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Mixed Complementarity Problems
Focus on complementarity problems with equalities

0 ≤ x ⊥ F (x , y) ≥ 0
y G (x , y) = 0

where F : <n+m → n and G : <n+m → m are continuously differentiable.

Good algorithms couple a Newton method to a globalization strategy.

PATH solves mixed linear complementarity problems

0 ≤ x ⊥ Mx + Ny + q ≥ 0
y Ax + By + c = 0

with a line search on a suitable merit function.

I In great models, B−1 exists and M −NB−1A is positive semidefinite.

I In good models, (B + δI )−1 exists and

M + δI − N(B + δI )−1A

is positive definite for any δ > 0.
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Outline

1. Modeling Complementarity Problems

2. Analyzing Complementarity Problems

3. Solving Complementarity Problems
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Part I

Modeling Complementarity Problems
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Motivation

I What constitutes a good model?

I How are they constructed?

I Why are they good?

Relevant for most of the available algorithms
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Section 1

Linear Problems
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Bimatrix Games
Problem Specification

I Players select strategies to minimize expected loss
I p ∈ <n is the probability player 1 chooses each strategy
I q ∈ <m is the probability player 2 chooses each strategy
I A ∈ <n×m is the loss matrix for player 1
I B ∈ <m×n is the loss matrix for player 2

I Optimization problem for player 1 given q∗

min
0≤p

pTAq∗

subject to eTp = 1

I Optimization problem for player 2 given p∗

min
0≤q

qTBp∗

subject to eTq = 1
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Bimatrix Games
Mixed Complementarity Formulations

I Assemble first-order optimality conditions

0 ≤ p ⊥ Aq − λ1 ≥ 0
0 ≤ q ⊥ Bp − λ2 ≥ 0

λ1 eTp = 1
λ2 eTq = 1

I Equivalent formulation (negative multipliers)

0 ≤ p ⊥ Aq + λ1 ≥ 0
0 ≤ q ⊥ Bp + λ2 ≥ 0

λ1 eTp = 1
λ2 eTq = 1
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Bimatrix Games
Equation Sign Important

For hard models, solvers will add a diagonal perturbation to regularize
the model. They generally employ a single positive perturbation
independent of the structure of your particular problem.

I First formulation can be a good model

0 ≤ x ⊥ (M + δI )x − ATλ+ q ≥ 0
λ Ax + δλ+ b = 0

has the reduced formulation

0 ≤ x ⊥
(
M + δI + 1

δA
TA
)
x + q + 1

δA
Tb ≥ 0

that inherits the properties of M.

15 / 157



.pdf

Bimatrix Games
Equation Sign Important

For hard models, solvers will add a diagonal perturbation to regularize
the model. They generally employ a single positive perturbation
independent of the structure of your particular problem.

I Second formulation is not a good model

0 ≤ x ⊥ (M + δI )x + ATλ+ q ≥ 0
λ Ax + δλ+ b = 0

has reduced formulation

0 ≤ x ⊥
(
M + δI − 1

δA
TA
)
x + q − 1

δA
Tb ≥ 0

that does not inherit properties of M.
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Bimatrix Games
A Family of Equivalent Problems

I Players select strategies to minimize expected loss
I p ∈ <n is the probability player 1 chooses each strategy
I q ∈ <m is the probability player 2 chooses each strategy
I A ∈ <n×m is the loss matrix for player 1
I B ∈ <m×n is the loss matrix for player 2

I Optimization problem for player 1 given q∗

min
0≤p

pT (A + α2E )q∗

subject to eTp = 1

I Optimization problem for player 2 given p∗

min
0≤q

qT (B + α1E )p∗

subject to eTq = 1
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Bimatrix Games
Knowledge is Not Always Power

If A + α2E < 0 and B + α1E < 0, then

0 ≤ p ⊥ (A + α2E )q + λ1 ≥ 0
0 ≤ q ⊥ (B + α1E )p + λ2 ≥ 0

λ1 eTp = 1
λ2 eTq = 1

is equivalent to

0 ≤ p ⊥ (A + α2E )q + λ1 ≥ 0
0 ≤ q ⊥ (B + α1E )p + λ2 ≥ 0
0 ≤ λ1 ⊥ eTp − 1 ≥ 0
0 ≤ λ2 ⊥ eTq − 1 ≥ 0

which can be further reduced to finding nonzero p and q with

0 ≤ p ⊥ (A + α2E )q + e ≥ 0
0 ≤ q ⊥ (B + α1E )p + e ≥ 0

and the matrix class is not pleasant.
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Bimatrix Games
Knowledge is Sometimes Power

