & \perp & e^T q - 1 \geq 0 \end{array}$$

which can be further reduced to finding nonzero p and q with

$$\begin{array}{rrr} 0 \leq p & \perp & (A + \alpha_2 E)q + e \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E)p + e \geq 0 \end{array}$$

Knowledge is Not Always Power

If $A + \alpha_2 E < 0$ and $B + \alpha_1 E < 0$, then

$$\begin{array}{rcl} 0 \leq p & \perp & (A + \alpha_2 E)q + \lambda_1 \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E)p + \lambda_2 \geq 0 \\ \lambda_1 & e^T p = 1 \\ \lambda_2 & e^T q = 1 \end{array}$$

is equivalent to

$$\begin{array}{rcl} 0 \leq p & \perp & (A + \alpha_2 E)q + \lambda_1 \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E)p + \lambda_2 \geq 0 \\ 0 \leq \lambda_1 & \perp & e^T p - 1 \geq 0 \\ 0 \leq \lambda_2 & \perp & e^T q - 1 \geq 0 \end{array}$$

which can be further reduced to finding nonzero p and q with

$$\begin{array}{rcl} 0 \leq p & \perp & (A + \alpha_2 E)q + e \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E)p + e \geq 0 \end{array}$$

and the matrix class is not pleasant.

Knowledge is Sometimes Power

If $A + \alpha_2 E > 0$ and $B + \alpha_1 E > 0$, then

$$egin{array}{rcl} 0 \leq p & ot & (A+lpha_2 E)q - \lambda_1 \geq 0 \ 0 \leq q & ot & (B+lpha_1 E)p - \lambda_2 \geq 0 \ \lambda_1 & e^T p = 1 \ \lambda_2 & e^T q = 1 \end{array}$$

is equivalent to

$$\begin{array}{lll} 0 \leq p & \perp & (A + \alpha_2 E)q - \lambda_1 \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E)p - \lambda_2 \geq 0 \\ 0 \leq \lambda_1 & \perp & e^T p - 1 \geq 0 \\ 0 \leq \lambda_2 & \perp & e^T q - 1 \geq 0 \end{array}$$

Knowledge is Sometimes Power

If $A + \alpha_2 E > 0$ and $B + \alpha_1 E > 0$, then

$$\begin{array}{rcl} 0 \leq p & \perp & (A + \alpha_2 E)q - \lambda_1 \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E)p - \lambda_2 \geq 0 \\ \lambda_1 & e^T p = 1 \\ \lambda_2 & e^T q = 1 \end{array}$$

is equivalent to

$$\begin{array}{rcl} 0 \leq p & \perp & (A + \alpha_2 E)q - \lambda_1 \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E)p - \lambda_2 \geq 0 \\ 0 \leq \lambda_1 & \perp & e^T p - 1 \geq 0 \\ 0 \leq \lambda_2 & \perp & e^T q - 1 \geq 0 \end{array}$$

which can be further reduced to

$$egin{array}{rcl} 0 \leq p & ot & (A+lpha_2 E)q-e \geq 0 \ 0 \leq q & ot & (B+lpha_1 E)p-e \geq 0 \end{array}$$

Knowledge is Sometimes Power

If $A + \alpha_2 E > 0$ and $B + \alpha_1 E > 0$, then

$$\begin{array}{rcl} 0 \leq p & \perp & (A + \alpha_2 E)q - \lambda_1 \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E)p - \lambda_2 \geq 0 \\ \lambda_1 & e^T p = 1 \\ \lambda_2 & e^T q = 1 \end{array}$$

is equivalent to

$$\begin{array}{rcl} 0 \leq p & \perp & (A + \alpha_2 E)q - \lambda_1 \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E)p - \lambda_2 \geq 0 \\ 0 \leq \lambda_1 & \perp & e^T p - 1 \geq 0 \\ 0 \leq \lambda_2 & \perp & e^T q - 1 \geq 0 \end{array}$$

which can be further reduced to

$$\begin{array}{rrr} 0 \leq p & \perp & (A + \alpha_2 E)q - e \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E)p - e \geq 0 \end{array}$$

and a special Lemke method can be applied.

Strictly Positive Matrix Formulation

If $A + \alpha_2 E > 0$ and $B + \alpha_1 E > 0$, then

$$\begin{array}{rcl} 0 \leq p & \perp & \alpha_1 E p + (A + \alpha_2 E) q - \lambda_1 \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E) p + \alpha_2 E q - \lambda_2 \geq 0 \\ \lambda_1 & e^T p = 1 \\ \lambda_2 & e^T q = 1 \end{array}$$

is equivalent to

$$\begin{array}{rrrr} 0 \leq p & \perp & \alpha_1 E p + (A + \alpha_2 E)q - \lambda_1 \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E)p + \alpha_2 E q - \lambda_2 \geq 0 \\ 0 \leq \lambda_1 & \perp & e^T p - 1 \geq 0 \\ 0 \leq \lambda_2 & \perp & e^T q - 1 \geq 0 \end{array}$$

Strictly Positive Matrix Formulation

If $A + \alpha_2 E > 0$ and $B + \alpha_1 E > 0$, then

$$\begin{array}{rcl} 0 \leq p & \perp & \alpha_1 E p + (A + \alpha_2 E) q - \lambda_1 \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E) p + \alpha_2 E q - \lambda_2 \geq 0 \\ \lambda_1 & e^T p = 1 \\ \lambda_2 & e^T q = 1 \end{array}$$

is equivalent to

$$\begin{array}{lll} 0 \leq p & \perp & \alpha_1 E p + (A + \alpha_2 E)q - \lambda_1 \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E)p + \alpha_2 E q - \lambda_2 \geq 0 \\ 0 \leq \lambda_1 & \perp & e^T p - 1 \geq 0 \\ 0 \leq \lambda_2 & \perp & e^T q - 1 \geq 0 \end{array}$$

which can be further reduced to

$$\begin{array}{rcl} 0 \leq p & \perp & \alpha_1 E p + (A + \alpha_2 E) q - e \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E) p + \alpha_2 E q - e \geq 0 \end{array}$$

Strictly Positive Matrix Formulation

If $A + \alpha_2 E > 0$ and $B + \alpha_1 E > 0$, then

$$\begin{array}{rcl} 0 \leq p & \perp & \alpha_1 E p + (A + \alpha_2 E) q - \lambda_1 \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E) p + \alpha_2 E q - \lambda_2 \geq 0 \\ \lambda_1 & e^T p = 1 \\ \lambda_2 & e^T q = 1 \end{array}$$

is equivalent to

$$\begin{array}{lll} 0 \leq p & \perp & \alpha_1 E p + (A + \alpha_2 E)q - \lambda_1 \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E)p + \alpha_2 E q - \lambda_2 \geq 0 \\ 0 \leq \lambda_1 & \perp & e^T p - 1 \geq 0 \\ 0 \leq \lambda_2 & \perp & e^T q - 1 \geq 0 \end{array}$$

which can be further reduced to

$$\begin{array}{rcl} 0 \leq p & \perp & \alpha_1 E p + (A + \alpha_2 E) q - e \geq 0 \\ 0 \leq q & \perp & (B + \alpha_1 E) p + \alpha_2 E q - e \geq 0 \end{array}$$

and a Lemke's method (with lexicographic pivoting) can be applied.

Symmetric Diagonal Scaling

Symmetric can be applied to

- Improve condition number of matrices
- Reduce degeneracy with Lemke's method

without changing matrix properties or affecting rank.

Symmetric Diagonal Scaling

Symmetric can be applied to

- Improve condition number of matrices
- Reduce degeneracy with Lemke's method

without changing matrix properties or affecting rank.

For our problem we have

$$\begin{array}{rcl} 0 \leq p & \perp & \alpha_1 S_1 E S_1 p + S_1 (A + \alpha_2 E) S_2 q - S_1 e \geq 0 \\ 0 \leq q & \perp & S_2 (B + \alpha_1 E) S_1 p + \alpha_2 S_2 E S_2 q - S_2 e \geq 0 \end{array}$$

for positive diagonal matrices S_1 and S_2 .

