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Cardinality Constrained Optimization Problems

Cardinality constrained optimization problem:

min
x

f (x) s.t. x ∈ X , ‖x‖0 ≤ κ

with X ⊆ Rn described by some standard constraints

X :=
{

x ∈ Rn | gi (x) ≤ 0 (i = 1, . . . ,m), hi (x) = 0 (i = 1, . . . , p)
}

and
‖x‖0 := number of nonzero components of the vector x.

Functions f , gi , hi : Rn → R are assumed to be continuously
differentiable, and parameter κ < n.
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Example: Portfolio Optimization

Portfolio selection problem:

min
x

xT Qx s.t. µT x ≥ ρ,

eT x ≤ 1,

0 ≤ xi ≤ ui ∀i = 1, . . . , n,

‖x‖0 ≤ κ.

Q and µ are the covariance matrix and mean of n possible assets and
eT x ≤ 1 is a resource constraint.
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A. Wächter: Complementarity formulation of `0-norm
optimization problems. Technical Report, September 2013.

Christian Kanzow

Joint work with
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Reformulations

1) Cardinality constrained optimization problem:

min
x

f (x) s.t. x ∈ X , ‖x‖0 ≤ κ .

2) Mixed integer program:

minx ,y f (x) s.t. x ∈ X

eT y ≥ n − κ,
xi yi = 0 ∀i = 1, . . . , n,
yi ∈ {0, 1} ∀i = 1, . . . , n .

3) Relaxation of mixed integer program:

minx ,y f (x) s.t. x ∈ X

eT y ≥ n − κ,
xi yi = 0 ∀i = 1, . . . , n,
0 ≤ yi ≤ 1 ∀i = 1, . . . , n.
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Relation between Global Minima

Theorem

The following statements are equivalent:

(a) x∗ is a solution (=global minimum) of the cardinality constrained
optimization problem.

(b) There exists a vector y∗ such that (x∗, y∗) is a solution of the
mixed-integer problem.

(c) There exists a vector y∗ ∈ Rn such that (x∗, y∗) is a solution of the
relaxed problem.
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Relation between Local Minima

Theorem

(a) If x∗ is a local minimum of the cardinality constrained optimization
problem, then there exists a vector y∗ such that (x∗, y∗) is a local
minimum of the relaxed problem.

(b) If (x∗, y∗) is a local minimizer of the relaxed problem satisfying
‖x∗‖0 = κ, then x∗ is a local minimum of the cardinality constrained
problem.

(c) If (x∗, y∗) is a local minimum of the relaxed problem, then
‖x∗‖0 = κ holds if and only if y∗ is unique, i.e. if there is exactly
one y∗ such that (x∗, y∗) is a local minimum of the relaxed
program. In this case, the components of y∗ are binary.
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Some Tangent Cones

Let Z denote the feasible set of the relaxed program, and let
(x∗, y∗) ∈ Z be any feasible point. Define the following three cones:

TZ (x∗, y∗) := standard (Bouligand) tangent cone of Z at (x∗, y∗),

LZ (x∗, y∗) := standard linearization cone of Z at (x∗, y∗),

LCC
Z (x∗, y∗) := CC-linearization cone of Z at (x∗, y∗)

:=
{

(dx , dy ) | (dx , dy ) ∈ LZ (x∗, y∗) and

(eT
i dx )(eT

i dy ) = 0 ∀i ∈ I00(x∗, y∗)
}
,

where
I00(x∗, y∗) := {i ∈ {1, . . . , n} | x∗i = 0, y∗i = 0}.
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Problem-tailored Constraint Qualifications

Theorem

It holds that TZ (x∗, y∗) ⊆ LCC
Z (x∗, y∗) ⊆ LZ (x∗, y∗).

Definition

We say that

(a) CC-ACQ holds at (x∗, y∗) if TZ (x∗, y∗) = LCC
Z (x∗, y∗).

(b) CC-GCQ holds at (x∗, y∗) if TZ (x∗, y∗)◦ = LCC
Z (x∗, y∗)◦.