If A + α2E > 0 and B + α1E > 0, then

0 ≤ p ⊥ (A + α2E )q − λ1 ≥ 0
0 ≤ q ⊥ (B + α1E )p − λ2 ≥ 0

λ1 eTp = 1
λ2 eTq = 1

is equivalent to

0 ≤ p ⊥ (A + α2E )q − λ1 ≥ 0
0 ≤ q ⊥ (B + α1E )p − λ2 ≥ 0
0 ≤ λ1 ⊥ eTp − 1 ≥ 0
0 ≤ λ2 ⊥ eTq − 1 ≥ 0

which can be further reduced to

0 ≤ p ⊥ (A + α2E )q − e ≥ 0
0 ≤ q ⊥ (B + α1E )p − e ≥ 0

and a special Lemke method can be applied.
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Bimatrix Games
Strictly Positive Matrix Formulation

If A + α2E > 0 and B + α1E > 0, then

0 ≤ p ⊥ α1Ep + (A + α2E )q − λ1 ≥ 0
0 ≤ q ⊥ (B + α1E )p + α2Eq − λ2 ≥ 0

λ1 eTp = 1
λ2 eTq = 1

is equivalent to

0 ≤ p ⊥ α1Ep + (A + α2E )q − λ1 ≥ 0
0 ≤ q ⊥ (B + α1E )p + α2Eq − λ2 ≥ 0
0 ≤ λ1 ⊥ eTp − 1 ≥ 0
0 ≤ λ2 ⊥ eTq − 1 ≥ 0

which can be further reduced to

0 ≤ p ⊥ α1Ep + (A + α2E )q − e ≥ 0
0 ≤ q ⊥ (B + α1E )p + α2Eq − e ≥ 0

and a Lemke’s method (with lexicographic pivoting) can be applied.
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Bimatrix Games
Symmetric Diagonal Scaling

Symmetric can be applied to

I Improve condition number of matrices

I Reduce degeneracy with Lemke’s method

without changing matrix properties or affecting rank.

For our problem we have

0 ≤ p ⊥ α1S1ES1p + S1(A + α2E )S2q − S1e ≥ 0
0 ≤ q ⊥ S2(B + α1E )S1p + α2S2ES2q − S2e ≥ 0

for positive diagonal matrices S1 and S2.
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Complementarity Between Functions
Problem Formulations

Find an x such that

0 ≤ Mx + q ⊥ Nx + r ≥ 0

Add one slack variable to obtain the problem

x Mx − s + q = 0
0 ≤ s ⊥ Nx + r ≥ 0

with the reduced, perturbed problem

0 ≤ s ⊥ (N(M + δI )−1 + δI )s + r̃ ≥ 0

that may be a good model.
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Complementarity Between Functions
Alternative Formulations

Add two slack variables to obtain

Mx − s + q = 0
t − Nx − r = 0

0 ≤ s ⊥ t ≥ 0

where solver matches variables to equations.

I Good match
x Mx − s + q = 0
t t − Nx − r = 0

0 ≤ s ⊥ t ≥ 0

may result in a good reduced, perturbed model

0 ≤ s ⊥ (N(M + δI )−1 + δ(1 + δ)I )s + r̃ ≥ 0
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Complementarity Between Functions
Alternative Formulations

Add two slack variables to obtain

Mx − s + q = 0
t − Nx − r = 0

0 ≤ s ⊥ t ≥ 0

where solver matches variables to equations.

I Unfortunate match

t Mx − s + q = 0
x t − Nx − r = 0

0 ≤ s ⊥ t ≥ 0

may result in a “bad” reduced, perturbed model

0 ≤ s ⊥ ((N − δI )(M + δN − δ2I )−1 + δI )s + r̃ ≥ 0

I Do not rely on the solver to perform a good match!
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Summary

I Always match equations to appropriate variables
I Automatically performing a good match is difficult
I Modeler knows their problem and should convey the match

I Always prefer a monotone formulation over other formulations
I Sign on the equations matters when perturbing
I Use skew symmetric version of optimality conditions
I Use problem knowledge if the result is a “better” problem

I Use symmetric scaling to
I Improve condition number of matrices
I Reduce degeneracy with Lemke’s method
I Beware when using unscaled solution!

