# On the Control of a Double Obstacle Problem in Image Reconstruction 

Carlos N. Rautenberg

(joint work with Michael Hintermüller, and Andreas Langer)

Humboldt-Universität zu Berlin
August 7, 2014

$\oplus$ ECMath
Einstein Center for Mathematics Berlin
(1) The Lower Level Poblem (TV predual)
(2) The Bilevel Problem and Approximations
(3) Numerical Tests

- Triangle+Rectangle
- Circle
- Cameraman


## Visual Incentive



## The Lower Level Problem (TV regularization)

Given $f \in L^{2}(\Omega)$ where $f=u_{\text {true }}+\eta, \int_{\Omega} \eta=0$ and $\int_{\Omega}|\eta|^{2}=\sigma^{2}$. Consider $\alpha>0$, the TV model reads:

$$
\begin{equation*}
\min _{u \in B V(\Omega)} \frac{1}{2} \int_{\Omega}|u-f|^{2}+\alpha \int_{\Omega}|\mathcal{D} u|, \tag{TV}
\end{equation*}
$$

where $\int_{\Omega}|\mathcal{D} u|:=|\mathcal{D} u|(\Omega)$, the total mass of the Borel measure $\mathcal{D} u$ determined by the distributional gradient of $u$ :
$\int_{\Omega}|\mathcal{D} u|=\sup \left\{\int_{\Omega} u \operatorname{divvd} x\left|\mathbf{v} \in C_{c}^{1}\left(\Omega ; \mathbb{R}^{2}\right),|\mathbf{v}(\mathbf{x})|_{\infty} \leq 1\right.\right.$ a.e. $\left.\mathbf{x} \in \Omega\right\}$.
The solution to (TV) satisfies that for :

- $\alpha$ high, contains no noise but also details in $u_{\text {true }}$ are lost.
- $\alpha$ small, details for $u_{\text {true }}$ are retained but also (possibly) noise.


## The spatially variant $\alpha$

Given $f \in L^{2}(\Omega)$ and $\alpha: \Omega \rightarrow \mathbb{R}$, the TV model reads:

$$
\begin{equation*}
\min _{u \in B V(\Omega)} \frac{1}{2} \int_{\Omega}|u-f|^{2}+\int_{\Omega} \alpha|\mathcal{D} u| . \tag{*}
\end{equation*}
$$

- A proper choice of the spatially variant $\alpha$ could help recover small details in certain regions while also properly denoising flat regions.
- Well-posedness of the problem requires certain regularity of $\alpha$ : it should be $|\mathcal{D} u|$-measurable ( $|\mathcal{D} u|$ is a Borel measure).
- Additionally, if $\alpha$ is not positive on $\bar{\Omega}$, the problem might be ill-posed.


## The spatially variant $\alpha$

## Existence

If $\alpha \in C(\bar{\Omega})$ and $\alpha(x)>0$ for all $x \in \bar{\Omega}$, then there is a unique solution to (TV*).

Therefore, the mapping

$$
C^{+}(\bar{\Omega}) \ni \alpha \mapsto u_{\alpha} \in B V(\Omega),
$$

is well-defined. However, we will look at $u_{\alpha}$ from the point of view of Fenchel duality for several reasons...

## The (Fenchel) Pre-dual of (TV*)

## Duality

Let $\alpha \in C(\bar{\Omega})$ and $\alpha(x)>0$ for all $x \in \bar{\Omega}$. The Fenchel pre-dual problem of (TV*)

$$
\min _{u \in B V(\Omega)} \frac{1}{2} \int_{\Omega}|u-f|^{2}+\int_{\Omega} \alpha|\mathcal{D} u|,
$$

is given by

$$
\min _{\mathbf{p} \in H_{0}(\operatorname{div})} \frac{1}{2}|\operatorname{div} \mathbf{p}+f|_{L^{2}}^{2} \quad \text { s.t } \quad|\mathbf{p}(x)|_{\infty} \leq \alpha(x) \text { a.e. } x \in \Omega,\left(\mathrm{TV}_{p d}^{*}\right)
$$

and $u_{\alpha}=\operatorname{div} \mathbf{p}_{\alpha}+f$.
The result it is not a trivial extension of known results, it requires results based on density of closed, convex, sets...

