# Uniqueness of solutions to dynamic complementarity problems 

David Stewart

Department of Mathematics
University of lowa

ICCP 2014
August 4-8

## Differential Complementarity Problems

Differential Complementarity Problems (DCPs) have the form

$$
\begin{aligned}
\frac{d \mathbf{x}}{d t} & =\mathbf{f}(\mathbf{x})+B(\mathbf{x}) \mathbf{z}(t), \quad \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0} \\
K \ni \mathbf{z}(t) & \perp \mathbf{G}(\mathbf{x}(t), \mathbf{z}(t)) \in K^{*}
\end{aligned}
$$

where $K$ is a closed convex cone, and $K^{*}$ its dual cone:

$$
K^{*}=\left\{\mathbf{w} \mid \mathbf{w}^{T} \mathbf{u} \geq 0 \text { for all } \mathbf{u} \in K\right\}
$$

Examples: $K=\mathbb{R}^{n}$ and $K^{*}=\{0\} ; K=\mathbb{R}_{+}^{n}$ and $K^{*}=\mathbb{R}_{+}^{n}$.

$$
\begin{aligned}
K & =\left\{\left.\left[\begin{array}{l}
\mathbf{x} \\
y
\end{array}\right] \right\rvert\, y \geq\|\mathbf{x}\|_{2}\right\} \\
K^{*} & =K . \quad \text { (ice-cream or Lorentz cone). }
\end{aligned}
$$

## Index

If $\mathbf{G}(\mathbf{x}, \mathbf{z})$ is strongly monotone in $\mathbf{z}$

$$
\left(\mathbf{G}\left(\mathbf{x}, \mathbf{z}_{2}\right)-\mathbf{G}\left(\mathbf{x}, \mathbf{z}_{1}\right)\right)^{T}\left(\mathbf{z}_{2}-\mathbf{z}_{1}\right) \geq \beta\left\|\mathbf{z}_{2}-\mathbf{z}_{1}\right\|^{2} \quad \text { for all } \mathbf{z}_{1}, \mathbf{z}_{2}
$$

and Lipschitz in $\mathbf{x}$, then we can write $\mathbf{z}$ as a Lipschitz function of $\mathbf{x}$ and we can substitute into the differential equation.

This is index zero. The existence/uniqueness theory is the same as for Lipschitz ODEs.

More interesting are index one problems, where we assume that $\mathbf{G}(\mathbf{x}, \mathbf{z})=\mathbf{G}(\mathbf{x})$. We also assume that
$\nabla \mathbf{G}(\mathbf{x}) B(\mathbf{x}) \quad$ is positive definite for all $\mathbf{x}$.

## A useful book (shameless plug)

## Dynamics with Inequalities

Impacts and Hard Constraints


## David E. Stewart

## Uniqueness for DCPs (index one)

Regularity assumptions: $\mathbf{f}, \nabla \mathbf{G}, B$ are all Lipschitz
Positivity assumption: $\nabla \mathbf{G}(\mathbf{x}) B(\mathbf{x})$ is positive definite.
Something extra assumption: $\nabla \mathbf{G}(\mathbf{x}) B(\mathbf{x})$ is symmetric.
With these assumptions, we can show existence and uniqueness of solutions for DCPs, provided $\mathbf{G}\left(\mathbf{x}_{0}\right) \in K^{*}$.

The first two assumptions and $\mathbf{G}\left(\mathbf{x}_{0}\right) \in K^{*}$ are sufficient for existence of solutions.

## Counter-examples

The first counter-example to uniqueness was probably the following (actually $\nabla \mathbf{G}(\mathbf{x}) B(\mathbf{x})$ is not positive definite, but it is a $P$-matrix):

$$
\begin{aligned}
\frac{d \mathbf{w}}{d t} & =R \mathbf{z}(t)+\mathbf{q}, \quad \mathbf{w}\left(t_{0}\right)=\mathbf{w}_{0} \in \mathbb{R}_{+}^{n} \\
0 \leq \mathbf{w}(t) & \perp \mathbf{z}(t) \geq 0 \quad \text { for all } t,
\end{aligned}
$$

with

$$
R=\left[\begin{array}{lll}
1 & 3 & 0 \\
0 & 1 & 3 \\
3 & 0 & 1
\end{array}\right], \quad \mathbf{q}=\left[\begin{array}{c}
-1 \\
-1 \\
-1
\end{array}\right]
$$

See, e.g., Bernard and El-Kharroubi (1990).


