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Observations/Opinions of a Johnny Come Lately

Why not smoothen/regularize/parametrize?

• If scale too small it makes no algorithmic difference.

• If scale too large the problem is significantly changed.

• If scale variable we have one more loose parameter.

• Resulting solution paths may have sharp turns (LOP).

• There may be spurious solutions (Bernardo et al).

Lesson/Moral:

Let’s face the combinatorial music!

(Reflected in the piecewise linearization)
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Observations/Opinions of a Johnny Come Lately

My issues with generalized differentiation

• For composite nonsmoothness differentiation rules are only inclusions
so analysis cannot be turned into algebra in an AD fashion.

• The inclusions point the right way for propagating semi-smoothness
but the wrong way for calculating generalized derivative elements.

• Semi-smooth Newton extremely local, bundle methods too heuristic.

• Generalized derivatives are fickle since outer semi-continuity of
multi-functions does not mean stability in any numerical sense.

• Rademacher says F ∈ C 0,1(Rn) ≡W 1,∞(Rn), hence
generalized derivatives are almost everywhere normal derivatives.
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Observations/Opinions of a Johnny Come Lately

Lurking in the background: Prof. Moriarty
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Piecewise Linearization/Differentiation

Basic idea of tangent linearization:

x̊

F1

F2

F = max(F1, F2)

F̊1 + F ′
1 (̊x)∆x

F̊2
+
F
′
2
(̊x

)∆
x

F̊
+

∆F (̊x
; ∆

x)
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Piecewise Linearization/Differentiation

abs covers min,max and table look-ups

Provided u and w are both finite one has

max(u,w) = 1
2 [u + w + abs(u − w)]

min(u,w) = 1
2 [u + w − abs(u − w)]

data (xi , yi ) for 0 ≤ i ≤ n are piecewise linearly interpolated by the formula

y = 1
2 [y0 + s1 abs(x − x0) + yn + sn abs(x − xn)

+
n−1∑

i=1

(si+1 − si ) abs(x − xi )] whose ???

where si = (yi+1 − yi )/(xi+1 − xi ) represent the slopes.

• Every continuous PL function can be expressed as composition of
affine functions and several abs(). That representation is not unique.
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Piecewise Linearization/Differentiation

Piecewise Linearization

We wish to determine for base point x and increment ∆x

∆y ≡ ∆F (x ; ∆x) = F (x + ∆x)− F (x) +O(‖∆x‖2)

This can be done by propagating increments according to

Smooth elementals

∆vi = ∆vj ±∆vk for vi = vj ± vk

∆vi = vj ∗∆vk + ∆vj ∗ vk for vi = vj ∗ vk

∆vi = cij ∆vj with cij ≡ ϕ′i (vj) for vi = ϕi (vj) 6≡ abs()

Lipschitz Elementals

∆vi = abs(vj + ∆vj)− abs(vj) when vi = abs(vj) .

and correspondingly for max() und min().

A. Griewank, F. Dalkowski, N. Krejic, Z. Luzanin F. Rodrigues, A. Walther SCAN2010
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Piecewise Linearization/Differentiation

Continuous Piecewise Differentiation Rules

Linearity and Product Rule

F ,G : D ⊂ Rn 7→ Rm, α, β ∈ R
=⇒

∆[αF + βG ](x ; ∆x) = α∆F (x ,∆x) + β∆G (x ,∆x)

∆[F>G ](x ; ∆x) = G (x)>∆F (x ,∆x) + F (x)>∆G (x ,∆x)

Chain Rule

F : D ⊂ Rn 7→ Rm and G : E ⊂ Rm 7→ Rp with F (D) ⊂ E

=⇒
∆[G ◦ F ](x ; ∆x) = ∆G (F (x); ∆F (x ,∆x))
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Piecewise Linearization/Differentiation

Second order error and Lipschitz continuity

Proposition

Suppose F is composite Lipschitz on some open neighborhood D of a
closed convex domain K ⊂ Rn. Then there exists a constant γ such that
for all pairs x , x + ∆x ∈ K

‖F (x + ∆x) − F (x)−∆F (x ; ∆x)‖ ≤ γ‖∆x‖2

Moreover, for any pair x̃ , x ∈ K, ∆x ∈ Rn, and a constant γ̃

‖∆F (x̃ ; ∆x)−∆F (x ; ∆x)‖ /(1 + ‖∆x‖) ≤ γ̃‖x̃ − x‖

Finally there is a continuous radius ρ(x) such that

∆F (x ; ∆x) = F ′(x ; ∆x) if ‖∆x‖ < ρ(x)

Locally we reduce to the homogeneous piecewise linear F ′(x ; ∆x).
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Piecewise Linearization/Differentiation

Differentiation Concepts on Euclidean Spaces

Function Space: Diff.Op.: Model Space: Discrepancy:

Smooth = S
∂ |̊x
7−→
Lip

L = linear uniform

⊂ ⊂

CompPS = CPS
∆|̊x
7−→
Lip

PL = Piecewise L uniform

⊂ 7−→ ∂B
∣∣
x̊

LipschitzPS = LPS
∂B
∣∣
x̊

7−→
???

