On the Control of a Double Obstacle Problem in Image Reconstruction

Carlos N. Rautenberg (joint work with Michael Hintermüller, and Andreas Langer)

Humboldt-Universität zu Berlin

August 7, 2014

(日) (월) (분) (분)

1 The Lower Level Poblem (TV predual)

2 The Bilevel Problem and Approximations

3 Numerical Tests

- Triangle+Rectangle
- Circle
- Cameraman

回下 くほと くほと

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 ∽��?

The Lower Level Problem (TV regularization)

Given $f \in L^2(\Omega)$ where $f = u_{true} + \eta$, $\int_{\Omega} \eta = 0$ and $\int_{\Omega} |\eta|^2 = \sigma^2$. Consider $\alpha > 0$, the TV model reads:

$$\min_{u \in BV(\Omega)} \frac{1}{2} \int_{\Omega} |u - f|^2 + \alpha \int_{\Omega} |\mathcal{D}u|, \qquad (\mathsf{TV})$$

where $\int_{\Omega} |\mathcal{D}u| := |\mathcal{D}u|(\Omega)$, the total mass of the Borel measure $\mathcal{D}u$ determined by the distributional gradient of u:

$$\int_{\Omega} |\mathcal{D} u| = \sup \left\{ \int_{\Omega} u \operatorname{div} \mathbf{v} \mathrm{d} \mathbf{x} \, \big| \, \mathbf{v} \in \mathit{C}^{1}_{c}(\Omega; \mathbb{R}^{2}), \, |\mathbf{v}(\mathbf{x})|_{\infty} \leq 1 \, \mathsf{a.e.} \, \mathbf{x} \in \Omega \right\}.$$

The solution to (TV) satisfies that for :

- α high, contains no noise but also details in u_{true} are lost.
- α small, details for u_{true} are retained but also (possibly) noise.

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 = • • ○ � () ◆

The spatially variant lpha

Given $f \in L^2(\Omega)$ and $\alpha : \Omega \to \mathbb{R}$, the TV model reads:

$$\min_{u \in BV(\Omega)} \frac{1}{2} \int_{\Omega} |u - f|^2 + \int_{\Omega} \alpha |\mathcal{D}u|.$$
 (TV*)

- A proper choice of the spatially variant α could help recover small details in certain regions while also properly denoising flat regions .
- Well-posedness of the problem requires certain *regularity* of α: it should be |Du|-measurable (|Du| is a Borel measure).
- Additionally, if α is not positive on $\overline{\Omega}$, the problem might be ill-posed.

(4 回) (4 回) (4 回)

The spatially variant α

Existence

If $\alpha \in C(\overline{\Omega})$ and $\alpha(x) > 0$ for all $x \in \overline{\Omega}$, then there is a unique solution to (TV^*) .

Therefore, the mapping

$$C^+(\overline{\Omega}) \ni \alpha \mapsto u_{\alpha} \in BV(\Omega),$$

is well-defined. However, we will look at u_{α} from the point of view of Fenchel duality for several reasons...

・ 同 ト ・ ヨ ト ・ ヨ ト

The (Fenchel) Pre-dual of (TV^*)

Duality

Let $\alpha \in C(\overline{\Omega})$ and $\alpha(x) > 0$ for all $x \in \overline{\Omega}$. The Fenchel pre-dual problem of (TV^*)

$$\min_{u\in BV(\Omega)} \frac{1}{2} \int_{\Omega} |u-f|^2 + \int_{\Omega} \alpha |\mathcal{D}u|,$$

is given by

$$\min_{\mathbf{p}\in H_0(\operatorname{div})} \frac{1}{2} |\operatorname{div}\mathbf{p} + f|_{L^2}^2 \quad \text{s.t} \quad |\mathbf{p}(x)|_{\infty} \leq \alpha(x) \text{ a.e. } x \in \Omega, \ (\mathsf{TV}_{pd}^*)$$

and $u_{\alpha} = \operatorname{div}\mathbf{p}_{\alpha} + f.$

The result it is not a trivial extension of known results, it requires results based on density of closed, convex, sets...