I Rank deficiency can still be an issue
I Solver can sometimes identify and eliminate dependencies
I Solver may add a positive diagonal perturbation

I Improve condition number of matrices
I Eliminate dependencies for good models

I Always check the solution reported!
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Section 2

Nonlinear Problems
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Nash Games
Problem Formulation

I Non-cooperative game played by n individuals
I Each player selects a strategy to optimize their objective
I Strategies for the other players are fixed

I Equilibrium reached when no improvement is possible

I Characterization of two player equilibrium (x∗, y∗)

x∗ ∈

{
arg min

x≥0
f1(x , y∗)

subject to c1(x) ≤ 0

y∗ ∈

{
arg min

y≥0
f2(x∗, y)

subject to c2(y) ≤ 0

I Many applications
I Walrasian (traffic) equilibrium
I Arrow-Debreau (economic) models
I Cournot duopoly models
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Nash Games
Complementarity Formulation

I Assume each optimization problem is convex
I f1(·, y) is convex for each y
I f2(x , ·) is convex for each x
I c1(·) and c2(·) convex and satisfy constraint qualification

I Then the first-order conditions are necessary and sufficient

min
x≥0

f1(x , y∗)

subject to c1(x) ≤ 0
⇔ 0 ≤ x ⊥ ∇x f1(x , y∗) + λT1 ∇xc1(x) ≥ 0

0 ≤ λ1 ⊥ −c1(x) ≥ 0
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Nash Games
Complementarity Formulation

I Assume each optimization problem is convex
I f1(·, y) is convex for each y
I f2(x , ·) is convex for each x
I c1(·) and c2(·) convex and satisfy constraint qualification

I Then the first-order conditions are necessary and sufficient

min
y≥0

f2(x∗, y)

subject to c2(y) ≤ 0
⇔ 0 ≤ y ⊥ ∇y f2(x∗, y) + λT2 ∇y c2(y) ≥ 0

0 ≤ λ2 ⊥ −c2(y) ≥ 0
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Nash Games
Complementarity Formulation

I Assume each optimization problem is convex
I f1(·, y) is convex for each y
I f2(x , ·) is convex for each x
I c1(·) and c2(·) convex and satisfy constraint qualification

I Then the first-order conditions are necessary and sufficient

0 ≤ x ⊥ ∇x f1(x , y) + λT1 ∇xc1(x) ≥ 0
0 ≤ y ⊥ ∇y f2(x , y) + λT2 ∇yc2(y) ≥ 0
0 ≤ λ1 ⊥ −c1(x) ≥ 0
0 ≤ λ2 ⊥ −c2(y) ≥ 0

I Nonlinear complementarity problem
I Each solution is an equilibrium for the Nash game
I Formulation is not correct for nonconvex problems
I Writing the first-order conditions is error prone
I Recommend using the MOPEC machinery
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Nash Games
Constant Elasticity of Substitution

Ensure functions and Jacobians are defined
I Confront and reformulate at the modeling stage
I Report remaining domain violations to solver

I Function undefined will cause backtrack in line search
I Function defined and Jacobian undefined will abort solve

I Provide a starting point where functions are defined

Common in economics for the objective function to use

(α1x
γ
1 + α2x

γ
2 )

1
γ

where x1 ≥ 0 and x2 ≥ 0

I Function not defined when x1 = 0 or x2 = 0

(α1(x1 + ε)γ + α2(x2 + ε)γ − (α1 + α2)εγ)
1
γ

I Jacobian not defined when x1 = x2 = 0

(α1(x1 + ε)γ + α2(x2 + ε)γ)
1
γ − (α1 + α2)

1
γ ε

I Smoothing the functions changes the answer
I Modeler needs to determine permissible perturbation
I Modeler may want to determine sensitivity to perturbation
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Nash Games
Slack Variables and Equations