Problem Formulations

Find an x such that

 $0 \leq Mx + q \perp Nx + r \geq 0$

Problem Formulations

Find an x such that

$$0 \leq Mx + q \perp Nx + r \geq 0$$

Add one slack variable to obtain the problem

$$\begin{array}{ll} x & Mx - s + q = 0 \\ 0 \le s & \bot & Nx + r \ge 0 \end{array}$$

with the reduced, perturbed problem

$$0 \leq s \perp (N(M + \delta I)^{-1} + \delta I)s + \tilde{r} \geq 0$$

that may be a good model.

Alternative Formulations

Add two slack variables to obtain

$$egin{aligned} & Mx-s+q=0\ & t-Nx-r=0\ & 0\leq s \ egin{aligned} & \perp & t\geq 0 \end{aligned}$$

where solver matches variables to equations.

Good match

$$\begin{array}{rrrr} x & Mx - s + q = 0 \\ t & t - Nx - r = 0 \\ 0 \le s & \bot & t \ge 0 \end{array}$$

may result in a good reduced, perturbed model

$$0 \leq s \perp (N(M + \delta I)^{-1} + \delta(1 + \delta)I)s + \tilde{r} \geq 0$$

Alternative Formulations

Add two slack variables to obtain

where solver matches variables to equations.

Unfortunate match

$$\begin{array}{rcl}t & Mx - s + q = 0\\x & t - Nx - r = 0\\0 \le s & \bot & t \ge 0\end{array}$$

may result in a "bad" reduced, perturbed model

$$0 \leq s \perp ((N - \delta I)(M + \delta N - \delta^2 I)^{-1} + \delta I)s + \tilde{r} \geq 0$$

Do not rely on the solver to perform a good match!

Summary

- Always match equations to appropriate variables
 - Automatically performing a good match is difficult
 - Modeler knows their problem and should convey the match

Summary

- Always match equations to appropriate variables
 - Automatically performing a good match is difficult
 - Modeler knows their problem and should convey the match
- Always prefer a monotone formulation over other formulations
 - Sign on the equations matters when perturbing
 - Use skew symmetric version of optimality conditions
 - Use problem knowledge if the result is a "better" problem

- Always match equations to appropriate variables
 - Automatically performing a good match is difficult
 - Modeler knows their problem and should convey the match
- > Always prefer a monotone formulation over other formulations
 - Sign on the equations matters when perturbing
 - Use skew symmetric version of optimality conditions
 - Use problem knowledge if the result is a "better" problem
- Use symmetric scaling to
 - Improve condition number of matrices
 - Reduce degeneracy with Lemke's method
 - Beware when using unscaled solution!

- Always match equations to appropriate variables
 - Automatically performing a good match is difficult
 - Modeler knows their problem and should convey the match
- > Always prefer a monotone formulation over other formulations
 - Sign on the equations matters when perturbing
 - Use skew symmetric version of optimality conditions
 - Use problem knowledge if the result is a "better" problem
- Use symmetric scaling to
 - Improve condition number of matrices
 - Reduce degeneracy with Lemke's method
 - Beware when using unscaled solution!
- Rank deficiency can still be an issue
 - Solver can sometimes identify and eliminate dependencies
 - Solver may add a positive diagonal perturbation
 - Improve condition number of matrices
 - Eliminate dependencies for good models

- Always match equations to appropriate variables
 - Automatically performing a good match is difficult
 - Modeler knows their problem and should convey the match
- > Always prefer a monotone formulation over other formulations
 - Sign on the equations matters when perturbing
 - Use skew symmetric version of optimality conditions
 - Use problem knowledge if the result is a "better" problem
- Use symmetric scaling to
 - Improve condition number of matrices
 - Reduce degeneracy with Lemke's method
 - Beware when using unscaled solution!
- Rank deficiency can still be an issue
 - Solver can sometimes identify and eliminate dependencies
 - Solver may add a positive diagonal perturbation
 - Improve condition number of matrices
 - Eliminate dependencies for good models
- Always check the solution reported!

Section 2

Nonlinear Problems

Problem Formulation

- ▶ Non-cooperative game played by *n* individuals
 - Each player selects a strategy to optimize their objective
 - Strategies for the other players are fixed
- > Equilibrium reached when no improvement is possible

Problem Formulation

- Non-cooperative game played by n individuals
 - Each player selects a strategy to optimize their objective
 - Strategies for the other players are fixed
- Equilibrium reached when no improvement is possible
- Characterization of two player equilibrium (x^*, y^*)

$$x^* \in \begin{cases} \arg\min_{x \ge 0} & f_1(x, y^*) \\ \text{subject to} & c_1(x) \le 0 \\ \arg\min_{y \ge 0} & f_2(x^*, y) \\ \text{subject to} & c_2(y) \le 0 \end{cases}$$

Problem Formulation

- Non-cooperative game played by n individuals
 - Each player selects a strategy to optimize their objective
 - Strategies for the other players are fixed
- Equilibrium reached when no improvement is possible
- Characterization of two player equilibrium (x^*, y^*)

$$x^* \in \begin{cases} \arg\min_{x \ge 0} & f_1(x, y^*) \\ \text{subject to} & c_1(x) \le 0 \\ \arg\min_{y \ge 0} & f_2(x^*, y) \\ \text{subject to} & c_2(y) \le 0 \end{cases}$$

Many applications

- Walrasian (traffic) equilibrium
- Arrow-Debreau (economic) models
- Cournot duopoly models

Complementarity Formulation

Assume each optimization problem is convex

- $f_1(\cdot, y)$ is convex for each y
- $f_2(x, \cdot)$ is convex for each x
- $c_1(\cdot)$ and $c_2(\cdot)$ convex and satisfy constraint qualification

Then the first-order conditions are necessary and sufficient

 $\begin{array}{ll} \min_{x \ge 0} & f_1(x, y^*) \\ \text{subject to} & c_1(x) \le 0 \end{array} \qquad \stackrel{0 \le x}{\leftrightarrow} & \begin{array}{l} \bot & \nabla_x f_1(x, y^*) + \lambda_1^T \nabla_x c_1(x) \ge 0 \\ & 0 \le \lambda_1 & \bot & -c_1(x) \ge 0 \end{array}$

Complementarity Formulation

Assume each optimization problem is convex

- $f_1(\cdot, y)$ is convex for each y
- $f_2(x, \cdot)$ is convex for each x
- $c_1(\cdot)$ and $c_2(\cdot)$ convex and satisfy constraint qualification

Then the first-order conditions are necessary and sufficient

 $\begin{array}{ll} \min_{y \ge 0} & f_2(x^*, y) \\ \text{subject to} & c_2(y) \le 0 \end{array} \quad \Leftrightarrow \quad \begin{array}{ll} 0 \le y & \perp & \nabla_y f_2(x^*, y) + \lambda_2^T \nabla_y c_2(y) \ge 0 \\ & 0 \le \lambda_2 & \perp & -c_2(y) \ge 0 \end{array}$

Complementarity Formulation

- Assume each optimization problem is convex
 - $f_1(\cdot, y)$ is convex for each y
 - $f_2(x, \cdot)$ is convex for each x
 - $c_1(\cdot)$ and $c_2(\cdot)$ convex and satisfy constraint qualification
- > Then the first-order conditions are necessary and sufficient

$$\begin{array}{lll} 0 \leq x & \perp & \nabla_x f_1(x,y) + \lambda_1^T \nabla_x c_1(x) \geq 0 \\ 0 \leq y & \perp & \nabla_y f_2(x,y) + \lambda_2^T \nabla_y c_2(y) \geq 0 \\ 0 \leq \lambda_1 & \perp & -c_1(x) \geq 0 \\ 0 \leq \lambda_2 & \perp & -c_2(y) \geq 0 \end{array}$$

Nonlinear complementarity problem

- Each solution is an equilibrium for the Nash game
- Formulation is not correct for nonconvex problems
- Writing the first-order conditions is error prone
- Recommend using the MOPEC machinery

