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The Lower Level Problem (TV regularization)

Given f ∈ L2(Ω) where f = utrue + η,
∫

Ω η = 0 and
∫

Ω |η|
2 = σ2.

Consider α > 0, the TV model reads:

min
u∈BV (Ω)

1

2

∫
Ω
|u − f |2 + α

∫
Ω
|Du|, (TV)

where
∫

Ω |Du| := |Du|(Ω), the total mass of the Borel measure
Du determined by the distributional gradient of u:∫

Ω
|Du| = sup

{∫
Ω
u divvdx

∣∣ v ∈ C 1
c (Ω;R2), |v(x)|∞ ≤ 1 a.e. x ∈ Ω

}
.

The solution to (TV) satisfies that for :

α high, contains no noise but also details in utrue are lost.

α small, details for utrue are retained but also (possibly) noise.
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The spatially variant α

Given f ∈ L2(Ω) and α : Ω→ R, the TV model reads:

min
u∈BV (Ω)

1

2

∫
Ω
|u − f |2 +

∫
Ω
α|Du|. (TV∗)

A proper choice of the spatially variant α could help recover
small details in certain regions while also properly denoising
flat regions .

Well-posedness of the problem requires certain regularity of α:
it should be |Du|-measurable (|Du| is a Borel measure).

Additionally, if α is not positive on Ω, the problem might be
ill-posed.
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The spatially variant α

Existence

If α ∈ C (Ω) and α(x) > 0 for all x ∈ Ω, then there is a unique
solution to (TV∗).

Therefore, the mapping

C+(Ω) 3 α 7→ uα ∈ BV (Ω),

is well-defined. However, we will look at uα from the point of view
of Fenchel duality for several reasons...
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The (Fenchel) Pre-dual of (TV∗)

Duality

Let α ∈ C (Ω) and α(x) > 0 for all x ∈ Ω. The Fenchel pre-dual
problem of (TV∗)

min
u∈BV (Ω)

1

2

∫
Ω
|u − f |2 +

∫
Ω
α|Du|,

is given by

min
p∈H0(div)

1

2
|divp + f |2L2 s.t |p(x)|∞ ≤ α(x) a.e. x ∈ Ω, (TV∗pd)

and uα = divpα + f .

The result it is not a trivial extension of known results, it requires
results based on density of closed, convex, sets...
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A digression on the density of closed, convex sets

Let X be a space of RM -functions over Ω ⊂ RN

K(X ) := {f ∈ X : |f(x)| ≤ α(x) a.e., x ∈ Ω}.

The previous theorem requires that K(D(Ω)M)
H0(div)

= K(H0(div))

and K(D(Ω)M)
C0(Ω)M

= K(C0(Ω)M).

This raises a general question: If X0 is densely and continuously embeded
on the Banach space X1, is this sufficient to establish that

K(X0)
X1

= K(X1)?

The answer unfortunately is NO: in fact, you can find examples in which

X0 is continuously and densely embeded in L2(Ω), but K(X0)
L2(Ω)

= {0}.
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How choose α to get a good reconstruction?

Let R : L2(Ω)→ L∞(Ω) be defined 1 as

R(divp)(x) :=

∫
Ω
w(x , y) (divp)2 (y) dy , x ∈ Ω,

with
∫

Ω

∫
Ω w(x , y) dy dx = 1 and w(x , y) ≥ 0.

Let
x 7→ M1(divp)(x) := max(R(divp(x))− σ̃2, 0)2,

and
x 7→ M2(divp)(x) := min(R(divp(x))− σ̂2, 0)2,

with some σ̃ = σ + ε and σ̂ = σ − ε.
1See ([Dong, Hintermüller, Rincón(2011)])
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The Bilevel Problem

The problem of interest is then

minimize J(α, divp)

over (p, α) ∈ H0(div)× C+(Ω)

s.t. α ∈ Aad and p solving (TV∗pd).

where Aad ⊂ C+(Ω) and

J(α, divp) =

∫
Ω
S1(α)M1(divp) +

∫
Ω
S2(α)M2(divp),

where S1 and S2 are for scaling purposes.

