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Differential Complementarity Problems

Differential Complementarity Problems (DCPs) have the form

dx
dt

= f(x) + B(x)z(t), x(t0) = x0,

K 3 z(t) ⊥ G(x(t), z(t)) ∈ K ∗

where K is a closed convex cone, and K ∗ its dual cone:

K ∗ =
{

w | wT u ≥ 0 for all u ∈ K
}
.

Examples: K = Rn and K ∗ = {0}; K = Rn
+ and K ∗ = Rn

+.

K =

{[
x
y

]
| y ≥ ‖x‖2

}
,

K ∗ = K . (ice-cream or Lorentz cone).
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Index

If G(x, z) is strongly monotone in z

(G(x, z2)−G(x, z1))
T (z2− z1) ≥ β ‖z2 − z1‖2 for all z1, z2,

and Lipschitz in x, then we can write z as a Lipschitz function of
x and we can substitute into the differential equation.

This is index zero. The existence/uniqueness theory is the
same as for Lipschitz ODEs.

More interesting are index one problems, where we assume
that G(x, z) = G(x). We also assume that

∇G(x)B(x) is positive definite for all x.
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A useful book (shameless plug)
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Uniqueness for DCPs (index one)

Regularity assumptions: f, ∇G, B are all Lipschitz

Positivity assumption: ∇G(x)B(x) is positive definite.

Something extra assumption: ∇G(x)B(x) is symmetric.

With these assumptions, we can show existence and
uniqueness of solutions for DCPs, provided G(x0) ∈ K ∗.

The first two assumptions and G(x0) ∈ K ∗ are sufficient for
existence of solutions.
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Counter-examples

The first counter-example to uniqueness was probably the
following (actually ∇G(x)B(x) is not positive definite, but it is a
P-matrix):

dw
dt

= Rz(t) + q, w(t0) = w0 ∈ Rn
+

0 ≤ w(t) ⊥ z(t) ≥ 0 for all t ,

with

R =

 1 3 0
0 1 3
3 0 1

 , q =

 −1
−1
−1

 .

See, e.g., Bernard and El–Kharroubi (1990).
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Bernard & El–Kharroubi example:
looking at origin from near (1,1,1)



Side remark on Zeno solutions

If K = Rn
+ and ∇G(x)B(x) is a P-matrix for all x, and all

functions analytic, then we have uniqueness amongst
non-Zeno solutions.

Examples of non-uniqueness typically have reverse-Zeno type
behavior.

Some solutions can have forward Zeno behavior with
∇G(x)B(x) positive definite for K = Rn

+:

Use the previous example with

R =

 1 α 0
0 1 α
α 0 1

 , 1 < α < 2.
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Convolution Complementarity Problems

A convolution complementarity problems (CCP) has the
form: Given m : [0,∞)→ Rn×n and q : [0,∞)→ Rn find
z : [0,∞)→ Rn such that

0 ≤ z(t) ⊥ (m ∗ z)(t) + q(t) ≥ 0 for all t ≥ 0, where

(m ∗ z)(t) =
∫ t

0
m(t − τ) z(τ) dτ.

For the DCP

dx
dt

(t) = Ax(t) + Bz(t), x(0) = x0,

w(t) = Cx(t) + Dz(t),

we have an equivalent CCP: m(t) = C eAt B + D δ(t) for t ≥ 0.
We extend m(t) = 0 for t < 0.
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The index of CCP is the smallest p such that

(d/dt)pm(t) = m0δ(t) + m1(t)

where m1(t) has no atom at t = 0.



Application: impact of a viscoelastic rod

v
0
*

u
0

0

*

rigid obstacle

N(t)

x = Lx =

ρ
∂2u
∂t2 = E

∂2u
∂x2 + β

∂3u
∂t ∂x2 in (0,L),

−E
∂u
∂x

(t ,0) = −N(t),

+E
∂u
∂x

(t ,L) = 0 (no force),

0 ≤ u(t ,0) ⊥ N(t) ≥ 0.
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Solution:

u(t ,0) = q(t) +
∫ t

0
G(t − τ)N(τ) dτ with

G(t) ∼ const t1/2 for t > 0 and t ≈ 0.



Fractional index

The index of a CCP can be fractional. In particular, if
ψα(t) = tα−1/Γ(α) then its Laplace transform is

Lψα(s) = s−α.

Note that Lδ(s) = 1 and LH(s) = s−1 where H(t) = 1 for
t > 0 and H(t) = 0 for t < 0; if f (t) = 0 for t < 0 then
L[f ′](s) = sLf (s). Since L[f ∗ g](s) = Lf (s)Lg(s).
Convolution with ψα can be considered to be order α integration.

If m(t) ∼ m0 tα−1/Γ(α), then we say that the CCP

0 ≤ z(t) ⊥ (m ∗ z)(t) + q(t) ≥ 0 for all t ≥ 0, where

(m ∗ z)(t) =
∫ t

0
m(t − τ) z(τ) dτ.

has index α.
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Fourier analysis and positive definite operators

Note that Fψα(ω) = (iω)−α, but we have to use the principal
branch of (·)−α; that is, (eiθ)β = eiθβ for −π < θ < +π.