Constant Elasticity of Substitution

Ensure functions and Jacobians are defined

- Confront and reformulate at the modeling stage
- Report remaining domain violations to solver
 - Function undefined will cause backtrack in line search
 - Function defined and Jacobian undefined will abort solve
- Provide a starting point where functions are defined

Constant Elasticity of Substitution

Ensure functions and Jacobians are defined

- Confront and reformulate at the modeling stage
- Report remaining domain violations to solver
 - Function undefined will cause backtrack in line search
 - Function defined and Jacobian undefined will abort solve
- Provide a starting point where functions are defined

Common in economics for the objective function to use

$$(\alpha_1 x_1^{\gamma} + \alpha_2 x_2^{\gamma})^{\frac{1}{\gamma}}$$

where $x_1 \ge 0$ and $x_2 \ge 0$

Constant Elasticity of Substitution

Ensure functions and Jacobians are defined

- Confront and reformulate at the modeling stage
- Report remaining domain violations to solver
 - Function undefined will cause backtrack in line search
 - Function defined and Jacobian undefined will abort solve
- Provide a starting point where functions are defined

Common in economics for the objective function to use

$$(\alpha_1 x_1^{\gamma} + \alpha_2 x_2^{\gamma})^{\frac{1}{\gamma}}$$

where $x_1 \ge 0$ and $x_2 \ge 0$

Function not defined when $x_1 = 0$ or $x_2 = 0$ $(\alpha_1(x_1 + \epsilon)^{\gamma} + \alpha_2(x_2 + \epsilon)^{\gamma} - (\alpha_1 + \alpha_2)\epsilon^{\gamma})^{\frac{1}{\gamma}}$

Constant Elasticity of Substitution

Ensure functions and Jacobians are defined

- Confront and reformulate at the modeling stage
- Report remaining domain violations to solver
 - Function undefined will cause backtrack in line search
 - Function defined and Jacobian undefined will abort solve
- Provide a starting point where functions are defined

Common in economics for the objective function to use

$$(\alpha_1 x_1^{\gamma} + \alpha_2 x_2^{\gamma})^{\frac{1}{\gamma}}$$

where $x_1 \ge 0$ and $x_2 \ge 0$

- Function not defined when $x_1 = 0$ or $x_2 = 0$ $(\alpha_1(x_1 + \epsilon)^{\gamma} + \alpha_2(x_2 + \epsilon)^{\gamma} - (\alpha_1 + \alpha_2)\epsilon^{\gamma})^{\frac{1}{\gamma}}$
- ► Jacobian not defined when $x_1 = x_2 = 0$ $(\alpha_1(x_1 + \epsilon)^{\gamma} + \alpha_2(x_2 + \epsilon)^{\gamma})^{\frac{1}{\gamma}} - (\alpha_1 + \alpha_2)^{\frac{1}{\gamma}}\epsilon$

Constant Elasticity of Substitution

Ensure functions and Jacobians are defined

- Confront and reformulate at the modeling stage
- Report remaining domain violations to solver
 - Function undefined will cause backtrack in line search
 - Function defined and Jacobian undefined will abort solve
- Provide a starting point where functions are defined

Common in economics for the objective function to use

$$(\alpha_1 x_1^{\gamma} + \alpha_2 x_2^{\gamma})^{\frac{1}{\gamma}}$$

where $x_1 \ge 0$ and $x_2 \ge 0$

- Function not defined when $x_1 = 0$ or $x_2 = 0$ $(\alpha_1(x_1 + \epsilon)^{\gamma} + \alpha_2(x_2 + \epsilon)^{\gamma} - (\alpha_1 + \alpha_2)\epsilon^{\gamma})^{\frac{1}{\gamma}}$
- ► Jacobian not defined when $x_1 = x_2 = 0$ $(\alpha_1(x_1 + \epsilon)^{\gamma} + \alpha_2(x_2 + \epsilon)^{\gamma})^{\frac{1}{\gamma}} - (\alpha_1 + \alpha_2)^{\frac{1}{\gamma}}\epsilon$
- Smoothing the functions changes the answer
 - Modeler needs to determine permissible perturbation
 - Modeler may want to determine sensitivity to perturbation

Slack Variables and Equations

Permissible to add slack variables in the formulation

$$\begin{array}{rrrr} 0 \leq x & \perp & \nabla_{x}f_{1}(x,y) + \lambda_{1}^{T}\nabla_{x}c_{1}(x) \geq 0 \\ 0 \leq y & \perp & \nabla_{y}f_{2}(x,y) + \lambda_{2}^{T}\nabla_{y}c_{2}(y) \geq 0 \\ 0 \leq s_{1} & \perp & \lambda_{1} \geq 0 \\ 0 \leq s_{2} & \perp & \lambda_{2} \geq 0 \\ \lambda_{1} & & -c_{1}(x) - s_{1} = 0 \\ \lambda_{2} & & -c_{2}(y) - s_{2} = 0 \end{array}$$

provided skew symmetric form of optimality conditions used.

Slack Variables and Equations

Changing the sign of the equations

$$\begin{array}{rcl} 0 \leq x & \perp & \nabla_{x}f_{1}(x,y) + \lambda_{1}^{T}\nabla_{x}c_{1}(x) \geq 0 \\ 0 \leq y & \perp & \nabla_{y}f_{2}(x,y) + \lambda_{2}^{T}\nabla_{y}c_{2}(y) \geq 0 \\ 0 \leq s_{1} & \perp & \lambda_{1} \geq 0 \\ 0 \leq s_{2} & \perp & \lambda_{2} \geq 0 \\ \lambda_{1} & & c_{1}(x) + s_{1} = 0 \\ \lambda_{2} & & c_{2}(y) + s_{2} = 0 \end{array}$$

causes problems when positive diagonal perturbation added.

Slack Variables and Equations

For general mixed nonlinear complementarity problems, use

$$\begin{array}{ll} 0 \leq x & \perp & F(x) - A^T \lambda \geq 0 \\ \lambda & & Ax = b \end{array}$$

rather than

$$\begin{array}{ll} 0 \leq x & \perp & F(x) + A^T \lambda \geq 0 \\ \lambda & & Ax = b \end{array}$$

and match the equations to the variables!

Scaling the Problem

- Any scaling can be applied to original optimization problems
 - Ensure consistency in scaled variables across problems
 - Form optimality conditions of the scaled problems

Scaling the Problem

- Any scaling can be applied to original optimization problems
 - Ensure consistency in scaled variables across problems
 - Form optimality conditions of the scaled problems
- Apply only symmetric scaling to the complementarity problem

$$\begin{array}{rcl} 0 \leq x & \bot & SF(Sx, Ry) \geq 0 \\ y & RG(Sx, Ry) = 0 \end{array}$$

Scaling the Problem

- Any scaling can be applied to original optimization problems
 - Ensure consistency in scaled variables across problems
 - Form optimality conditions of the scaled problems
- Apply only symmetric scaling to the complementarity problem

$$\begin{array}{rcl} 0 \leq x & \bot & SF(Sx, Ry) \geq 0 \\ y & RG(Sx, Ry) = 0 \end{array}$$

▶ For linear constraints, *R* is the multiplier scaling

$$\begin{array}{ll} 0 \leq x & \perp & SF(Sx) - SA^T R\lambda \geq 0 \\ \lambda & & RASx = Rb \end{array}$$

Scaling the Problem

- Any scaling can be applied to original optimization problems
 - Ensure consistency in scaled variables across problems
 - Form optimality conditions of the scaled problems
- Apply only symmetric scaling to the complementarity problem

$$\begin{array}{rcl} 0 \leq x & \bot & SF(Sx, Ry) \geq 0 \\ y & RG(Sx, Ry) = 0 \end{array}$$

▶ For linear constraints, *R* is the multiplier scaling

$$\begin{array}{ll} 0 \leq x & \perp & SF(Sx) - SA^T R\lambda \geq 0 \\ \lambda & & RASx = Rb \end{array}$$

Beware when using unscaled solution!