## A digression on the density of closed, convex sets

Let $X$ be a space of $\mathbb{R}^{M}$-functions over $\Omega \subset \mathbb{R}^{N}$

$$
\mathbb{K}(X):=\{\mathbf{f} \in X:|\mathbf{f}(x)| \leq \alpha(x) \text { a.e., } x \in \Omega\} .
$$

The previous theorem requires that $\overline{\mathbb{K}\left(\mathscr{D}(\Omega)^{M}\right)^{H_{0}(d i v)}}=\mathbb{K}\left(H_{0}(\right.$ div $\left.)\right)$
and $\overline{\mathbb{K}\left(\mathscr{D}(\Omega)^{M}\right)}{ }^{C_{0}(\Omega)^{M}}=\mathbb{K}\left(C_{0}(\Omega)^{M}\right)$.

This raises a general question: If $X_{0}$ is densely and continuously embeded on the Banach space $X_{1}$, is this sufficient to establish that

$$
{\overline{\mathbb{K}\left(X_{0}\right)}}^{X_{1}}=\mathbb{K}\left(X_{1}\right) ?
$$

## A digression on the density of closed, convex sets

Let $X$ be a space of $\mathbb{R}^{M}$-functions over $\Omega \subset \mathbb{R}^{N}$

$$
\mathbb{K}(X):=\{\mathbf{f} \in X:|\mathbf{f}(x)| \leq \alpha(x) \text { a.e., } x \in \Omega\} .
$$

The previous theorem requires that $\overline{\mathbb{K}\left(\mathscr{D}(\Omega)^{M}\right)^{H_{0}(d i v)}=\mathbb{K}\left(H_{0}(\text { div })\right) ~}$


This raises a general question: If $X_{0}$ is densely and continuously embeded on the Banach space $X_{1}$, is this sufficient to establish that

$$
{\overline{\mathbb{K}\left(X_{0}\right)}}^{X_{1}}=\mathbb{K}\left(X_{1}\right) ?
$$

The answer unfortunately is NO: in fact, you can find examples in which $X_{0}$ is continuously and densely embeded in $L^{2}(\Omega)$, but $\overline{\mathbb{K}\left(X_{0}\right)}{ }^{L^{2}(\Omega)}=\{0\}$.

## A digression on the density of closed, convex sets

Let $X$ be a space of $\mathbb{R}^{M}$-functions over $\Omega \subset \mathbb{R}^{N}$

$$
\mathbb{K}(X):=\{\mathbf{f} \in X:|\mathbf{f}(x)| \leq \alpha(x) \text { a.e., } x \in \Omega\} .
$$

The previous theorem requires that $\overline{\mathbb{K}\left(\mathscr{D}(\Omega)^{M}\right)^{H_{0}(d i v)}}=\mathbb{K}\left(H_{0}(\right.$ div $\left.)\right)$ and $\overline{\left.\left.\mathbb{K}\left(\mathscr{D}(\Omega)^{M}\right)^{C_{0}(\Omega)^{M}}=\mathbb{K}\left(C_{0}(\Omega)^{M}\right) \text {. ([Hintermüller, R.(2013)]) }\right) \text { ) }{ }^{( }\right)}$

This raises a general question: If $X_{0}$ is densely and continuously embeded on the Banach space $X_{1}$, is this sufficient to establish that

$$
{\overline{\mathbb{K}\left(X_{0}\right)}}^{X_{1}}=\mathbb{K}\left(X_{1}\right) ?
$$

The answer unfortunately is NO: in fact, you can find examples in which $X_{0}$ is continuously and densely embeded in $L^{2}(\Omega)$, but $\overline{\mathbb{K}\left(X_{0}\right)}{ }^{L^{2}(\Omega)}=\{0\}$.

## How choose $\alpha$ to get a good reconstruction?

Let $R: L^{2}(\Omega) \rightarrow L^{\infty}(\Omega)$ be defined ${ }^{1}$ as

$$
R(\operatorname{div} \mathbf{p})(x):=\int_{\Omega} w(x, y)(\operatorname{div} \mathbf{p})^{2}(y) \mathrm{d} y, \quad x \in \Omega
$$

with $\int_{\Omega} \int_{\Omega} w(x, y) \mathrm{d} y \mathrm{~d} x=1$ and $w(x, y) \geq 0$.