So F [ψα ∗ z] (ω) = Fψα(ω)Fz(ω); so
Fw(ω) = Fψα(ω)Fz(ω) +Fq(ω). The inner product
condition ∫ ∞

0
z(t)w(t) dt = 0

implies

Re
∫ +∞

−∞
Fz(ω) [Fψα(ω)Fz(ω) +Fq(ω)] dω = 0.
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Then

Re
∫ +∞

−∞
Fψα(ω) |Fz(ω)|2 dω = −Re

∫ +∞

−∞
Fz(ω)Fq(ω) dω

≤ ‖Fz‖H−α/2 ‖Fq‖Hα/2

That is,

cos(πα/2)
∫ +∞

−∞
|ω|−α |Fz(ω)|2 dω ≤ ‖z‖H−α/2 ‖q‖Hα/2 or

cos(πα/2) ‖z‖2
H−α/2 ≤ ‖z‖H−α/2 ‖q‖Hα/2

Convolution with ψα is a positive operator if 0 < α < 1, but not if
1 < α < 2.



Uniqueness and positivity

Suppose we have two solutions to generalized complementarity
problems: wi = Lzi + q where L is a linear operator for i = 1, 2
where K∗ 3 wi ⊥ zi ∈ K for all t .

Then

〈w2 −w1, z2 − z1〉 = 〈w2, z2〉− 〈w1, z2〉− 〈w2, z1〉+ 〈w2, z2〉 ≤ 0.

If L is an elliptic or positive definite operator, then

0 ≥ 〈w2 −w1, z2 − z1〉
= 〈L(z1 − z1), z2 − z1〉

which implies that z2 = z1. (Allowing different q’s shows the
solution operator is Lipschitz if L elliptic or positive definite.)

Corollary: If α ∈ (0,1) then solutions z(·) to the CCP
0 ≤ ψα ∗ z(t) + q(t) ⊥ z(t) ≥ 0 are unique.
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Existence for α ∈ (1,2)

Existence for α ∈ (1,2) can be shown via index reduction and a
differentiation lemma: consider the CCP below for ε > 0:

0 ≤ (ψα + εH) ∗ zε(t) + q(t) ⊥ zε(t) ≥ 0.

This is index one and solutions zε(·) exist (and are unique). But
if

0 ≤ z(t) ⊥ w(t) ≥ 0 for all t

with z(·) ∈ Lp and w ′(·) ∈ Lq, p−1 + q−1 = 1, then
z(t)w ′(t) = 0 for almost all t .
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So (ψ′α ∗ zε(t) + εzε(t) + q′(t))zε(t) = 0 for almost all t . As
ψ′α = ψα−1, we can integrate & re-arrange to get∫

(ψα−1 ∗ zε)zε dt ≤
∫
(−q′)zε dt ≤

∥∥q′
∥∥

H(α−1)/2 ‖zε‖H−(α−1)/2

so zε uniformly bounded in H−(α−1)/2 as ε ↓ 0.

So we get a weakly converging subsequence zε(·) ⇀ ẑ(·) in
H−(α−1)/2, but ψα ∗ zε → ψα ∗ ẑ strongly in H+(α−1)/2 (thanks to
compactness of H(α+1)/2 ⊂ H(α−1)/2) so limit(s) satisfy
complementarity.

But uniqueness does not follow from these arguments as
z 7→ ψα ∗ z is not a positive operator for α ∈ (1,2).



Uniqueness for α ∈ (1,2)?

Pros:

kernel function is positive: ψα(t) > 0 for t > 0.

for analytic q(·), z(·), there is uniqueness.

short-time behavior looks a bit like a δ-function.

Cons:

Fourier transform Fψα(ω) has negative real part.
non-uniqueness clear for index α = 2.
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And the verdict is . . . No!

There is a counter-example to uniqueness, but it is very far
from being analytic, but it can be Cp for any finite p.

How to construct?

(1) Use version of Mandelbaum’s DCP non-uniqueness
theorem: 0 ≤ (m ∗ z)(t) + q(t) ⊥ z(t) ≥ 0 for all t has no
solutions or multiple solutions if and only if there is ζ(·) where
(m ∗ ζ)(t) ζ(t) ≤ 0 for all t ≥ 0 with ζ(0) = 0.
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(2) Use self-similarity. Suppose θ(s) = 1 for |s| ≤ 1, θ(s) = 0
for |s| ≥ 2, s θ′(s) ≥ 0 for all s, θ is C∞ and

∫ +2
−2 θ(s) ds = 1.

Look for

ζ(t ; η) = ∑
k∈Z

(−1)k µ−k ζ1(γ
k t ; η), ζ1(s; η) = η−1 θ(η−1(s− ŝ))

where ŝ = 1
2 (1 + γ).

(3) Choose µ, γ > 0 so that ∑∞
k=1(−1)k (µγ)−k (1− γ−k )α < 0;

thus limη↓0(ψα ∗ ζ)(ŝ; η) < 0. Then make η > 0 sufficiently
small so that (ψα ∗ ζ)(s; η) < 0 for all |s− ŝ| ≤ 2η. Note: We
need µγ > 1 for the infinite series to converge.



Conclusions

Soutions are exist for index in range [0,2]
Solutions are unique (supposing dominant term in m(t) for
t ≈ 0 is symmetric and positive definite) for index in range
[0,1]
Non-uniqueness of solution to Kelvin–Voigt 1-D
viscoelastic rod in impact at end
Probably, non-uniqueness for general K–V viscoelastic
bodies in impact
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