Bernard \& El-Kharroubi example: looking at origin from near (1,1,1)

## Side remark on Zeno solutions

If $K=\mathbb{R}_{+}^{n}$ and $\nabla \mathbf{G}(\mathbf{x}) B(\mathbf{x})$ is a $P$-matrix for all $\mathbf{x}$, and all functions analytic, then we have uniqueness amongst non-Zeno solutions.

Examples of non-uniqueness typically have reverse-Zeno type behavior.

Some solutions can have forward Zeno behavior with $\nabla \mathbf{G}(\mathbf{x}) B(\mathbf{x})$ positive definite for $K=\mathbb{R}_{+}^{n}$ :

Use the previous example with

$$
R=\left[\begin{array}{lll}
1 & \alpha & 0 \\
0 & 1 & \alpha \\
\alpha & 0 & 1
\end{array}\right], \quad 1<\alpha<2
$$

## Convolution Complementarity Problems

A convolution complementarity problems (CCP) has the form: Given $m:[0, \infty) \rightarrow \mathbb{R}^{n \times n}$ and $\mathbf{q}:[0, \infty) \rightarrow \mathbb{R}^{n}$ find
$\mathbf{z}:[0, \infty) \rightarrow \mathbb{R}^{n}$ such that

$$
\begin{aligned}
0 \leq \mathbf{z}(t) & \perp \quad(m * \mathbf{z})(t)+\mathbf{q}(t) \geq 0 \quad \text { for all } t \geq 0, \text { where } \\
(m * \mathbf{z})(t) & =\int_{0}^{t} m(t-\tau) \mathbf{z}(\tau) d \tau
\end{aligned}
$$

For the DCP

$$
\begin{aligned}
\frac{d \mathbf{x}}{d t}(t) & =A \mathbf{x}(t)+B \mathbf{z}(t), \quad \mathbf{x}(0)=\mathbf{x}_{0} \\
\mathbf{w}(t) & =C \mathbf{x}(t)+D \mathbf{z}(t)
\end{aligned}
$$

we have an equivalent CCP: $m(t)=C e^{A t} B+D \delta(t)$ for $t \geq 0$. We extend $m(t)=0$ for $t<0$.

The index of CCP is the smallest $p$ such that

$$
(d / d t)^{p} m(t)=m_{0} \delta(t)+m_{1}(t)
$$

where $m_{1}(t)$ has no atom at $t=0$ ．

## Application: impact of a viscoelastic rod

$$
\begin{aligned}
& \rho \frac{\partial^{2} u}{\partial t^{2}}=E \frac{\partial^{2} u}{\partial x^{2}}+\beta \frac{\partial^{3} u}{\partial t \partial x^{2}} \quad \text { in }(0, L), \\
& -E \frac{\partial u}{\partial x}(t, 0)=-N(t), \\
& +E \frac{\partial u}{\partial x}(t, L)=0 \quad \text { (no force), } \\
& 0 \leq u(t, 0) \quad \perp \quad N(t) \geq 0 .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
u(t, 0) & =q(t)+\int_{0}^{t} G(t-\tau) N(\tau) d \tau \quad \text { with } \\
G(t) & \sim \operatorname{const} t^{1 / 2} \quad \text { for } t>0 \text { and } t \approx 0
\end{aligned}
$$