PLh = homog. PL nonuniform

⊂

PiecewiseS = DCPS
∆|̊x
7−→
???

DPL = discont. PL nonuniform
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Piecewise Linearization/Differentiation

Piecewise Linearization of Discontinuous f 

where

(at the origin)
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Representation of PL functions in abs-normal form

Polyhedral Decomposition

x
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Representation of PL functions in abs-normal form

A simple R2 → R2 example:

f1 = x1 + |x1 − x2|+ |x1 − |x2||, f2 = x2

The switching variables zi are the arguments of the abs-functions:

z1 = x1 − x2, z2 = x2, z3 = x1 − |z2| ⇒ f1 = x1 + |z1|+ |z3|
In Abs-normal form:




z1

z2

z3

y1

y2




=




Z︷ ︸︸ ︷
1 −1

L︷ ︸︸ ︷
0 0 0

0 1 0 0 0
1 0 0 −1 0

1 0 1 0 1

︸ ︷︷ ︸
J

0 1 ︸ ︷︷ ︸
Y

0 0 0







x1

x2

|z1|
|z2|
|z3|
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Representation of PL functions in abs-normal form

Graph reprsentation and switching depth

Computational graph

x1 z1

z3z2

y1

x2

y2

Proposition (Griewank et al 2014)

Switching depth ν ≡ length of directed path is bounded by ν̄(n) = 2 n − 1

Example: ordervaluek(z1, . . . , zm) ≡ k−th largest zi (N. Kreijic)
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Representation of PL functions in abs-normal form

Abs-normal form for y = F (x) : Rn → Rm

[
z
y

]
=

[
c
b

]
+

[
Z L
J Y

] [
x
|z |

]

• J ∈ Rm×n represents the smooth part of the function

• L ∈ Rs×s is strictly lower triangular to yields z = z(x) uniquely.

• Crossterms Z ∈ Rs×n and Y ∈ Rm×s link x to z and z to y .

• The switching depth ν is the structural nilpotency degree of L.

• Abs-normal form is nonredundant and stable w.r.t. perturbations.

• ADOL-C can calculate [b, c ,Z , L, J,Y ] after slight modification.

• The sign vector σ ≡ sign(z(x)) determines the control flow.

• Σ ≡ diag(σ) =⇒ |z | = Σz is componentwise modulus.

• Relatively open Pσ = {x : σ(x) = σ} form polyhedral skeleton.
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Representation of PL functions in abs-normal form

Some other References and Traditions
Stern, Thomas Edwin (1956)

Piecewise-linear network theory

W. M. G. van Bokhoven (1981)

Piecewise-linear modelling and analysis

J. Rohn (2004)

A Theorem of the Alternatives for the equation Ax + B|x | = b

O. Mangasarian, and R. Meyer( 2006)

Absolute value equations

L. Brugnano, and V. Casulli (2008)

Iterative solution of piecewise linear systems

A. Martin (2009)

Mixed Integer Nonlinear Programming

A. Hadjidimos, M. Lapidakis, M. and M. Tzoumas (2012)

On Iterative Solution for Linear Complementarity Problem with an H+-Matrix
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Computation of conical Jacobians and gradients

Limiting Jacobians/Gradients of PL function

Limiting (=Bouligand) Jacobian:

∂LF (x) ≡ {Jσ|x ∈ P̄σ, with Pσ open}
where Jσ = J + YΣ(I − LΣ)−1Z

with (I − LΣ)−1 = I + LΣ + (LΣ)2 + · · ·+ (LΣ)(ν−1)

Polynomial escape in direction d1

x(t) = x +
n∑

i=1

t idi ∈ Pσ open

when det(d1 . . . dn) 6= 0 and 0 < t ≈ 0

Complexity range (also) utilizing reverse mode

3 min(m, n) ≤ OPS(Jσ)/OPS(F) ≤ 3 n
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Computation of conical Jacobians and gradients

Conical Jacobians of PS function

Proposition: Khan & Barton and A. G. 2013

∂KF (x) ≡ ∂L∆x∆F (x ; ∆x)
∣∣∣
∆x=0

⊂ ∂LF (x)

contains exactly those Jacobians ∂Fσ(x) for which the tangent cone

Tσ ≡ Tx{z ∈ D : Fσ(z) = F (z)}

has a nonempty interior. (i.e. Fσ and ∂Fσ are conically active)

Kummer example for ∂Lf 6= ∂K f ≡ ∂L∆f (x ; ·)