Remark

CC-ACQ holds, in particular, if all constraints gi , hi are affine.
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Stationarity Conditions

Definition

A feasible point (x∗, y∗) ∈ Z of the relaxed program is called

(a) S-stationary if there exist multipliers λi , µi , γi such that

∇f (x∗) +
∑

i∈Ig (x∗)

λi∇gi (x∗) +

p∑
i=1

µi∇hi (x∗) +
∑

i :y∗
i 6=0

γi ei = 0,

λi ≥ 0 ∀i ∈ Ig (x∗);

(b) M-stationary if there exist multipliers λi , µi , γi such that

∇f (x∗) +
∑

i∈Ig (x∗)

λi∇gi (x∗) +

p∑
i=1

µi∇hi (x∗) +
∑

i :x∗
i =0

γi ei = 0,

λi ≥ 0 ∀i ∈ Ig (x∗).

Remark

S-stationarity is equivalent to the standard KKT-conditions.
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Optimality Conditions

Theorem

Let (x∗, y∗) ∈ Z be feasible for the relaxed problem. Then CC-GCQ
holds in (x∗, y∗) if and only if GCQ holds there.

Theorem

Let (x∗, y∗) be a local minimum of the relaxed program such that
CC-GCQ holds at (x∗, y∗). Then (x∗, y∗) is an S-stationary point.

Corollary

Let (x∗, y∗) be a local minimum of the relaxed program, and suppose
that gi , hi are affine mappings. Then (x∗, y∗) is an S-stationary point.

Christian Kanzow

Joint work with
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Counterexample where Solution is not S-stationary

Example

Consider the convex, but not polyhedral convex, set

X := {x ∈ R2 | (x1 − 1
2)2 + (x2 − 1)2 ≤ 1}

and f (x) = x1 + cx2 with c > 0. Choosing κ = 1 and c sufficiently large,
x∗ = (12 , 0), y∗ = (0, 1) is unique solution of the relaxed problem. But
(x∗, y∗) is not a KKT point, hence GCQ is violated in (x∗, y∗).

1
2

x1

1

x2 X
y =

(1
0

)

y =
(0
1

)
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Geometric Idea of Regularization

Replace the cardinality constraints xi yi = 0, 0 ≤ yi ≤ 1

xi

1

yi

geometrically by something like

−t t
xi

t
1

yi
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Anlaytic Realization of Regularization

Define the functions

φ(a, b; t) :=

{
(a− t)(b − t) if a + b ≥ 2t,
−1

2

[
(a− t)2 + (b − t)2

]
if a + b < 2t

as well as
φ̃(a, b; t) := φ(−a, b; t).

Remark

(a) The functions φ and φ̃ are continuously differentiable everywhere.

(b) For t = 0, it holds that

φ(a, b; 0) = 0 ⇐⇒ a ≥ 0, b ≥ 0, ab = 0,

i.e. φ is an NCP-function.
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Regularization Method

Replace the cardinality constraints

xi yi = 0, 0 ≤ yi ≤ 1

by the inequalities

0 ≤ yi ≤ 1, φ(xi , yi ; t) ≤ 0, φ̃(xi , yi ; t) ≤ 0

for some parameter t > 0 denotes yields the following regularization of
the relaxed program:

min
x ,y

f (x) s.t. gi (x) ≤ 0 ∀i = 1, . . . ,m,

hi (x) = 0 ∀i = 1, . . . , p,

eT y ≥ n − κ,
φ(xi , yi ; t) ≤ 0 ∀i = 1, . . . , n,

φ̃(xi , yi ; t) ≤ 0 ∀i = 1, . . . , n,

0 ≤ yi ≤ 1 ∀i = 1, . . . , n.
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Convergence Result

Theorem

Let {tk} ↓ 0 and {(xk , y k , λk , µk , δk , τk , τ̃k , νk )} be a corresponding
sequence of KKT points of NLP(tk ) such that (xk , y k )→ (x∗, y∗).
Assume that the limit point satisfies CC-CPLD. Then (x∗, y∗) is an
M-stationary point of the relaxed program.