Permissible to add slack variables in the formulation

0 ≤ x ⊥ ∇x f1(x , y) + λT1 ∇xc1(x) ≥ 0
0 ≤ y ⊥ ∇y f2(x , y) + λT2 ∇yc2(y) ≥ 0
0 ≤ s1 ⊥ λ1 ≥ 0
0 ≤ s2 ⊥ λ2 ≥ 0
λ1 −c1(x)− s1 = 0
λ2 −c2(y)− s2 = 0

provided skew symmetric form of optimality conditions used.
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Nash Games
Slack Variables and Equations

Changing the sign of the equations

0 ≤ x ⊥ ∇x f1(x , y) + λT1 ∇xc1(x) ≥ 0
0 ≤ y ⊥ ∇y f2(x , y) + λT2 ∇yc2(y) ≥ 0
0 ≤ s1 ⊥ λ1 ≥ 0
0 ≤ s2 ⊥ λ2 ≥ 0
λ1 c1(x) + s1 = 0
λ2 c2(y) + s2 = 0

causes problems when positive diagonal perturbation added.
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Nash Games
Slack Variables and Equations

For general mixed nonlinear complementarity problems, use

0 ≤ x ⊥ F (x)− ATλ ≥ 0
λ Ax = b

rather than
0 ≤ x ⊥ F (x) + ATλ ≥ 0
λ Ax = b

and match the equations to the variables!
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Nash Games
Scaling the Problem

I Any scaling can be applied to original optimization problems
I Ensure consistency in scaled variables across problems
I Form optimality conditions of the scaled problems

I Apply only symmetric scaling to the complementarity problem

0 ≤ x ⊥ SF (Sx ,Ry) ≥ 0
y RG (Sx ,Ry) = 0

I For linear constraints, R is the multiplier scaling

0 ≤ x ⊥ SF (Sx)− SATRλ ≥ 0
λ RASx = Rb

Beware when using unscaled solution!
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Summary
I Always ensure functions and Jacobians are defined

I Confront and reformulate at the modeling stage
I Report remaining domain violations to solver

I Function undefined will cause backtrack in line search
I Function defined and Jacobian undefined will abort solve

I Recommend using the MOPEC machinery when possible
I Conveys more information that the solver can use
I Relieves modeler of writing code for the derivatives
I Formulates optimality conditions correctly for the solver

I Always match equations to appropriate variables

I Always prefer a monotone formulation over other formulations
I Use scaling when appropriate

I Any consistent scaling for optimization problems
I Symmetric diagonal scaling for complementarity problems
I Beware when using unscaled solution!

I Rank deficiency can still be an issue
I Solver can sometimes identify and eliminate dependencies
I Solver may add a positive diagonal perturbation

I Always check the solution reported!
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Part II

Analyzing Complementarity Problems
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Motivation

Given a complementarity problem:

I What tools can be used to analyze it?

I What do the tools say about the problem?

I What can be done to address any issues uncovered?

Based on PATH solver with specified options
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Section 3

Variational Inequalities
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Variational Inequalities
Definition

I Let F : <n → <n be continuously differentiable

I Let X ⊆ <n be a closed convex set

I Variational inequality is to find x ∈ X such that

〈F (x), y − x〉 ≥ 0 ∀ y ∈ X

I Equivalent formulation is the generalized equation

0 ∈ F (x) + NX (x)

where the normal cone to X at x ∈ X is

NX (x) := {x̄ | 〈x̄ , y − x〉 ≤ 0 ∀ y ∈ X}

I Special cases include
I Nonlinear equations when X = <n

I Nonlinear complementarity when X = <n
+

I Mixed complementarity when X = [l , u]n
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Variational Inequalities
Normal Cone
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Variational Inequalities
Simplified Theory (Robinson)

I Let F : <n → <n, A ∈ <m×n and b ∈ <m.

I If x and λ solve

0 ≤ x ⊥ F (x)− ATλ ≥ 0
λ Ax + b = 0

(1)

then
0 ∈ F (x) + NX (x) (2)

where X = {x | x ≥ 0 and Ax + b = 0}.
I If x solves (2), then multipliers λ exist such that x and λ solve (1).