nar

A digression on the density of closed, convex sets

Let X be a space of \mathbb{R}^M -functions over $\Omega \subset \mathbb{R}^N$

$$\mathbb{K}(X) := \{\mathbf{f} \in X : |\mathbf{f}(x)| \le \alpha(x) \text{ a.e., } x \in \Omega\}.$$

The previous theorem requires that $\overline{\mathbb{K}(\mathscr{D}(\Omega)^M)}^{H_0(\operatorname{div})} = \mathbb{K}(H_0(\operatorname{div}))$ and $\overline{\mathbb{K}(\mathscr{D}(\Omega)^M)}^{C_0(\Omega)^M} = \mathbb{K}(C_0(\Omega)^M).$

This raises a general question: If X_0 is densely and continuously embedded on the Banach space X_1 , is this sufficient to establish that

$$\overline{\mathbb{K}(X_0)}^{X_1} = \mathbb{K}(X_1)$$
?

・ 同 ト ・ ヨ ト ・ ヨ ト ・

A digression on the density of closed, convex sets

Let X be a space of \mathbb{R}^M -functions over $\Omega \subset \mathbb{R}^N$

$$\mathbb{K}(X) := \{\mathbf{f} \in X : |\mathbf{f}(x)| \le \alpha(x) \text{ a.e., } x \in \Omega\}.$$

The previous theorem requires that $\overline{\mathbb{K}(\mathscr{D}(\Omega)^M)}^{H_0(\text{div})} = \mathbb{K}(H_0(\text{div}))$ and $\overline{\mathbb{K}(\mathscr{D}(\Omega)^M)}^{C_0(\Omega)^M} = \mathbb{K}(C_0(\Omega)^M).$

This raises a general question: If X_0 is densely and continuously embedded on the Banach space X_1 , is this sufficient to establish that

$$\overline{\mathbb{K}(X_0)}^{X_1} = \mathbb{K}(X_1)?$$

The answer unfortunately is NO: in fact, you can find examples in which X_0 is continuously and densely embedded in $L^2(\Omega)$, but $\overline{\mathbb{K}(X_0)}^{L^2(\Omega)} = \{0\}$.

A digression on the density of closed, convex sets

Let X be a space of \mathbb{R}^M -functions over $\Omega \subset \mathbb{R}^N$

$$\mathbb{K}(X) := \{\mathbf{f} \in X : |\mathbf{f}(x)| \le \alpha(x) \text{ a.e., } x \in \Omega\}.$$

The previous theorem requires that $\overline{\mathbb{K}(\mathscr{D}(\Omega)^M)}^{H_0(\operatorname{div})} = \mathbb{K}(H_0(\operatorname{div}))$ and $\overline{\mathbb{K}(\mathscr{D}(\Omega)^M)}^{C_0(\Omega)^M} = \mathbb{K}(C_0(\Omega)^M)$. ([Hintermüller, R.(2013)])

This raises a general question: If X_0 is densely and continuously embedded on the Banach space X_1 , is this sufficient to establish that

$$\overline{\mathbb{K}(X_0)}^{X_1} = \mathbb{K}(X_1)?$$

The answer unfortunately is NO: in fact, you can find examples in which X_0 is continuously and densely embedded in $L^2(\Omega)$, but $\overline{\mathbb{K}(X_0)}^{L^2(\Omega)} = \{0\}$.

How choose α to get a good reconstruction?

Let $R: L^2(\Omega) o L^\infty(\Omega)$ be defined 1 as

$$R(\operatorname{div} \mathbf{p})(x) := \int_{\Omega} w(x, y) (\operatorname{div} \mathbf{p})^2(y) \, \mathrm{d} y, \quad x \in \Omega,$$

with
$$\int_{\Omega} \int_{\Omega} w(x, y) \, dy \, dx = 1$$
 and $w(x, y) \ge 0$.