−1

−0.5

0

0.5

1 −1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

f (x , y) = (y2 − x+)+ with z+ ≡ max(0, z)

=⇒
{0} = ∂K f (0) 63 (−1, 0) ∈ ∂Lf (0) ⊂ ∂C f (0)
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Solving PL systems of Equation and LCPs

Related perturbed semismooth system

F (x , y) =

[
x/2 + (y2 − x+)+

y

]
=

[
δ
ε

]

has for x ≤ 0, 0 < x < y2, and y2 < x , respectively

F ′(x , y) =

[
1/2 2y

0 1

]
,

[
−1/2 2y

0 1

]
and

[
1/2 0

0 1

]

0

Figure: Cyclic behavior of Newton = Sucessive Linearization

Andreas Griewank et al (HUB) Nonsmooth numerics via PL August 8, 2014 20 / 43



Solving PL systems of Equation and LCPs

Reformulations in the equation case m = n

Original Equation

0 = F (x) = b + J x + Y z(x) with z(x) = (I − LΣ)−1(c + Z x)

Schur complement and complementary system

det(J) 6= 0 ( achievable using v ≡ |v + |v || − |v |) ensures existence

S ≡ L− ZJ−1Y ∈ Rs×s =⇒

z = S |z |+ ĉ with ĉ = c − Z J−1b

Corresponding Linear Complementarity Problem

z = u − w , 0 ≤ u ⊥ w ≥ 0 =⇒
u ⊥ Mu + q ≥ 0 with M = (I − S)−1(I + S)
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Solving PL systems of Equation and LCPs

Conditions for solvability and convergence

General Implication chain for PL functions

Bijectivity ⇔ Injectivity
⇒ Openness ⇔ Coherent Orientation
⇒ Surjectivity

Griewank et al 2013:

For equation 0 = F (x) = min(x ,Mx + q) and other simply switched
system coherent orientation (i.e. M is P-Matrix) implies already bijectivity.

Sherman-Morrison-Woodbury yields

det(Jσ) = det(J) det(I − S Σ)

Hence det(I − SΣ) > 0 for all Σ ⇒ Coherent Orientation
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Solving PL systems of Equation and LCPs

Equivalent and related conditions

Rump showed

With sign real spectral radius ρs0(S) = max(|λ|) over R 3 λ ∈ spect(S)

det(I − S Σ) > 0 ⇔ ρs0(S) < 1 ⇔ (S − I )−1(S + I ) isP

also equivalent to non-expansiveness (Rohn).

x ≥ 0 =⇒ |S x | 6≥ |x | componentwise

Implication chain

Difficulty: Test for above property is NP-Hard.

ρ(|S |) < 1 ⇒ ‖D−1SD‖p < 1 ⇒ ρs0(S) < 1

(Absolute contractivity) (Smooth dominance) (Coherent orientation.)
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Solving PL systems of Equation and LCPs

Solvers for PL systems of equations in
original abs-normal or complementary form.

Method Convergence condition Rate Effort
Generalized Newton on OPL 2 ρ̂ < (1−‖L‖p−ρ̂/2)2 finite I−SΣ, J
Generalized Newton on CPL ‖S‖p < 1/3 finite I−SΣ
Signed Gauss on CPL ρ(|S |) ≤ 1/2 finite I−SΣ once
Block Seidel on CPL ‖S − L‖p + ‖L‖p < 1 linear I−LΣ, J
Modulus Iteration on CPL ‖S‖p < 1 linear J
Piecewise Newton on OPL coherent orient. of F finite I−SΣ, J
Piecewise Newton on CPL ρs0(S) < 1 finite I−SΣ

Andreas Griewank et al (HUB) Nonsmooth numerics via PL August 8, 2014 24 / 43



Solving PL systems of Equation and LCPs

Numerical results on Murty’s LCP example

n Anzahl der Iterationen
PLN (1. Startvektor) PLN (2. Startvektor) Lemke

2 2 2 4 = 22

4 4 6 16 = 24

6 10 14 64 = 26

8 24 32 256 = 28

10 54 66 1024 = 210

12 116 136 4096 = 212

14 246 276 16384 = 214

16 512 558 216

18 1048 1110 218

20 2126 2220 220
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Solving PL systems of Equation and LCPs

Piecewise linear Newton on Rosette Example
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(Un)constrained optimization by successive PL

Optimization with quadratic overestimation

Under our assumptions on compact domains

q̂(x ,∆x) ≡ |f (x + ∆x)− f (x)−∆f (x ; ∆x)|
‖∆x‖2

≤ q̄(‖∆x‖)

Consequence: Bundle type iteration

∆x ≡ argmin
s̃

(∆f (x ; s̃) + q‖s̃‖2)

x += ∆x if f (x + ∆x) < f (x)

q+ = max(q, q̂(x ,∆x))

is guaranteed to converge from within bounded level set.
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(Un)constrained optimization by successive PL