- Always ensure functions and Jacobians are defined
 - Confront and reformulate at the modeling stage
 - Report remaining domain violations to solver
 - Function undefined will cause backtrack in line search
 - Function defined and Jacobian undefined will abort solve

- Always ensure functions and Jacobians are defined
 - Confront and reformulate at the modeling stage
 - Report remaining domain violations to solver
 - Function undefined will cause backtrack in line search
 - Function defined and Jacobian undefined will abort solve
- Recommend using the MOPEC machinery when possible
 - Conveys more information that the solver can use
 - Relieves modeler of writing code for the derivatives
 - Formulates optimality conditions correctly for the solver

- Always ensure functions and Jacobians are defined
 - Confront and reformulate at the modeling stage
 - Report remaining domain violations to solver
 - Function undefined will cause backtrack in line search
 - Function defined and Jacobian undefined will abort solve
- Recommend using the MOPEC machinery when possible
 - Conveys more information that the solver can use
 - Relieves modeler of writing code for the derivatives
 - Formulates optimality conditions correctly for the solver
- Always match equations to appropriate variables
- Always prefer a monotone formulation over other formulations
- Use scaling when appropriate
 - Any consistent scaling for optimization problems
 - Symmetric diagonal scaling for complementarity problems
 - Beware when using unscaled solution!
- Rank deficiency can still be an issue
 - Solver can sometimes identify and eliminate dependencies
 - Solver may add a positive diagonal perturbation
- Always check the solution reported!

Part II

Analyzing Complementarity Problems

Motivation

Given a complementarity problem:

- What tools can be used to analyze it?
- What do the tools say about the problem?
- What can be done to address any issues uncovered?

Motivation

Given a complementarity problem:

- What tools can be used to analyze it?
- What do the tools say about the problem?
- What can be done to address any issues uncovered?

Based on PATH solver with specified options

Section 3

Variational Inequalities

Definition

- Let $F: \Re^n \to \Re^n$ be continuously differentiable
- Let $X \subseteq \Re^n$ be a closed convex set
- Variational inequality is to find $x \in X$ such that

$$\langle F(x), y - x \rangle \geq 0 \quad \forall \ y \in X$$

Definition

- Let $F: \Re^n \to \Re^n$ be continuously differentiable
- Let $X \subseteq \Re^n$ be a closed convex set
- Variational inequality is to find $x \in X$ such that

$$\langle F(x), y - x \rangle \geq 0 \quad \forall \ y \in X$$

Equivalent formulation is the generalized equation

$$0 \in F(x) + N_X(x)$$

where the normal cone to X at $x \in X$ is

$$N_X(x) := \{ ar{x} \mid \langle ar{x}, y - x \rangle \leq 0 \ \forall \ y \in X \}$$

Definition

- Let $F : \Re^n \to \Re^n$ be continuously differentiable
- Let $X \subseteq \Re^n$ be a closed convex set
- Variational inequality is to find $x \in X$ such that

$$\langle F(x), y - x \rangle \geq 0 \quad \forall \ y \in X$$

Equivalent formulation is the generalized equation

$$0\in F(x)+N_X(x)$$

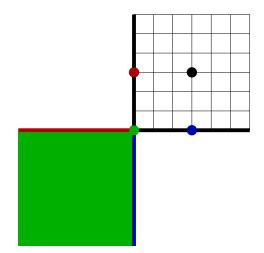
where the normal cone to X at $x \in X$ is

$$N_X(x) := \{ \bar{x} \mid \langle \bar{x}, y - x \rangle \leq 0 \ \forall \ y \in X \}$$

Special cases include

- Nonlinear equations when $X = \Re^n$
- ▶ Nonlinear complementarity when X = ℜⁿ₊
- Mixed complementarity when $X = [I, u]^n$

Normal Cone



Simplified Theory (Robinson)

• Let $F : \Re^n \to \Re^n$, $A \in \Re^{m \times n}$ and $b \in \Re^m$.

Simplified Theory (Robinson)

▶ Let $F : \Re^n \to \Re^n$, $A \in \Re^{m \times n}$ and $b \in \Re^m$.

• If x and λ solve

$$\begin{array}{rcl}
0 \leq x & \perp & F(x) - A^{T}\lambda \geq 0 \\
\lambda & & Ax + b = 0
\end{array}$$
(1)

then

$$0 \in F(x) + N_X(x) \tag{2}$$

where $X = \{x \mid x \ge 0 \text{ and } Ax + b = 0\}.$

Simplified Theory (Robinson)

▶ Let $F : \Re^n \to \Re^n$, $A \in \Re^{m \times n}$ and $b \in \Re^m$.

• If x and λ solve

$$\begin{array}{rcl} 0 \leq x & \perp & F(x) - A^{T}\lambda \geq 0 \\ \lambda & & Ax + b = 0 \end{array}$$
(1)

then

$$0 \in F(x) + N_X(x) \tag{2}$$

where $X = \{x \mid x \ge 0 \text{ and } Ax + b = 0\}.$

• If x solves (2), then multipliers λ exist such that x and λ solve (1).

Simplified Theory (Robinson)

• Let $F : \Re^n \to \Re^n$, $A \in \Re^{m \times n}$ and $b \in \Re^m$.

• If x and λ solve

$$\begin{array}{rcl} 0 \leq x & \perp & F(x) - A^{T}\lambda \geq 0 \\ \lambda & & Ax + b = 0 \end{array}$$
(1)

then

$$0 \in F(x) + N_X(x) \tag{2}$$

where $X = \{x \mid x \ge 0 \text{ and } Ax + b = 0\}.$

• If x solves (2), then multipliers λ exist such that x and λ solve (1).

Note: X and $N_X(\cdot)$ are geometric objects and we are free to choose among equivalent algebraic representations.

Basic Preprocessing Methodology

Given an arbitrary complementarity problem

Basic Preprocessing Methodology

- Given an arbitrary complementarity problem
- Discover skew symmetric structure within the problem

Basic Preprocessing Methodology

- Given an arbitrary complementarity problem
- Discover skew symmetric structure within the problem
- Convert the problem into the equivalent variational inequality
- Choose representation of the polyhedral constraint set
 - Reduce model size and complexity
 - Improve algorithm performance
 - Detect unsolvable models

Basic Preprocessing Methodology

- Given an arbitrary complementarity problem
- Discover skew symmetric structure within the problem
- Convert the problem into the equivalent variational inequality
- Choose representation of the polyhedral constraint set
 - Reduce model size and complexity
 - Improve algorithm performance
 - Detect unsolvable models
- Recover reduced complementarity problem

Discovering Generalized Skew Symmetry

- Provided with a list of linear rows and columns for the problem
- For each linear row we perform the following
 - Check that the column is linear
 - Reject rows having a diagonal entry
 - Establish nonzero pattern is identical
 - Ensure elements have the opposite signs

Discovering Generalized Skew Symmetry

- Provided with a list of linear rows and columns for the problem
- For each linear row we perform the following
 - Check that the column is linear
 - Reject rows having a diagonal entry
 - Establish nonzero pattern is identical
 - Ensure elements have the opposite signs
 - Can negate rows corresponding to equalities

$$0 \le x \quad \bot \quad x + y + z \ge 0$$

$$y \quad x + y + \frac{1}{3}z = 4$$

$$z \quad 2x - y = 5$$

is equivalent to

Discovering Generalized Skew Symmetry

- Provided with a list of linear rows and columns for the problem
- For each linear row we perform the following
 - Check that the column is linear
 - Reject rows having a diagonal entry
 - Establish nonzero pattern is identical
 - Ensure elements have the opposite signs
 - Can negate rows corresponding to equalities

$$0 \le x \quad \bot \quad x + y + z \ge 0$$

$$y \quad x + y + \frac{1}{3}z = 4$$

$$z \quad 2x - y = 5$$

is equivalent to

The check_skew_symmetry option will report findings and can be used to check the correctness of your formulation!