Let

$$x \mapsto M_1(\operatorname{div} \mathbf{p})(x) := \max(R(\operatorname{div} \mathbf{p}(x)) - \tilde{\sigma}^2, 0)^2,$$

and

$$x \mapsto M_2(\operatorname{div} \mathbf{p})(x) := \min(R(\operatorname{div} \mathbf{p}(x)) - \hat{\sigma}^2, 0)^2$$

with some $\tilde{\sigma} = \sigma + \epsilon$ and $\hat{\sigma} = \sigma - \epsilon$.

¹See ([Dong, Hintermüller, Rincón(2011)])

nan

The Bilevel Problem

The problem of interest is then

minimize
$$J(\alpha, \operatorname{div} \mathbf{p})$$

over $(\mathbf{p}, \alpha) \in H_0(\operatorname{div}) \times C^+(\overline{\Omega})$
s.t. $\alpha \in \mathcal{A}_{ad}$ and \mathbf{p} solving $(\operatorname{TV}_{pd}^*)$.

where
$$\mathcal{A}_{ad} \subset C^+(\overline{\Omega})$$
 and
 $J(lpha, \operatorname{div} \mathbf{p}) = \int_{\Omega} S_1(lpha) \mathcal{M}_1(\operatorname{div} \mathbf{p}) + \int_{\Omega} S_2(lpha) \mathcal{M}_2(\operatorname{div} \mathbf{p})$

where S_1 and S_2 are for scaling purposes.

Although existence of a solution might be obtained (using pre-compactness properties of A_{ad}), algorithms to approximate solutions seem extremely hard to develop...

DQR

The Bilevel Problem

The map $\alpha \mapsto \mathbf{p}(\alpha)$ is complicated...

- Is A_{ad} ∋ α → divp(α) Lipschitz? It can be proven to be Lipschitz if A_{ad} comprises only "almost constant" functions...
- Is $\mathcal{A}_{ad} \ni \alpha \mapsto \mathbf{p}(\alpha)$ differentiable? ...
- Is K := {q ∈ H₀(div) : |q(x)|_∞ ≤ α(x) a.e.} polyhedric? If the control was in the forcing term of the problem, the differentiability question above is translated into the differentiability of the projection q → P_K(q)...

The Regularized Bilevel Problem

The problem of interest is then

$$\begin{array}{ll} \text{minimize} & \mathcal{J}(\alpha, \operatorname{div} \mathbf{p}) := J(\alpha, \operatorname{div} \mathbf{p}) + \frac{\lambda}{2} |\alpha|_{H^1}^2 \\ \text{over} \ (\mathbf{p}, \alpha) \in H_0(\operatorname{div}) \times H^1(\Omega) \\ \text{s.t.} & \alpha \in \mathcal{A}_{ad} \quad \text{and} \quad \mathbf{p} \text{ solving} \quad (\tilde{TV}_{pd}^*), \end{array}$$

where

$$\mathcal{A}_{\textit{ad}} := \{ \alpha \in \mathcal{H}^1(\Omega) : \mathbf{0} < \underline{\alpha} \le \alpha \le \overline{\alpha} < +\infty, \quad \text{a.e.} \},$$

and

$$\min_{\mathbf{p}\in H_0^1(\Omega)'} \frac{\beta}{2} |\mathbf{p}|_{H_0^1}^2 + \frac{1}{2} |\operatorname{div} \mathbf{p} + f|_{L^2}^2 + \frac{1}{\epsilon} \mathfrak{P}(\mathbf{p}, \alpha). \qquad (\tilde{TV}_{pd}^*)$$

(4回) (1日) (日)

DQC

The Regularized Bilevel Problem

- Nice First Order System (see slides of S. Ulbrich)
- The behaviour of the system as (β, ε) ↓ (0, 0) may lead to something not useful at all.
- The solution mapping H¹(Ω) ∋ α → p(α) ∈ H¹₀(Ω)^I of (T̃V^{*}_{pd}) is differentiable. It follows that the reduced objective map F(α) := J(α, divp(α)) is differentiable.