Application to Rosenbrock á la Nesterov

f (x1, x2) = 1
4 (x1 − 1)2 +

∣∣x2 − 2 x2
1 + 1

∣∣ .
yields piecewise linearization

f (x1, x2)+∆f (x1, x2; ∆x1,∆x2) =
1
4 (x1 − 1)2 + 1

2 (x1 − 1)∆x1 +
∣∣x2 + ∆x2 − 2 x2

1 − 4x1∆x1 + 1
∣∣ .
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(Un)constrained optimization by successive PL

Local = Inner Problem

min
s∈Rn

∆f (x ; s) + q
2‖s‖2

• At least, global minimization is NP-hard ( ← SAT3)
• Bad News going back to Hirriart-Urruty & Lemarechal:

Steepest descent with exact line search may fail on convex PL f .
• Challenge is to avoid Zenon effect = Zigzagging
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(Un)constrained optimization by successive PL

Good News by H. U. & L and Griewank et al:

True steepest descent trajectory x(t) defined by:

−d x(t)

d t+
= −d(x) ≡ short(∂f (x)) ≡ argmin{‖g‖ : g ∈ ∂f (x)}

is in convex case unique solution of differential inclusion ẋ ∈ −∂f (x),
which has stationary cluster points or limit x∗ in initial level set.
Can be realized using abs-normal form an and Zenon effect excluded.
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(Un)constrained optimization by successive PL
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Integration of Lipschitzian dynamics

ODE integration with Lipschitzian RHS

Possibly after space discretization of PDE:

ẋ ≡ d

dt
x(t) = F (x(t)) with F ∈ C0,1 = W 1,∞

Generalized midpoint rule

With x̌ current point, x̂ next point, x̊ = (x̌ + x̂)/2 and time step h

x̂ − x̌ = h

∫ 1/2

−1/2
[F (x̊) + ∆F (x̊ ; (x̂ − x̌) t)] dt

yields local third order truncation and globally second order convergence.

Properties in special cases

When F is PL GMP coincides with Average Vector Field Method
(Quispel). Thus exact energy preservation if F = J∇f Hamiltonian.
Generally GMP is in contrast to IMP not (nonsmooth) symplectic.
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Integration of Lipschitzian dynamics

Experiments Chua circuit

Problem Definition

F(x) =




ẋ
ẏ
ż


=




α(y− x− f (x))
x− y + z
−βy




f (x) = m1x +
1
2

(m0−m1)(|x + 1|− |x−1|)

x ,y are the voltages across C1

and C2

z is the intensity of the electrical
current at I

f (x) is the electrical response of
the resistor

constants are α = 15.6,β = 28,m0 =−1.143,m1 =−0.714.

Figure: Chua circuit

taken from

http://www.chuacircuits.com/

Paul Boeck Lipschitzean ODEs March 20, 2013 17 / 22
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Integration of Lipschitzian dynamics

Experiments Chua circuit

Chua circuit
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Integration of Lipschitzian dynamics

Experiments Chua circuit

Convergence
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Integration of Lipschitzian dynamics

First level Richardson Extrapolation yields
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Integration of Lipschitzian dynamics

Electrical circuit with diode

V (t)

g(x)C

L

I(t) = z(t)
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Integration of Lipschitzian dynamics
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Figure: Solution of the ODE System
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Integration of Lipschitzian dynamics

Log-log plot of convergence
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Integration of Lipschitzian dynamics

Richardson/Romberg Extrapolation
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Integration of Lipschitzian dynamics

Convergence Orders

Midpoint/Trapezoidal Classical Generalized Extrapolated

General Position O(h) O(h2) O(h2)

Transversal Position O(h2) ch2 + O(h3) O(h3)

PL+smooth forcing O(h2) ch2 + O(h4) O(h4)

Conjecture:

On discontinuous right hand sides all orders reduced by 1.

Challenge: Algebraic inclusion solving

In discontinuous case PL based discretization requires solution of F (x) 3 0.
Special case: piecewise constant F = ∇f for continuous PL objective f .
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Integration of Lipschitzian dynamics

Summary and Conclusion

• Differentiation of composite piecewise smooth functions yields PL
function in abs-normal form.

• Local PL model has uniform second order fit and varies Lipschitz
continuously with reference point.

• Limiting Jacobians/gradients of PL model can be computed and are
conical derivatives of CPS function.

• When m = n the PL model system can be solved directly or after
rewriting as complementary problem. In the transformation openness
= coherent orientation = path continuation may be lost.

• Abs-normal form provides grey box information for systematic
optimization of PL function by bundle type method.

• Lipschitzian dynamical systems can be integrated with generalized
and extrapolated midpoint/trapezoidal rule of global order 2, 3 or 4.
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Integration of Lipschitzian dynamics
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