Let

$$
x \mapsto M_{1}(\operatorname{div} \mathbf{p})(x):=\max \left(R(\operatorname{div} p(x))-\tilde{\sigma}^{2}, 0\right)^{2},
$$

and

$$
x \mapsto M_{2}(\operatorname{div} p)(x):=\min \left(R(\operatorname{div} p(x))-\hat{\sigma}^{2}, 0\right)^{2}
$$

with some $\tilde{\sigma}=\sigma+\epsilon$ and $\hat{\sigma}=\sigma-\epsilon$.
${ }^{1}$ See ([Dong, Hintermüller, Rincón(2011)])

## The Bilevel Problem

The problem of interest is then

$$
\begin{aligned}
& \operatorname{minimize} \quad J(\alpha, \operatorname{div} \mathbf{p}) \\
& \text { over }(\mathbf{p}, \alpha) \in H_{0}(\operatorname{div}) \times C^{+}(\bar{\Omega}) \\
& \text { s.t. } \quad \alpha \in \mathcal{A}_{a d} \quad \text { and } \quad \mathbf{p} \text { solving }\left(\mathrm{TV}_{p d}^{*}\right) .
\end{aligned}
$$

where $\mathcal{A}_{\text {ad }} \subset C^{+}(\bar{\Omega})$ and

$$
J(\alpha, \operatorname{div} \mathbf{p})=\int_{\Omega} S_{1}(\alpha) M_{1}(\operatorname{div} \mathbf{p})+\int_{\Omega} S_{2}(\alpha) M_{2}(\operatorname{div} \mathbf{p})
$$

where $S_{1}$ and $S_{2}$ are for scaling purposes.

Although existence of a solution might be obtained (using pre-compactness properties of $\mathcal{A}_{\text {ad }}$ ), algorithms to approximate solutions seem extremely hard to develop...

## The Bilevel Problem

The map $\alpha \mapsto \mathbf{p}(\alpha)$ is complicated...

- Is $\mathcal{A}_{\text {ad }} \ni \alpha \mapsto \operatorname{divp}(\alpha)$ Lipschitz? It can be proven to be Lipschitz if $\mathcal{A}_{\text {ad }}$ comprises only "almost constant" functions...
- Is $\mathcal{A}_{\text {ad }} \ni \alpha \mapsto \mathbf{p}(\alpha)$ differentiable? ...
- Is $\mathbb{K}:=\left\{\mathbf{q} \in H_{0}(\right.$ div $):|\mathbf{q}(x)|_{\infty} \leq \alpha(x)$ a.e. $\}$ polyhedric? If the control was in the forcing term of the problem, the differentiability question above is translated into the differentiability of the projection $\mathbf{q} \mapsto P_{\mathbb{K}}(\mathbf{q}) \ldots$


## The Regularized Bilevel Problem

The problem of interest is then

$$
\begin{aligned}
& \operatorname{minimize} \quad \mathcal{J}(\alpha, \operatorname{div} \mathbf{p}):=J(\alpha, \operatorname{div} \mathbf{p})+\frac{\lambda}{2}|\alpha|_{H^{1}}^{2} \\
& \text { over }(\mathbf{p}, \alpha) \in H_{0}(\operatorname{div}) \times H^{1}(\Omega) \\
& \text { s.t. } \quad \alpha \in \mathcal{A}_{a d} \quad \text { and } \quad \mathbf{p} \text { solving } \quad\left(\tilde{T V}_{p d}^{*}\right),
\end{aligned}
$$

where

$$
\mathcal{A}_{a d}:=\left\{\alpha \in H^{1}(\Omega): 0<\underline{\alpha} \leq \alpha \leq \bar{\alpha}<+\infty, \quad \text { a.e. }\right\},
$$

and

$$
\min _{\mathbf{p} \in H_{0}^{1}(\Omega)^{\prime}} \frac{\beta}{2}|\mathbf{p}|_{H_{0}^{1}}^{2}+\frac{1}{2}|\operatorname{div} \mathbf{p}+f|_{L^{2}}^{2}+\frac{1}{\epsilon} \mathfrak{P}(\mathbf{p}, \alpha) . \quad\left(\tilde{T} V_{p d}^{*}\right)
$$

## The Regularized Bilevel Problem

- Nice First Order System (see slides of S. Ulbrich)
- The behaviour of the system as $(\beta, \epsilon) \downarrow(0,0)$ may lead to something not useful at all.
- The solution mapping $H^{1}(\Omega) \ni \alpha \mapsto \mathbf{p}(\alpha) \in H_{0}^{1}(\Omega)^{\prime}$ of $\left(\tilde{T V}_{p d}^{*}\right)$ is differentiable. It follows that the reduced objective $\operatorname{map} \mathcal{F}(\alpha):=\mathcal{J}(\alpha, \operatorname{div} \mathbf{p}(\alpha))$ is differentiable.