Single Constraint Reductions

- Reductions on a single constraint include
 - Singleton rows
 - Doubleton rows with a column singleton
 - Forcing conditions

Single Constraint Reductions

- Reductions on a single constraint include
 - Singleton rows
 - Doubleton rows with a column singleton
 - Forcing conditions
- An example of a singleton row
 - 1. Complementarity problem

$$\begin{array}{rrrr} 0 \leq x & \perp & x^2 - y + 1 \geq 0 \\ 0 \leq y & \perp & x - 1 \geq 0 \end{array}$$

Single Constraint Reductions

- Reductions on a single constraint include
 - Singleton rows
 - Doubleton rows with a column singleton
 - Forcing conditions
- An example of a singleton row
 - 1. Complementarity problem

$$\begin{array}{rrrr} 0 \leq x & \perp & x^2 - y + 1 \geq 0 \\ 0 \leq y & \perp & x - 1 \geq 0 \end{array}$$

2. Form equivalent polyhedral problem

$$0 \in x^2 + 1 + N_X(x)$$

where $X = \{x \mid x \ge 0 \text{ and } x \ge 1\}$

Single Constraint Reductions

- Reductions on a single constraint include
 - Singleton rows
 - Doubleton rows with a column singleton
 - Forcing conditions
- An example of a singleton row
 - 1. Complementarity problem

$$\begin{array}{rrrr} 0 \leq x & \perp & x^2 - y + 1 \geq 0 \\ 0 \leq y & \perp & x - 1 \geq 0 \end{array}$$

2. Form equivalent polyhedral problem

$$0 \in x^2 + 1 + N_X(x)$$

where $X = \{x \mid x \ge 0 \text{ and } x \ge 1\}$

3. Recover reduced complementarity problem

$$1 \le x \perp x^2 + 1 \ge 0$$

with the solution x = 1

Single Constraint Reductions

- Reductions on a single constraint include
 - Singleton rows
 - Doubleton rows with a column singleton
 - Forcing conditions
- An example of a singleton row
 - 1. Complementarity problem

$$\begin{array}{rrrr} 0 \leq x & \perp & x^2 - y + 1 \geq 0 \\ 0 \leq y & \perp & x - 1 \geq 0 \end{array}$$

2. Form equivalent polyhedral problem

$$0 \in x^2 + 1 + N_X(x)$$

where $X = \{x \mid x \ge 0 \text{ and } x \ge 1\}$

3. Recover reduced complementarity problem

$$1 \le x \perp x^2 + 1 \ge 0$$

with the solution x = 1

4. Compute multiplier y = 2

Assembling Polyhedral Sets

- Given skew symmetric rows and columns
- Reject those requiring scaling or sign changes (can be relaxed)
- Use a greedy heuristic to assemble maximal polyhedral set
 - Choose a remaining skew symmetric row
 - Add next row sharing some nonzero entries if possible
 - Continue adding rows until no more rows can be added
 - Repeat to identify multiple polyhedral sets

Assembling Polyhedral Sets

- Given skew symmetric rows and columns
- Reject those requiring scaling or sign changes (can be relaxed)
- Use a greedy heuristic to assemble maximal polyhedral set
 - Choose a remaining skew symmetric row
 - Add next row sharing some nonzero entries if possible
 - Continue adding rows until no more rows can be added
 - Repeat to identify multiple polyhedral sets
- Reductions using polyhedral sets include
 - Duplicate rows
 - Implied variable bounds

Assembling Polyhedral Sets

- Given skew symmetric rows and columns
- Reject those requiring scaling or sign changes (can be relaxed)
- Use a greedy heuristic to assemble maximal polyhedral set
 - Choose a remaining skew symmetric row
 - Add next row sharing some nonzero entries if possible
 - Continue adding rows until no more rows can be added
 - Repeat to identify multiple polyhedral sets
- Reductions using polyhedral sets include
 - Duplicate rows
 - Implied variable bounds
- Structure can be conveyed to capable solvers
 - A primal/dual structure recovered for optimization problems
 - Polyhedral variational inequalities for other problems

Duplicate Rows Example

1. Identify the polyhedral constraints

$$\begin{array}{rrrr} 0 \leq x & \perp & Qx - A^T \lambda + c \geq 0 \\ 0 \leq y & \perp & -b^T \lambda + d \geq 0 \\ 0 \leq z & \perp & b^T \lambda - d \geq 0 \\ 0 \leq \lambda & \perp & Ax + by - bz \geq 0 \end{array}$$

Duplicate Rows Example

1. Identify the polyhedral constraints

$$\begin{array}{rrrr} 0 \leq x & \perp & Qx - A^T \lambda + c \geq 0 \\ 0 \leq y & \perp & -b^T \lambda + d \geq 0 \\ 0 \leq z & \perp & b^T \lambda - d \geq 0 \\ 0 \leq \lambda & \perp & Ax + by - bz \geq 0 \end{array}$$

2. Construct the polyhedral problem

$$0 \in Qx - A^T \lambda + c + N_{\Re^n_+}(x)$$

 $0 \in A\lambda + c + N_Y(\lambda)$

where $Y = \left\{ y \mid y \ge 0, -b^T y + d \ge 0, \text{ and } b^T y - d \ge 0 \right\}$

Duplicate Rows Example

1. Identify the polyhedral constraints

$$\begin{array}{rrrr} 0 \leq x & \perp & Qx - A^T \lambda + c \geq 0 \\ 0 \leq y & \perp & -b^T \lambda + d \geq 0 \\ 0 \leq z & \perp & b^T \lambda - d \geq 0 \\ 0 \leq \lambda & \perp & Ax + by - bz \geq 0 \end{array}$$

2. Construct the polyhedral problem

$$0 \in Qx - A^{T}\lambda + c + N_{\Re_{+}^{n}}(x)$$

$$0 \in A\lambda + c + N_{Y}(\lambda)$$

where $Y = \{y \mid y \ge 0, -b^T y + d \ge 0, \text{ and } b^T y - d \ge 0\}$ 3. Replace the polyhedral set

$$Y = \left\{ y \mid y \ge 0 \text{ and } b^T y - d = 0
ight\}$$

Duplicate Rows Example

1. Identify the polyhedral constraints

$$\begin{array}{rrrr} 0 \leq x & \perp & Qx - A^T \lambda + c \geq 0 \\ 0 \leq y & \perp & -b^T \lambda + d \geq 0 \\ 0 \leq z & \perp & b^T \lambda - d \geq 0 \\ 0 \leq \lambda & \perp & Ax + by - bz \geq 0 \end{array}$$

2. Construct the polyhedral problem

$$0 \in Qx - A^{T}\lambda + c + N_{\Re_{+}^{n}}(x)$$

$$0 \in A\lambda + c + N_{Y}(\lambda)$$

where $Y = \{y \mid y \ge 0, -b^T y + d \ge 0, \text{ and } b^T y - d \ge 0\}$ 3. Replace the polyhedral set

$$Y = \{y \mid y \ge 0 \text{ and } b^T y - d = 0\}$$

4. Recover reduced mixed complementarity problem

$$\begin{array}{rrrr} 0 \leq x & \perp & Qx - A^{\mathsf{T}}\lambda + c \geq 0 \\ y & & -b^{\mathsf{T}}\lambda + d = 0 \\ 0 \leq \lambda & \perp & Ax + by \geq 0 \end{array}$$

Summary

- Critical for preprocessing to correctly match equations and variables
 - Automatically performing a good match is difficult
 - Modeler knows their problem and should convey the match

Summary

Critical for preprocessing to correctly match equations and variables

- Automatically performing a good match is difficult
- Modeler knows their problem and should convey the match
- Skew symmetric form of optimality conditions is essential
 - Needed to construct polyhedral variational inequalities
 - Check your model to obtain a report on skew symmetry

check_skew_symmetry yes

Summary

Critical for preprocessing to correctly match equations and variables

- Automatically performing a good match is difficult
- Modeler knows their problem and should convey the match
- Skew symmetric form of optimality conditions is essential
 - Needed to construct polyhedral variational inequalities
 - Check your model to obtain a report on skew symmetry

check_skew_symmetry yes

- Reductions may determine model is infeasible
 - Infeasible models should be fixed by the modeler
 - List of preprocessing reductions can be obtained

output_presolve_level 3

Section 4

Block Structure

Example

х	x x	0	0	0	0	0
х	х	0	0	0	0	0
Х	0	х	х	х	0	0
x	0	x	х	х	0	0
х	0	х	х	x x x	0	0
0	0	0	0	0 x	х	х
Х	0	x	х	х	x	х