## Fractional index

The index of a CCP can be fractional. In particular, if $\psi_{\alpha}(t)=t^{\alpha-1} / \Gamma(\alpha)$ then its Laplace transform is

$$
\mathcal{L} \psi_{\alpha}(s)=s^{-\alpha}
$$

Note that $\mathcal{L} \delta(s)=1$ and $\mathcal{L} H(s)=s^{-1}$ where $H(t)=1$ for $t>0$ and $H(t)=0$ for $t<0$; if $f(t)=0$ for $t<0$ then $\mathcal{L}\left[f^{\prime}\right](s)=s \mathcal{L} f(s)$. Since $\mathcal{L}[f * g](s)=\mathcal{L} f(s) \mathcal{L} g(s)$. Convolution with $\psi_{\alpha}$ can be considered to be order $\alpha$ integration. If $m(t) \sim m_{0} t^{\alpha-1} / \Gamma(\alpha)$, then we say that the CCP

$$
\begin{aligned}
0 \leq \mathbf{z}(t) & \perp \quad(m * \mathbf{z})(t)+\mathbf{q}(t) \geq 0 \quad \text { for all } t \geq 0, \text { where } \\
(m * \mathbf{z})(t) & =\int_{0}^{t} m(t-\tau) \mathbf{z}(\tau) d \tau
\end{aligned}
$$

has index $\alpha$.

## Fourier analysis and positive definite operators

Note that $\mathcal{F} \psi_{\alpha}(\omega)=(i \omega)^{-\alpha}$, but we have to use the principal branch of $(\cdot)^{-\alpha}$; that is, $\left(e^{i \theta}\right)^{\beta}=e^{i \theta \beta}$ for $-\pi<\theta<+\pi$.
So $\mathcal{F}\left[\psi_{\alpha} * z\right](\omega)=\mathcal{F} \psi_{\alpha}(\omega) \mathcal{F} z(\omega)$; so
$\mathcal{F} w(\omega)=\mathcal{F} \psi_{\alpha}(\omega) \mathcal{F} z(\omega)+\mathcal{F} q(\omega)$. The inner product condition

$$
\int_{0}^{\infty} z(t) w(t) d t=0
$$

implies

$$
\operatorname{Re} \int_{-\infty}^{+\infty} \overline{\mathcal{F} z(\omega)}\left[\mathcal{F} \psi_{\alpha}(\omega) \mathcal{F} z(\omega)+\mathcal{F} q(\omega)\right] d \omega=0
$$

Then

$$
\begin{aligned}
\operatorname{Re} \int_{-\infty}^{+\infty} \mathcal{F} \psi_{\alpha}(\omega)|\mathcal{F} z(\omega)|^{2} d \omega & =-\operatorname{Re} \int_{-\infty}^{+\infty} \overline{\mathcal{F} z(\omega)} \mathcal{F} q(\omega) d \omega \\
& \leq\|\mathcal{F} z\|_{H^{-\alpha / 2}}\|\mathcal{F} q\|_{H^{\alpha / 2}}
\end{aligned}
$$

That is,

$$
\begin{aligned}
\cos (\pi \alpha / 2) \int_{-\infty}^{+\infty}|\omega|^{-\alpha}|\mathcal{F} z(\omega)|^{2} d \omega & \leq\|z\|_{H^{-\alpha / 2}}\|q\|_{H^{\alpha / 2}} \quad \text { or } \\
\cos (\pi \alpha / 2)\|z\|_{H^{-\alpha / 2}}^{2} & \leq\|z\|_{H^{-\alpha / 2}}\|q\|_{H^{\alpha / 2}}
\end{aligned}
$$

Convolution with $\psi_{\alpha}$ is a positive operator if $0<\alpha<1$, but not if $1<\alpha<2$.

## Uniqueness and positivity

Suppose we have two solutions to generalized complementarity problems: $w_{i}=\mathcal{L} z_{i}+q$ where $\mathcal{L}$ is a linear operator for $i=1,2$ where $\mathcal{K}^{*} \ni w_{i} \perp z_{i} \in \mathcal{K}$ for all $t$.