Note: X and NX (·) are geometric objects and we are free to choose
among equivalent algebraic representations.
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Variational Inequalities
Basic Preprocessing Methodology

I Given an arbitrary complementarity problem

I Discover skew symmetric structure within the problem

I Convert the problem into the equivalent variational inequality

I Choose representation of the polyhedral constraint set
I Reduce model size and complexity
I Improve algorithm performance
I Detect unsolvable models

I Recover reduced complementarity problem
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Variational Inequalities
Discovering Generalized Skew Symmetry

I Provided with a list of linear rows and columns for the problem

I For each linear row we perform the following
I Check that the column is linear
I Reject rows having a diagonal entry
I Establish nonzero pattern is identical
I Ensure elements have the opposite signs

I Can negate rows corresponding to equalities

0 ≤ x ⊥ x + y + z ≥ 0
y x + y + 1

3
z = 4

z 2x − y = 5

is equivalent to

0 ≤ x ⊥ 2x + 2y + 2z ≥ 0
y −3x − 3y − z = −12
z −2x + y = −5

The check skew symmetry option will report findings and can be used
to check the correctness of your formulation!
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Variational Inequalities
Single Constraint Reductions

I Reductions on a single constraint include
I Singleton rows
I Doubleton rows with a column singleton
I Forcing conditions

I An example of a singleton row
1. Complementarity problem

0 ≤ x ⊥ x2 − y + 1 ≥ 0
0 ≤ y ⊥ x − 1 ≥ 0

2. Form equivalent polyhedral problem

0 ∈ x2 + 1 + NX (x)

where X = {x | x ≥ 0 and x ≥ 1}
3. Recover reduced complementarity problem

1 ≤ x ⊥ x2 + 1 ≥ 0

with the solution x = 1
4. Compute multiplier y = 2
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Variational Inequalities
Assembling Polyhedral Sets

I Given skew symmetric rows and columns

I Reject those requiring scaling or sign changes (can be relaxed)

I Use a greedy heuristic to assemble maximal polyhedral set
I Choose a remaining skew symmetric row
I Add next row sharing some nonzero entries if possible
I Continue adding rows until no more rows can be added
I Repeat to identify multiple polyhedral sets

I Reductions using polyhedral sets include
I Duplicate rows
I Implied variable bounds

I Structure can be conveyed to capable solvers
I A primal/dual structure recovered for optimization problems
I Polyhedral variational inequalities for other problems
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Variational Inequalities
Duplicate Rows Example

1. Identify the polyhedral constraints

0 ≤ x ⊥ Qx − ATλ+ c ≥ 0
0 ≤ y ⊥ −bTλ+ d ≥ 0
0 ≤ z ⊥ bTλ− d ≥ 0
0 ≤ λ ⊥ Ax + by − bz ≥ 0

2. Construct the polyhedral problem

0 ∈ Qx − ATλ+ c + N<n
+

(x)
0 ∈ Aλ+ c + NY (λ)

where Y =
{
y | y ≥ 0, −bT y + d ≥ 0, and bT y − d ≥ 0

}
3. Replace the polyhedral set

Y =
{
y | y ≥ 0 and bT y − d = 0

}
4. Recover reduced mixed complementarity problem

0 ≤ x ⊥ Qx − ATλ+ c ≥ 0
y −bTλ+ d = 0

0 ≤ λ ⊥ Ax + by ≥ 0
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Variational Inequalities
Summary

I Critical for preprocessing to correctly match equations and variables
I Automatically performing a good match is difficult
I Modeler knows their problem and should convey the match

I Skew symmetric form of optimality conditions is essential
I Needed to construct polyhedral variational inequalities
I Check your model to obtain a report on skew symmetry

check skew symmetry yes

I Reductions may determine model is infeasible
I Infeasible models should be fixed by the modeler
I List of preprocessing reductions can be obtained

output presolve level 3
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Section 4

Block Structure
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Block Structure
Example

I Exploitation requires structural identification
x x 0 0 0 0 0
x x 0 0 0 0 0
x 0 x x x 0 0
x 0 x x x 0 0
x 0 x x x 0 0
0 0 0 0 0 x x
x 0 x x x x x

I Focus on small block sizes (at most 3× 3)
I Start from a single row
I Add constraints for variables
I Stop when no constraints to add or block too big
I Equations removed via Schur complement when possible

I Apply reductions
I Preblocks use uniqueness arguments
I Postblocks use existence arguments

I Matrix classes form the foundation for these methods
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Block Structure
Preblocks and Uniqueness