Theorem

Let (x∗, y∗) be feasible for the relaxed problem such that CC-CPLD is
satisfied in (x∗, y∗). Then there is a t̄ > 0 and an r > 0 such that the
following holds for all t ∈ (0, t̄]: Is (x̂ , ŷ) ∈ Br (x∗)× Br (y∗) feasible for
NLP(t), then standard GCQ for NLP(t) holds there.
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Test Problems

Portfolio selection problem:

min
x

xT Qx s.t. µT x ≥ ρ,

eT x ≤ 1,

0 ≤ xi ≤ ui ∀i = 1, . . . , n,

‖x‖0 ≤ κ.
Test examples created using the same randomly generated data Q, µ, ρ,
and u which were used by Frangioni and Gentile (2007), available at their
webpage

http://www.di.unipi.it/optimize/Data/MV.html.

We use 30 test instances for each of the three dimensions
n = 200, 300, 400. In addition, for every example three cardinality
constraints κ = 5, 10, 20 are used (= 270 test problems altogether).
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Solvers

We use three different approaches for solving the test problems:

(a) GUROBI: Solves a mixed-integer formulation of the problem (used as
a benchmark for our approach) (allowing approximately two hours of
computation time for each test problem)

(b) Use SNOPT applied directly to the relaxed problem.

(c) Use our regularization approach with SNOPT applied to the
regularized programs

Starting point for all three approaches:

x0 := (0, . . . , 0)T , y0 := (1, . . . , 1)T .

The following figures present the optimal function values, normalized by
the one found by GUROBI, and in increasing order for the regularization
approach.
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Numerical Results (Part 1)
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(b) n = 200, κ = 10
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(c) n = 200, κ = 20
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Numerical Results (Part 2)
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(d) n = 300, κ = 5
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(e) n = 300, κ = 10
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Numerical Results (Part 3)
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(g) n = 400, κ = 5
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MPCC-Formulation of a Class of Cardinality Constraints

Consider cardinality constrained problem with nonnegativity constraints:

minx ,y f (x) s.t. gi (x) ≤ 0, xi ≥ 0 ∀i = 1, . . . ,m,
hi (x) = 0 ∀i = 1, . . . , p,

eT y ≥ n − κ,
xi yi = 0 ∀i = 1, . . . , n,
0 ≤ yi ≤ 1 ∀i = 1, . . . , n,

Moving the nonnegativity constraints to the cardinality constraints yields
the following MPCC:

minx ,y f (x) s.t. gi (x) ≤ 0 ∀i = 1, . . . ,m,
hi (x) = 0 ∀i = 1, . . . , p,

eT y ≥ n − κ,
xi yi = 0 ∀i = 1, . . . , n,
yi ≤ 1 ∀i = 1, . . . , n,
xi ≥ 0, yi ≥ 0, xi yi = 0 ∀i = 1, . . . , n.
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Relation between MPCC and CC-Problems

Remark
(a) (x∗, y∗) is S-stationary in the sense of MPCCs if and only if it is

S-stationary in the sense of cardinality constrained problems.

(b) (x∗, y∗) is M-stationary in the sense of MPCCs if and only if it is
M-stationary in the sense of cardinality constrained problems.

(c) For general MPCCs, M-, C-, and W-stationarity are different
stationarity concepts, but for the MPCC arising from cardinality
constrained problems, these concepts coincide.

(d) For general MPCCs, S-stationarity may not hold for affine functions
gi , hi , whereas S-stationarity holds in this case for CC-problems.

(e) MPCC-LICQ implies a piecewise LICQ for general MPCCs, whereas
a corresponding observation is not true for CC-problems

(f) MPCC-LICQ and MPCC-MFCQ are likely to be violated at a
solution (x∗, y ) of the cardinality constrained problem.
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Conclusions and Outline

I We reformulated the cardinality constrained problem as an
optimization problem in continuous variables.

I This allows application of results and techniques from continuous
optimization to obtain, e.g., optimality conditions.

I A specialized analysis is necessary in order to take into account the
particular structure of cardinality constrained problems.

I Cardinality constrained optimization problems have different
properties than MPCCs and should therefore be treated separately.

I Other solution methods are possible, but Scholtes regularization, for
example, seems to cause some troubles.

I Similar results seem to hold for sparse optimization problems.

I Application of ideas from mixed integer problems principally possible.
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