## Projected Gradient + Armijo rule

Let $\alpha_{0} \in \mathcal{A}_{\text {ad }}$ be in $H^{2}(\Omega) \cap C(\bar{\Omega})$ with $\tau \frac{\partial \alpha_{0}}{\partial \nu}=0$. Define $\left\{\alpha_{k}\right\}$ as

$$
\alpha_{k+1}=P_{\mathcal{A}_{a d}}\left(\alpha_{k}-\tau_{k} \nabla \mathcal{F}\left(\alpha_{k}\right)\right), \quad k=0,1, \ldots
$$

where

- $P_{\mathcal{A}_{\text {ad }}}: H^{1}(\Omega) \rightarrow \mathcal{A}_{\text {ad }}$ is the minimum distance projection operator in the $H^{1}$-norm onto the closed convex set $\mathcal{A}_{a d}$.
- $\nabla \mathcal{F}(\alpha)$ denotes the gradient of $\mathcal{F}$ at $\alpha \in H^{1}(\Omega)$.
- $\left\{\tau_{k}\right\}$ is chosen according to (the general) Armijo's rule ([Bertsekas,Gafni(1982)]).


## Preservation of Regularity

## Preserved Regularity

Let $\Omega \subset \mathbb{R}^{I}, I=1,2$, be a bounded convex subset (or a polyhedron if $I=3$ ) with $\underline{\alpha}<\bar{\alpha}$ regular enough and $\tau \frac{\partial \underline{\alpha}}{\partial \nu}=\tau \frac{\partial \bar{\alpha}}{\partial \nu}=0$, where

$$
\mathcal{A}_{\text {ad }}=\left\{\alpha \in H^{1}(\Omega): 0<\underline{\alpha} \leq \alpha \leq \bar{\alpha} \quad \text { a.e. }\right\} .
$$

Then, the sequence $\left\{\alpha_{k}\right\}$ in $\mathcal{A}_{\text {ad }}$ generated by the Projected Gradient method preserves the initial iterate regularity:

$$
\alpha_{k} \in H^{2}(\Omega) \cap C(\bar{\Omega}), \quad k=1,2, \ldots
$$

Furthermore, if $\left(\alpha^{*}, \mathbf{p}^{*}\right)$ is a solution to the regularized Bilevel problem, also $\alpha^{*} \in \mathcal{A}_{\text {ad }} \cap\left(H^{2}(\Omega) \cap C(\bar{\Omega})\right)$.

The convergence of $\left\{\alpha_{k}\right\}$ to a stationary point comes for free in [Bertsekas, Gafni(1982)].

## The Triangle + Rectangle


(a)
restoration - Iteration 20

(b)

Figure : Noisy circle in (a) and restored circle (20 iterations) in (b)

The Lower Level Poblem (TV predual)
The Bilevel Problem and Approximations

Triangle + Rectangle Circle
Cameraman
restoration - Iteration 1


PSNR

restoration - Iteration 1



The Lower Level Poblem (TV predual)

Triangle + Rectangle Circle
Cameraman



Gradient - Iteration 1


## The Circle



Figure : Noisy circle in (a) and restored circle (21 iterations) in (b)

The Lower Level Poblem (TV predual)





The Lower Level Poblem（TV predual）

Triangle + Rectangle
Circle
Cameraman




Gracient－Iteralion 1


## The Cameraman



Figure: Noisy cameraman in (a) and restored cameraman (22 iterations) in (b)

The Lower Level Poblem (TV predual)

Triangle + Rectangle
Circle
Cameraman



Restacrition-Iteralicon 1



The Lower Level Poblem (TV predual)

Triangle + Rectangle
Circle
Cameraman




Gracient-Iteration 1


## THANK YOU!