I Small linear complementarity problem

0 ≤ x ≤ u ⊥ Mx + q

I Existence and uniqueness for fixed vector q

I Partial uniqueness for fixed vector q
I Remaining problem does not rely on non-unique components
I Remaining block can be reformulated

I Computational method is applied for 2× 2 blocks
I Compute all solutions
I Eliminate if solution is unique
I Check compact reformulation if not unique

I For larger preblock matrices
I Test for P matrix
I Compute unique solution and eliminate
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Block Structure
Postblocks and Existence

I Small linear complementarity problem

0 ≤ x ≤ u ⊥ Mx + Q

I Existence for fixed set Q (lower and upper function bounds)

I Computational method can be applied for 2× 2 blocks
I Evaluate each subproblem
I Determine sets for which solution exists
I If Q is a subset of the union, then eliminate
I Otherwise, compute Q for which no solution exists
I Use information to (sometimes) restrict remaining variables

I For larger postblock matrices
I Existence of trivial solution when Q ≥ 0

I Generalize condition for upper bounds

I Existence for compact sets 0 ≤ x ≤ u <∞
I Otherwise test for strictly semimonotone matrix
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Block Structure
Embedded Blocks and Forcing Conditions

I Determine subproblems with unique solution
I Find a small index set α such that Mα,α is strictly semimonotone
I Determine possible right-hand sides Qα
I If Qα ≥ 0, then fix xα = 0 and eliminate

I All strictly semimonotone 2× 2 matrices
I Positive diagonal for singletons
I Positive diagonals with one positive off diagonal for doubletons
I Positive diagonals with positive determinant for doubletons

I Identification based the Jacobian structure

I Currently implemented only for singleton subproblems
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Block Structure
Summary

I Matrix classes are foundational in preprocessing blocks
I Evaluate small blocks – brute force is possible
I Otherwise look for identifiable submatrices

I P matrices
I Small strictly semimonotone matrices

I Make improvements to the model
I Only some rules are enabled by default
I More expensive rules turned on with options

I Reductions may determine model is infeasible
I Infeasible models should be fixed by the modeler
I List of preprocessing reductions can be obtained

output presolve level 3
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Other Preprocessing Operations

I Duplicate rows

I Duplicate columns

I Inequality based reductions
I Forcing conditions

I Complicated by preserving squareness and no side inequalities
I Iterative procedure that constructs implications
I Analogous to logic tables in integer programs

I Implied bounds

Analysis can be very complicated!
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Section 5

Diagnostics
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Diagnostics
Produce Simple Report

INITIAL POINT STATISTICS

Maximum of X. . . . . . . . . . 3.0000e+02 var: (x(seattle,chicago))

Maximum of F. . . . . . . . . . 3.8922e+02 eqn: (prdemand(chicago))

Maximum of Grad F . . . . . . . 1.0811e+04 eqn: (prdemand(chicago))

var: (p(chicago))

INITIAL JACOBIAN NORM STATISTICS

Maximum Row Norm. . . . . . . . 1.0813e+04 eqn: (prdemand(chicago))

Minimum Row Norm. . . . . . . . 2.0000e+00 eqn: (profit(seattle,new-york))

Maximum Column Norm . . . . . . 1.0813e+04 var: (p(chicago))

Minimum Column Norm . . . . . . 2.0000e+00 var: (x(seattle,new-york))
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Summary

I Critical for preprocessing to correctly match equations and variables
I Automatically performing a good match is difficult
I Modeler knows their problem and should convey the match

I Skew symmetric form of optimality conditions is essential
I Needed to construct polyhedral variational inequalities
I Check your model to obtain a report on skew symmetry

check skew symmetry yes

I Matrix classes are foundational in preprocessing blocks
I Evaluate small blocks – brute force is possible
I Otherwise look for identifiable submatrices

I Reductions may determine model is infeasible
I Infeasible models should be fixed by the modeler
I List of preprocessing reductions can be obtained

output presolve level 3

I Analysis can be very complicated!

I Diagnostics can help identify scaling problems
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Part III

Solving Complementarity Problems
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Motivation

Given an analyzed complementarity problem:

I What numerical methods are available?

I How does one know a solution is computed?

I What can be done to address any issues uncovered?