Example

х	x x	0	0	0	0	0
х	х	0	0	0	0	0
х	0	х	х	X X X	0	0
x x	0	х	х	х	0	0
х	0	х	х	х	0	0
0	0	0	0	0 ×	х	х
х	0	x	Х	Х	x	х

- Focus on small block sizes (at most 3×3)
 - Start from a single row
 - Add constraints for variables
 - Stop when no constraints to add or block too big
 - Equations removed via Schur complement when possible

Example

х	x x	0	0	0	0	0
х	х	0	0	0	0	0
х	0	х	х	х	0	0
x x	0	х	х	х	0	0
х	0	х	х	X X X	0	0
0	0	0	0	0 x	х	х
х	0	х	х	х	x	х

- Focus on small block sizes (at most 3 × 3)
 - Start from a single row
 - Add constraints for variables
 - Stop when no constraints to add or block too big
 - Equations removed via Schur complement when possible
- Apply reductions
 - Preblocks use uniqueness arguments
 - Postblocks use existence arguments

Example

х	x x	0	0	0	0	0
х	х	0	0	0	0	0
x x x	0	х	Х	х	0	0
х	0	х	х	х	0	0
х	0	х	х	X X X	0	0
0	0	0	0	0 x	х	х
х	0	x	х	х	x	х

- Focus on small block sizes (at most 3 × 3)
 - Start from a single row
 - Add constraints for variables
 - Stop when no constraints to add or block too big
 - Equations removed via Schur complement when possible
- Apply reductions
 - Preblocks use uniqueness arguments
 - Postblocks use existence arguments
- Matrix classes form the foundation for these methods

Preblocks and Uniqueness

Small linear complementarity problem

 $0 \le x \le u \perp Mx + q$

Existence and uniqueness for fixed vector q

Preblocks and Uniqueness

Small linear complementarity problem

 $0 \le x \le u \perp Mx + q$

- Existence and uniqueness for fixed vector q
- Partial uniqueness for fixed vector q
 - Remaining problem does not rely on non-unique components
 - Remaining block can be reformulated

Preblocks and Uniqueness

Small linear complementarity problem

 $0 \le x \le u \perp Mx + q$

- Existence and uniqueness for fixed vector q
- Partial uniqueness for fixed vector q
 - Remaining problem does not rely on non-unique components
 - Remaining block can be reformulated
- Computational method is applied for 2×2 blocks
 - Compute all solutions
 - Eliminate if solution is unique
 - Check compact reformulation if not unique

Preblocks and Uniqueness

Small linear complementarity problem

 $0 \le x \le u \perp Mx + q$

- Existence and uniqueness for fixed vector q
- Partial uniqueness for fixed vector q
 - Remaining problem does not rely on non-unique components
 - Remaining block can be reformulated
- Computational method is applied for 2 × 2 blocks
 - Compute all solutions
 - Eliminate if solution is unique
 - Check compact reformulation if not unique
- For larger preblock matrices
 - Test for P matrix
 - Compute unique solution and eliminate

Postblocks and Existence

Small linear complementarity problem

$$0 \le x \le u \perp Mx + Q$$

• Existence for fixed set Q (lower and upper function bounds)

Postblocks and Existence

Small linear complementarity problem

 $0 \le x \le u \perp Mx + Q$

- ▶ Existence for fixed set *Q* (lower and upper function bounds)
- Computational method can be applied for 2×2 blocks
 - Evaluate each subproblem
 - Determine sets for which solution exists
 - ▶ If Q is a subset of the union, then eliminate
 - Otherwise, compute Q for which no solution exists
 - Use information to (sometimes) restrict remaining variables

Postblocks and Existence

Small linear complementarity problem

 $0 \le x \le u \perp Mx + Q$

- ▶ Existence for fixed set *Q* (lower and upper function bounds)
- Computational method can be applied for 2×2 blocks
 - Evaluate each subproblem
 - Determine sets for which solution exists
 - ▶ If Q is a subset of the union, then eliminate
 - Otherwise, compute Q for which no solution exists
 - Use information to (sometimes) restrict remaining variables
- For larger postblock matrices
 - Existence of trivial solution when $Q \ge 0$
 - Generalize condition for upper bounds
 - Existence for compact sets $0 \le x \le u < \infty$
 - Otherwise test for strictly semimonotone matrix

Embedded Blocks and Forcing Conditions

Determine subproblems with unique solution

- Find a small index set α such that $M_{\alpha,\alpha}$ is strictly semimonotone
- Determine possible right-hand sides Q_{lpha}
- If $Q_{\alpha} \geq 0$, then fix $x_{\alpha} = 0$ and eliminate

Embedded Blocks and Forcing Conditions

Determine subproblems with unique solution

- Find a small index set α such that $M_{\alpha,\alpha}$ is strictly semimonotone
- Determine possible right-hand sides Q_{lpha}
- If $Q_{\alpha} \geq 0$, then fix $x_{\alpha} = 0$ and eliminate
- All strictly semimonotone 2 × 2 matrices
 - Positive diagonal for singletons
 - Positive diagonals with one positive off diagonal for doubletons
 - Positive diagonals with positive determinant for doubletons
- Identification based the Jacobian structure

Embedded Blocks and Forcing Conditions

Determine subproblems with unique solution

- Find a small index set α such that $M_{\alpha,\alpha}$ is strictly semimonotone
- Determine possible right-hand sides Q_{lpha}
- If $Q_{\alpha} \geq 0$, then fix $x_{\alpha} = 0$ and eliminate
- All strictly semimonotone 2 × 2 matrices
 - Positive diagonal for singletons
 - Positive diagonals with one positive off diagonal for doubletons
 - Positive diagonals with positive determinant for doubletons
- Identification based the Jacobian structure
- Currently implemented only for singleton subproblems

Summary

- Matrix classes are foundational in preprocessing blocks
 - Evaluate small blocks brute force is possible
 - Otherwise look for identifiable submatrices
 - P matrices
 - Small strictly semimonotone matrices
- Make improvements to the model
 - Only some rules are enabled by default
 - More expensive rules turned on with options

Summary

Matrix classes are foundational in preprocessing blocks

- Evaluate small blocks brute force is possible
- Otherwise look for identifiable submatrices
 - P matrices
 - Small strictly semimonotone matrices
- Make improvements to the model
 - Only some rules are enabled by default
 - More expensive rules turned on with options
- Reductions may determine model is infeasible
 - Infeasible models should be fixed by the modeler
 - List of preprocessing reductions can be obtained

output_presolve_level 3

Other Preprocessing Operations

Duplicate rows

- Duplicate columns
- Inequality based reductions
 - Forcing conditions
 - Complicated by preserving squareness and no side inequalities
 - Iterative procedure that constructs implications
 - Analogous to logic tables in integer programs
 - Implied bounds

Other Preprocessing Operations

Duplicate rows

- Duplicate columns
- Inequality based reductions
 - Forcing conditions
 - Complicated by preserving squareness and no side inequalities
 - Iterative procedure that constructs implications
 - Analogous to logic tables in integer programs
 - Implied bounds

Analysis can be very complicated!