・ 同 ト ・ ヨ ト ・ ヨ ト

Projected Gradient + Armijo rule

Let $\alpha_0 \in \mathcal{A}_{ad}$ be in $H^2(\Omega) \cap C(\overline{\Omega})$ with $\tau \frac{\partial \alpha_0}{\partial \nu} = 0$. Define $\{\alpha_k\}$ as $\alpha_{k+1} = P_{\mathcal{A}_{ad}}(\alpha_k - \tau_k \nabla \mathcal{F}(\alpha_k)), \quad k = 0, 1, \dots$

where

- P_{A_{ad}} : H¹(Ω) → A_{ad} is the minimum distance projection operator in the H¹-norm onto the closed convex set A_{ad}.
- $\nabla \mathcal{F}(\alpha)$ denotes the gradient of \mathcal{F} at $\alpha \in H^1(\Omega)$.
- $\{\tau_k\}$ is chosen according to (the general) Armijo's rule ([Bertsekas,Gafni(1982)]).

イロト イポト イヨト イヨト

Preservation of Regularity

Preserved Regularity

Let $\Omega \subset \mathbb{R}^{l}$, l = 1, 2, be a bounded convex subset (or a polyhedron if l = 3) with $\underline{\alpha} < \overline{\alpha}$ regular enough and $\tau \frac{\partial \underline{\alpha}}{\partial \nu} = \tau \frac{\partial \overline{\alpha}}{\partial \nu} = 0$, where

$$\mathcal{A}_{ad} = \{ \alpha \in \mathcal{H}^1(\Omega) : 0 < \underline{\alpha} \le \alpha \le \overline{\alpha} \quad \text{a.e.} \}.$$

Then, the sequence $\{\alpha_k\}$ in \mathcal{A}_{ad} generated by the Projected Gradient method preserves the initial iterate regularity:

$$\alpha_k \in H^2(\Omega) \cap C(\overline{\Omega}), \qquad k = 1, 2, \dots.$$

Furthermore, if (α^*, \mathbf{p}^*) is a solution to the regularized Bilevel problem, also $\alpha^* \in \mathcal{A}_{ad} \cap (H^2(\Omega) \cap C(\overline{\Omega}))$.

The convergence of $\{\alpha_k\}$ to a stationary point comes for free in [Bertsekas,Gafni(1982)].

Sar

Triangle+Rectangle Circle Cameraman

The Triangle+Rectangle

Figure : Noisy circle in (a) and restored circle (20 iterations) in (b)

イロト イヨト イヨト イヨト

DQC

Triangle+Rectangle Circle Cameraman

Triangle+Rectangle Circle Cameraman

The Circle

Triangle+Rectangle

Circle

Cameraman

Figure : Noisy circle in (a) and restored circle (21 iterations) in (b)

3

The Lower Level Poblem (TV predual)	Triangle+Rectangle
The Bilevel Problem and Approximations	Circle
Numerical Tests	Cameraman

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

The Lower Level Poblem (TV predual)	Triangle+Rectangle
The Bilevel Problem and Approximations	Circle
Numerical Tests	Cameraman

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Triangle+Rectangle Circle Cameraman

The Cameraman

Figure : Noisy cameraman in (a) and restored cameraman (22 iterations) in (b)

・ロト ・回ト ・ヨト ・ヨト

DQC

The Lower Level Poblem (TV predual)	Triangle+Rectangle
The Bilevel Problem and Approximations	Circle
Numerical Tests	Cameraman

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

The Lower Level Poblem (TV predual)	Triangle+Rectangle
The Bilevel Problem and Approximations	Circle
Numerical Tests	Cameraman

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

The Lower Level Poblem (TV predual)	Triangle+Rectangle
The Bilevel Problem and Approximations	Circle
Numerical Tests	Cameraman

THANK YOU!

<ロト <回ト < 三ト < 三ト

E