Based on PATH solver with specified options
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Section 6

Numerical Methods
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Numerical Methods
Overview

I Sequential linearization methods (PATH)

1. Solve the linear complementarity problem

0 ≤ x ⊥ F (xk) +∇F (xk)(x − xk) ≥ 0

2. Perform a line search along merit function
3. Repeat until convergence

I Semismooth reformulation methods (SEMI)
I Solve linear system of equations to obtain direction
I Globalize with a trust region or line search

I Interior-point methods
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Numerical Methods
Semismooth Reformulation

I Define Fischer-Burmeister function

φ(a, b) := a + b −
√
a2 + b2

I φ(a, b) = 0 iff a ≥ 0, b ≥ 0, and ab = 0

I Define the system
[Φ(x)]i = φ(xi ,Fi (x))

I x∗ solves complementarity problem iff Φ(x∗) = 0

I Nonsmooth system of equations
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Numerical Methods
Semismooth Algorithm

1. Calculate Hk ∈ ∂BΦ(xk) and solve the following system for dk :

Hkdk = −Φ(xk)

If this system either has no solution, or

∇Ψ(xk)Tdk ≤ −p1‖dk‖p2

is not satisfied, let dk = −∇Ψ(xk).

2. Compute smallest nonnegative integer ik such that

Ψ(xk + βikdk) ≤ Ψ(xk) + σβik∇Ψ(xk)dk

3. Set xk+1 = xk + βikdk , k = k + 1, and go to 1.

129 / 157



.pdf

Numerical Methods
Semismooth Algorithm

1. Calculate Hk ∈ ∂BΦ(xk) and solve the following system for dk :

Hkdk = −Φ(xk)

If this system either has no solution, or

∇Ψ(xk)Tdk ≤ −p1‖dk‖p2

is not satisfied, let dk = −∇Ψ(xk).

2. Compute smallest nonnegative integer ik such that

Ψ(xk + βikdk) ≤ Ψ(xk) + σβik∇Ψ(xk)dk

3. Set xk+1 = xk + βikdk , k = k + 1, and go to 1.

130 / 157



.pdf

Section 7

PATH Algorithm

131 / 157



.pdf

PATH Algorithm
Overview

1. Crash a basis and determine proximal point

2. Solve the linearized complementarity problem

3. Perform a search with semismooth merit function

4. Restart with different options when the method fails
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PATH Algorithm
Crashing a Basis

I Compute reduced problem

J1 = {i | `i < xi < ui}
J2 = {i | `i = xi and Fi (x) < 0}
J3 = {i | ui = xi and Fi (x) > 0}
J = J1 ∪ J2 ∪ J3

I Calculate modified direction

[∇F (x) + µI ]J,J dJ = −FJ(x)

I Perturbation µ > 0 chosen to prevent singularity

I Search along direction to minimize merit function

I Update x , µ and repeat

Relevant options: crash method and crash perturb.
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PATH Algorithm
Solving Linearization

I Variant of Lemke’s method for solving

0 ∈ Mx + q + NB(x)

I Construct a piecewise linear path
I Simplex method with complementarity pivoting

I Regular starts
I Given initial starting point xk

I Construct invertible basis
I Track path from xk to x̄k

I Piecewise linear path may cycle

I Lemke ray starts
I Start from a ray
I Path does not cycle for nondegenerate problems
I Many pivots usually required from all slack basis
I Advanced basis can be chosen to reduce pivots
I Used during first major iteration if solve fails

Relevant options: lemke start and lemke start type.
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PATH Algorithm
Linear Method I

1. Check given basis for rank deficiency
I Eliminate linearly dependent columns
I Replace with slack or artificial variables
I If process fails, then use all slack basis

2. Construct covering vector that enters basis

3. Determine leaving variable by ratio test
I Expand and devex ratio tests implemented
I Priority assigned to artificial variables
I If no leaving variable, then stop with ray termination

4. Determine entering variable by complementarity pivoting
I If xi leaves basis, then corresponding slack enters
I If slack leaves basis, then corresponding xi enters
I If covering vector leaves basis, then stop at solution
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PATH Algorithm
Linear Method II

5. Check for cycling in piecewise linear path
I Count number of times variable enters basis
I Reset counters when

I Artificial variable leaves basis
I Homotopy parameter larger than previous maximum