Section 5

Diagnostics

Diagnostics

Produce Simple Report

INITIAL JACOBIAN NORM STATISTICS Maximum Row Norm. 1.0813e+04 eqn: (prdemand(chicago)) Minimum Row Norm. 2.0000e+00 eqn: (profit(seattle,new-york)) Maximum Column Norm 1.0813e+04 var: (p(chicago)) Minimum Column Norm 2.0000e+00 var: (x(seattle,new-york))

- Critical for preprocessing to correctly match equations and variables
 - Automatically performing a good match is difficult
 - Modeler knows their problem and should convey the match

- Critical for preprocessing to correctly match equations and variables
 - Automatically performing a good match is difficult
 - Modeler knows their problem and should convey the match
- Skew symmetric form of optimality conditions is essential
 - Needed to construct polyhedral variational inequalities
 - Check your model to obtain a report on skew symmetry

check_skew_symmetry yes

- Critical for preprocessing to correctly match equations and variables
 - Automatically performing a good match is difficult
 - Modeler knows their problem and should convey the match
- Skew symmetric form of optimality conditions is essential
 - Needed to construct polyhedral variational inequalities
 - Check your model to obtain a report on skew symmetry

check_skew_symmetry yes

- Matrix classes are foundational in preprocessing blocks
 - Evaluate small blocks brute force is possible
 - Otherwise look for identifiable submatrices

- Critical for preprocessing to correctly match equations and variables
 - Automatically performing a good match is difficult
 - Modeler knows their problem and should convey the match
- Skew symmetric form of optimality conditions is essential
 - Needed to construct polyhedral variational inequalities
 - Check your model to obtain a report on skew symmetry

check_skew_symmetry yes

- Matrix classes are foundational in preprocessing blocks
 - Evaluate small blocks brute force is possible
 - Otherwise look for identifiable submatrices
- Reductions may determine model is infeasible
 - Infeasible models should be fixed by the modeler
 - List of preprocessing reductions can be obtained

output_presolve_level 3

Analysis can be very complicated!

- Critical for preprocessing to correctly match equations and variables
 - Automatically performing a good match is difficult
 - Modeler knows their problem and should convey the match
- Skew symmetric form of optimality conditions is essential
 - Needed to construct polyhedral variational inequalities
 - Check your model to obtain a report on skew symmetry

check_skew_symmetry yes

- Matrix classes are foundational in preprocessing blocks
 - Evaluate small blocks brute force is possible
 - Otherwise look for identifiable submatrices
- Reductions may determine model is infeasible
 - Infeasible models should be fixed by the modeler
 - List of preprocessing reductions can be obtained

output_presolve_level 3

- Analysis can be very complicated!
- Diagnostics can help identify scaling problems

Part III

Solving Complementarity Problems

Motivation

Given an analyzed complementarity problem:

- What numerical methods are available?
- How does one know a solution is computed?
- What can be done to address any issues uncovered?

Motivation

Given an analyzed complementarity problem:

- What numerical methods are available?
- How does one know a solution is computed?
- What can be done to address any issues uncovered?

Based on PATH solver with specified options

Section 6

Numerical Methods

Overview

- Sequential linearization methods (PATH)
 - $1. \ \ {\rm Solve \ the \ linear \ \, complementarity \ problem}$

 $0 \leq x \perp F(x_k) + \nabla F(x_k)(x - x_k) \geq 0$

- 2. Perform a line search along merit function
- 3. Repeat until convergence

Overview

- Sequential linearization methods (PATH)
 - $1. \ \ {\rm Solve \ the \ linear \ \, complementarity \ problem}$

 $0 \leq x \perp F(x_k) + \nabla F(x_k)(x - x_k) \geq 0$

- 2. Perform a line search along merit function
- 3. Repeat until convergence
- Semismooth reformulation methods (SEMI)
 - Solve linear system of equations to obtain direction
 - Globalize with a trust region or line search
- Interior-point methods

Semismooth Reformulation

Define Fischer-Burmeister function

$$\phi(\mathsf{a},\mathsf{b}) := \mathsf{a} + \mathsf{b} - \sqrt{\mathsf{a}^2 + \mathsf{b}^2}$$

•
$$\phi(a,b) = 0$$
 iff $a \ge 0$, $b \ge 0$, and $ab = 0$

Define the system

$$[\Phi(x)]_i = \phi(x_i, F_i(x))$$

• x^* solves complementarity problem iff $\Phi(x^*) = 0$

Nonsmooth system of equations

Semismooth Algorithm

1. Calculate $H^k \in \partial_B \Phi(x^k)$ and solve the following system for d^k :

$$H^k d^k = -\Phi(x^k)$$

If this system either has no solution, or

$$\nabla \Psi(x^k)^T d^k \leq -p_1 \|d^k\|^{p_2}$$

is not satisfied, let $d^k = -\nabla \Psi(x^k)$.

Semismooth Algorithm

1. Calculate $H^k \in \partial_B \Phi(x^k)$ and solve the following system for d^k :

$$H^k d^k = -\Phi(x^k)$$

If this system either has no solution, or

$$\nabla \Psi(x^k)^T d^k \leq -p_1 \|d^k\|^{p_2}$$

is not satisfied, let $d^k = -\nabla \Psi(x^k)$.

2. Compute smallest nonnegative integer i^k such that

$$\Psi(x^k + \beta^{i^k} d^k) \leq \Psi(x^k) + \sigma \beta^{i^k} \nabla \Psi(x^k) d^k$$

3. Set $x^{k+1} = x^k + \beta^{j^k} d^k$, k = k + 1, and go to 1.

Section 7

PATH Algorithm

Overview

- $1. \ \mbox{Crash}$ a basis and determine proximal point
- 2. Solve the linearized complementarity problem
- 3. Perform a search with semismooth merit function
- 4. Restart with different options when the method fails

Crashing a Basis

Compute reduced problem

$$\begin{array}{rcl} J_1 &=& \{i \mid \ell_i < x_i < u_i\} \\ J_2 &=& \{i \mid \ell_i = x_i \text{ and } F_i(x) < 0\} \\ J_3 &=& \{i \mid u_i = x_i \text{ and } F_i(x) > 0\} \\ J &=& J_1 \cup J_2 \cup J_3 \end{array}$$

Calculate modified direction

$$[\nabla F(x) + \mu I]_{J,J} d_J = -F_J(x)$$

- Perturbation $\mu > 0$ chosen to prevent singularity
- Search along direction to minimize merit function
- Update x, μ and repeat

Relevant options: crash_method and crash_perturb.

Solving Linearization

Variant of Lemke's method for solving

$$0 \in Mx + q + N_B(x)$$

- Construct a piecewise linear path
- Simplex method with complementarity pivoting

Solving Linearization

Variant of Lemke's method for solving

 $0 \in Mx + q + N_B(x)$

- Construct a piecewise linear path
- Simplex method with complementarity pivoting
- Regular starts
 - Given initial starting point x^k
 - Construct invertible basis
 - Track path from x^k to \bar{x}^k
 - Piecewise linear path may cycle

Solving Linearization

Variant of Lemke's method for solving

 $0 \in Mx + q + N_B(x)$

- Construct a piecewise linear path
- Simplex method with complementarity pivoting
- Regular starts
 - Given initial starting point x^k
 - Construct invertible basis
 - Track path from x^k to \bar{x}^k
 - Piecewise linear path may cycle
- Lemke ray starts
 - Start from a ray
 - Path does not cycle for nondegenerate problems
 - Many pivots usually required from all slack basis
 - Advanced basis can be chosen to reduce pivots
 - Used during first major iteration if solve fails

Relevant options: lemke_start and lemke_start_type.