Although existence of a solution might be obtained (using
pre-compactness properties of Aad), algorithms to approximate
solutions seem extremely hard to develop...
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The Bilevel Problem

The map α 7→ p(α) is complicated...

Is Aad 3 α 7→ divp(α) Lipschitz? It can be proven to be
Lipschitz if Aad comprises only “almost constant” functions...

Is Aad 3 α 7→ p(α) differentiable? ...

Is K := {q ∈ H0(div) : |q(x)|∞ ≤ α(x) a.e.} polyhedric? If
the control was in the forcing term of the problem, the
differentiability question above is translated into the
differentiability of the projection q 7→ PK(q)...
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The Regularized Bilevel Problem

The problem of interest is then

minimize J (α, divp) := J(α, divp) +
λ

2
|α|2H1

over (p, α) ∈ H0(div)× H1(Ω)

s.t. α ∈ Aad and p solving (T̃V
∗
pd),

where

Aad := {α ∈ H1(Ω) : 0 < α ≤ α ≤ α < +∞, a.e.},

and

min
p∈H1

0 (Ω)l

β

2
|p|2H1

0
+

1

2
|divp + f |2L2 +

1

ε
P(p, α). (T̃V

∗
pd)
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The Regularized Bilevel Problem

Nice First Order System (see slides of S. Ulbrich)

The behaviour of the system as (β, ε) ↓ (0, 0) may lead to
something not useful at all.

The solution mapping H1(Ω) 3 α 7→ p(α) ∈ H1
0 (Ω)l of

(T̃V
∗
pd) is differentiable. It follows that the reduced objective

map F(α) := J (α, divp(α)) is differentiable.
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Projected Gradient + Armijo rule

Let α0 ∈ Aad be in H2(Ω) ∩ C (Ω) with τ ∂α0
∂ν = 0. Define {αk} as

αk+1 = PAad
(αk − τk∇F(αk)), k = 0, 1, . . .

where

PAad
: H1(Ω)→ Aad is the minimum distance projection

operator in the H1-norm onto the closed convex set Aad .

∇F(α) denotes the gradient of F at α ∈ H1(Ω).

{τk} is chosen according to (the general) Armijo’s rule
([Bertsekas,Gafni(1982)]).
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Preservation of Regularity

Preserved Regularity

Let Ω ⊂ Rl , l = 1, 2, be a bounded convex subset (or a polyhedron
if l = 3) with α < α regular enough and τ ∂α∂ν = τ ∂α∂ν = 0, where

Aad = {α ∈ H1(Ω) : 0 < α ≤ α ≤ α a.e.}.

Then, the sequence {αk} in Aad generated by the Projected
Gradient method preserves the initial iterate regularity:

αk ∈ H2(Ω) ∩ C (Ω), k = 1, 2, . . . .

Furthermore, if (α∗,p∗) is a solution to the regularized Bilevel
problem, also α∗ ∈ Aad ∩ (H2(Ω) ∩ C (Ω)).

The convergence of {αk} to a stationary point comes for free in
[Bertsekas,Gafni(1982)].

Carlos N. Rautenberg Generalized TV Regularization and Parameter Selection



The Lower Level Poblem (TV predual)
The Bilevel Problem and Approximations

Numerical Tests

Triangle+Rectangle
Circle
Cameraman

The Triangle+Rectangle

(a) (b)

Figure : Noisy circle in (a) and restored circle (20 iterations) in (b)
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The Circle

(a) (b)

Figure : Noisy circle in (a) and restored circle (21 iterations) in (b)
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The Cameraman

(a) (b)

Figure : Noisy cameraman in (a) and restored cameraman (22 iterations)
in (b)
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THANK YOU!
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