I If count larger than threshold, then stop with cycling

6. If iteration limit reached, then stop

7. Go to Step 3

8. Refine solution
I Project nonbasic variables onto bounds
I Refactor the basis
I Compute values for the basic variables
I Project basic variables onto bounds
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PATH Algorithm
Linear Algebra and Options

I LUSOL used for factorization and updates (Saunders)
I Markovitz strategy for pivot selection
I Threshold partial pivoting
I Sparse rank-1 updates

I Relevant tolerance options
I factorization small tolerance
I factorization pivot tolerance
I factorization zero tolerance
I factorization update limit

I Diagnosing rank deficiency
I output warnings
I output factorization singularities

I Cycling and artificial variables
I output minor iteration frequency
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PATH Algorithm
Additional Details

I Scale the linear problems

I Globalize with Fischer-Burmeister merit function
I Nonmonotone search with watchdog strategy
I Gradient steps used when direction is not good
I Projections onto box within search

I Apply proximal point with resets
I Used to deal with singularity problems
I Modifies nonlinear problem with diagonal perturbation
I Reset when difficulty encountered by linear solver

I Use spacer steps performed after each major iteration

I Restart when necessary
I Detect when algorithm is stalling
I Restart algorithm with alternate options

Most relevant options: nms mstep frequency and nms memory size.
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PATH Algorithm
Merit Functions

I Many merit functions can be used to measure progress
I Complementarity error: ‖(−x+), (−F (x))+, x+ � F (x)+‖
I Normal map: ‖F (x+) + x − x+‖
I Minimum map: ‖min {x ,F (x)} ‖
I Fischer-Burmeister function: ‖Φ(x ,F (x))‖
I Gradient of Fischer-Burmeister function: ∇

[
1
2
‖Φ(x ,F (x))‖2

2

]

I Observe vastly different values for some problems
I Particularly when x →∞ or F (x)→∞
I Can happen when domain violations occur at solution

I Want all to be near zero to trust the solution

Inf-Norm of Complementarity . . 1.0311e-11 eqn: (profit(san-diego,new-york))

Inf-Norm of Normal Map. . . . . 1.1369e-13 eqn: (prdemand(new-york))

Inf-Norm of Minimum Map . . . . 1.1369e-13 eqn: (prdemand(new-york))

Inf-Norm of Fischer Function. . 1.1369e-13 eqn: (prdemand(new-york))

Inf-Norm of Grad Fischer Fcn. . 2.4809e-10 eqn: (prdemand(topeka))

Two-Norm of Grad Fischer Fcn. . 3.4958e-10
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PATH Algorithm
Convergence Behaviors

I Superlinear/quadratic convergence – best outcome

I Linear convergence
I Far from a solution – merit function is large
I Jacobian is incorrect – disrupts quadratic convergence
I Jacobian is rank deficient – gradient of merit function is small
I Converge to local minimizer – guarantees rank deficiency
I Limits of finite precision arithmetic

1. Merit function converges quadratically to small number
2. Merit function hovers around that number with no progress

I Domain violations – excessive backtracking in line search
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2. Merit function hovers around that number with no progress

I Domain violations – excessive backtracking in line search
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Summary I

I Always ensure functions and Jacobians are defined
I Confront and reformulate at the modeling stage
I Report remaining domain violations to solver
I Provide a good starting point

I Always match equations to appropriate variables
I Automatically performing a good match is difficult
I Modeler knows their problem and should convey the match
I Required for effective preprocessing

I Always prefer a monotone formulation over other formulations
I Use skew symmetric version of optimality conditions
I Required for preprocessing and proximal perturbation
I Check the skew symmetry report when in doubt
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Summary II

I Analysis may determine model is infeasible
I Infeasible models should be fixed by the modeler
I List of preprocessing reductions can be obtained

I Use scaling when appropriate
I Any consistent scaling for optimization problems
I Symmetric diagonal scaling for complementarity problems
I Beware when using unscaled solution!

I Rank deficiency can still be an issue
I Solver can sometimes identify and eliminate dependencies
I Solver may add a positive diagonal perturbation
I Use linear algebra options to obtain report

I Always check the solution reported
I Look for convergence issues in the iteration log
I Make sure all the merit functions are close to zero
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