Linear Method I

- 1. Check given basis for rank deficiency
 - Eliminate linearly dependent columns
 - Replace with slack or artificial variables
 - If process fails, then use all slack basis
- 2. Construct covering vector that enters basis
- 3. Determine leaving variable by ratio test
 - Expand and devex ratio tests implemented
 - Priority assigned to artificial variables
 - If no leaving variable, then stop with ray termination
- 4. Determine entering variable by complementarity pivoting
 - If x_i leaves basis, then corresponding slack enters
 - ▶ If slack leaves basis, then corresponding x_i enters
 - If covering vector leaves basis, then stop at solution

Linear Method II

- 5. Check for cycling in piecewise linear path
 - Count number of times variable enters basis
 - Reset counters when
 - Artificial variable leaves basis
 - Homotopy parameter larger than previous maximum
 - If count larger than threshold, then stop with cycling
- 6. If iteration limit reached, then stop
- 7. Go to Step 3
- 8. Refine solution
 - Project nonbasic variables onto bounds
 - Refactor the basis
 - Compute values for the basic variables
 - Project basic variables onto bounds

Linear Algebra and Options

- LUSOL used for factorization and updates (Saunders)
 - Markovitz strategy for pivot selection
 - Threshold partial pivoting
 - Sparse rank-1 updates
- Relevant tolerance options
 - factorization_small_tolerance
 - factorization_pivot_tolerance
 - factorization_zero_tolerance
 - factorization_update_limit
- Diagnosing rank deficiency
 - output_warnings
 - output_factorization_singularities
- Cycling and artificial variables
 - output_minor_iteration_frequency

Additional Details

Scale the linear problems

Additional Details

- Scale the linear problems
- Globalize with Fischer-Burmeister merit function
 - Nonmonotone search with watchdog strategy
 - Gradient steps used when direction is not good
 - Projections onto box within search

Additional Details

- Scale the linear problems
- Globalize with Fischer-Burmeister merit function
 - Nonmonotone search with watchdog strategy
 - Gradient steps used when direction is not good
 - Projections onto box within search
- Apply proximal point with resets
 - Used to deal with singularity problems
 - Modifies nonlinear problem with diagonal perturbation
 - Reset when difficulty encountered by linear solver

Additional Details

- Scale the linear problems
- Globalize with Fischer-Burmeister merit function
 - Nonmonotone search with watchdog strategy
 - Gradient steps used when direction is not good
 - Projections onto box within search
- Apply proximal point with resets
 - Used to deal with singularity problems
 - Modifies nonlinear problem with diagonal perturbation
 - Reset when difficulty encountered by linear solver
- Use spacer steps performed after each major iteration

Additional Details

- Scale the linear problems
- Globalize with Fischer-Burmeister merit function
 - Nonmonotone search with watchdog strategy
 - Gradient steps used when direction is not good
 - Projections onto box within search
- Apply proximal point with resets
 - Used to deal with singularity problems
 - Modifies nonlinear problem with diagonal perturbation
 - Reset when difficulty encountered by linear solver
- Use spacer steps performed after each major iteration
- Restart when necessary
 - Detect when algorithm is stalling
 - Restart algorithm with alternate options

Most relevant options: nms_mstep_frequency and nms_memory_size.

Merit Functions

- Many merit functions can be used to measure progress
 - Complementarity error: $\|(-x_+), (-F(x))_+, x_+ \odot F(x)_+\|$
 - Normal map: $||F(x_+) + x x_+||$
 - Minimum map: $\|\min \{x, F(x)\}\|$
 - Fischer-Burmeister function: $\|\Phi(x, F(x))\|$
 - Gradient of Fischer-Burmeister function: $\nabla \left[\frac{1}{2} \|\Phi(x, F(x))\|_2^2\right]$

Merit Functions

- Many merit functions can be used to measure progress
 - Complementarity error: $\|(-x_+), (-F(x))_+, x_+ \odot F(x)_+\|$
 - Normal map: $||F(x_+) + x x_+||$
 - Minimum map: $\|\min \{x, F(x)\}\|$
 - Fischer-Burmeister function: $\|\Phi(x, F(x))\|$
 - Gradient of Fischer-Burmeister function: $\nabla \left[\frac{1}{2} \|\Phi(x, F(x))\|_2^2\right]$
- Observe vastly different values for some problems
 - Particularly when $x \to \infty$ or $F(x) \to \infty$
 - Can happen when domain violations occur at solution

Merit Functions

- Many merit functions can be used to measure progress
 - Complementarity error: $\|(-x_+), (-F(x))_+, x_+ \odot F(x)_+\|$
 - Normal map: $||F(x_+) + x x_+||$
 - Minimum map: $\|\min \{x, F(x)\}\|$
 - Fischer-Burmeister function: $\|\Phi(x, F(x))\|$
 - Gradient of Fischer-Burmeister function: $\nabla \left[\frac{1}{2} \|\Phi(x, F(x))\|_2^2\right]$
- Observe vastly different values for some problems
 - Particularly when $x \to \infty$ or $F(x) \to \infty$
 - Can happen when domain violations occur at solution
- Want all to be near zero to trust the solution

```
Inf-Norm of Complementarity . 1.0311e-11 eqn: (profit(san-diego,new-york))
Inf-Norm of Normal Map. . . . 1.1369e-13 eqn: (prdemand(new-york))
Inf-Norm of Minimum Map . . . 1.1369e-13 eqn: (prdemand(new-york))
Inf-Norm of Fischer Function. 1.1369e-13 eqn: (prdemand(new-york))
Inf-Norm of Grad Fischer Fcn. 2.4809e-10 eqn: (prdemand(topeka))
Two-Norm of Grad Fischer Fcn. 3.4958e-10
```


Convergence Behaviors

Superlinear/quadratic convergence – best outcome

Convergence Behaviors

- Superlinear/quadratic convergence best outcome
- Linear convergence
 - Far from a solution merit function is large
 - Jacobian is incorrect disrupts quadratic convergence
 - Jacobian is rank deficient gradient of merit function is small
 - Converge to local minimizer guarantees rank deficiency
 - Limits of finite precision arithmetic
 - $1. \ \mbox{Merit function converges quadratically to small number}$
 - 2. Merit function hovers around that number with no progress

Convergence Behaviors

- Superlinear/quadratic convergence best outcome
- Linear convergence
 - Far from a solution merit function is large
 - Jacobian is incorrect disrupts quadratic convergence
 - Jacobian is rank deficient gradient of merit function is small
 - Converge to local minimizer guarantees rank deficiency
 - Limits of finite precision arithmetic
 - $1. \ \mbox{Merit function converges quadratically to small number}$
 - 2. Merit function hovers around that number with no progress
- Domain violations excessive backtracking in line search

Always ensure functions and Jacobians are defined

- Confront and reformulate at the modeling stage
- Report remaining domain violations to solver
- Provide a good starting point

Always ensure functions and Jacobians are defined

- Confront and reformulate at the modeling stage
- Report remaining domain violations to solver
- Provide a good starting point
- Always match equations to appropriate variables
 - Automatically performing a good match is difficult
 - Modeler knows their problem and should convey the match
 - Required for effective preprocessing

Always ensure functions and Jacobians are defined

- Confront and reformulate at the modeling stage
- Report remaining domain violations to solver
- Provide a good starting point
- Always match equations to appropriate variables
 - Automatically performing a good match is difficult
 - Modeler knows their problem and should convey the match
 - Required for effective preprocessing
- Always prefer a monotone formulation over other formulations
 - Use skew symmetric version of optimality conditions
 - Required for preprocessing and proximal perturbation
 - Check the skew symmetry report when in doubt

Analysis may determine model is infeasible

- Infeasible models should be fixed by the modeler
- List of preprocessing reductions can be obtained

- Analysis may determine model is infeasible
 - Infeasible models should be fixed by the modeler
 - List of preprocessing reductions can be obtained
- Use scaling when appropriate
 - Any consistent scaling for optimization problems
 - Symmetric diagonal scaling for complementarity problems
 - Beware when using unscaled solution!

- Analysis may determine model is infeasible
 - Infeasible models should be fixed by the modeler
 - List of preprocessing reductions can be obtained
- Use scaling when appropriate
 - Any consistent scaling for optimization problems
 - Symmetric diagonal scaling for complementarity problems
 - Beware when using unscaled solution!
- Rank deficiency can still be an issue
 - Solver can sometimes identify and eliminate dependencies
 - Solver may add a positive diagonal perturbation
 - Use linear algebra options to obtain report

- Analysis may determine model is infeasible
 - Infeasible models should be fixed by the modeler
 - List of preprocessing reductions can be obtained
- Use scaling when appropriate
 - Any consistent scaling for optimization problems
 - Symmetric diagonal scaling for complementarity problems
 - Beware when using unscaled solution!
- Rank deficiency can still be an issue
 - Solver can sometimes identify and eliminate dependencies
 - Solver may add a positive diagonal perturbation
 - Use linear algebra options to obtain report
- Always check the solution reported
 - Look for convergence issues in the iteration log
 - Make sure all the merit functions are close to zero