Then

$$
\left\langle w_{2}-w_{1}, z_{2}-z_{1}\right\rangle=\left\langle w_{2}, z_{2}\right\rangle-\left\langle w_{1}, z_{2}\right\rangle-\left\langle w_{2}, z_{1}\right\rangle+\left\langle w_{2}, z_{2}\right\rangle \leq 0
$$

If $\mathcal{L}$ is an elliptic or positive definite operator, then

$$
\begin{aligned}
0 & \geq\left\langle w_{2}-w_{1}, z_{2}-z_{1}\right\rangle \\
& =\left\langle\mathcal{L}\left(z_{1}-z_{1}\right), z_{2}-z_{1}\right\rangle
\end{aligned}
$$

which implies that $z_{2}=z_{1}$. (Allowing different $q$ 's shows the solution operator is Lipschitz if $\mathcal{L}$ elliptic or positive definite.)
Corollary: If $\alpha \in(0,1)$ then solutions $z(\cdot)$ to the CCP
$0 \leq \psi_{\alpha} * z(t)+q(t) \perp z(t) \geq 0$ are unique.

## Existence for $\alpha \in(1,2)$

Existence for $\alpha \in(1,2)$ can be shown via index reduction and a differentiation lemma: consider the CCP below for $\epsilon>0$ :

$$
0 \leq\left(\psi_{\alpha}+\epsilon H\right) * z_{\epsilon}(t)+q(t) \perp \quad z_{\epsilon}(t) \geq 0 .
$$

This is index one and solutions $z_{\epsilon}(\cdot)$ exist (and are unique). But if

$$
0 \leq z(t) \perp w(t) \geq 0 \quad \text { for all } t
$$

with $z(\cdot) \in L^{p}$ and $w^{\prime}(\cdot) \in L^{q}, p^{-1}+q^{-1}=1$, then
$z(t) w^{\prime}(t)=0$ for almost all $t$.

So $\left(\psi_{\alpha}^{\prime} * z_{\epsilon}(t)+\epsilon z_{\epsilon}(t)+q^{\prime}(t)\right) z_{\epsilon}(t)=0$ for almost all $t$. As $\psi_{\alpha}^{\prime}=\psi_{\alpha-1}$, we can integrate \& re-arrange to get

$$
\int\left(\psi_{\alpha-1} * z_{\epsilon}\right) z_{\epsilon} d t \leq \int\left(-q^{\prime}\right) z_{\epsilon} d t \leq\left\|q^{\prime}\right\|_{H^{(\alpha-1) / 2}}\left\|z_{\epsilon}\right\|_{H^{-(\alpha-1) / 2}}
$$

so $z_{\epsilon}$ uniformly bounded in $H^{-(\alpha-1) / 2}$ as $\epsilon \downarrow 0$.
So we get a weakly converging subsequence $z_{\epsilon}(\cdot) \rightharpoonup \widehat{\boldsymbol{z}}(\cdot)$ in $H^{-(\alpha-1) / 2}$, but $\psi_{\alpha} * Z_{\epsilon} \rightarrow \psi_{\alpha} * \widehat{z}$ strongly in $H^{+(\alpha-1) / 2}$ (thanks to compactness of $H^{(\alpha+1) / 2} \subset H^{(\alpha-1) / 2}$ ) so limit(s) satisfy complementarity.

But uniqueness does not follow from these arguments as $z \mapsto \psi_{\alpha} * z$ is not a positive operator for $\alpha \in(1,2)$.

## Uniqueness for $\alpha \in(1,2) ?$

## Pros:

$\square$ kernel function is positive: $\psi_{\alpha}(t)>0$ for $t>0$.
■ for analytic $q(\cdot), z(\cdot)$, there is uniqueness.
$\square$ short-time behavior looks a bit like a $\delta$-function.

## Cons:

■ Fourier transform $\mathcal{F} \psi_{\alpha}(\omega)$ has negative real part.

- non-uniqueness clear for index $\alpha=2$.


## And the verdict is ... No!

There is a counter-example to uniqueness, but it is very far from being analytic, but it can be $C^{p}$ for any finite $p$.

How to construct?
(1) Use version of Mandelbaum's DCP non-uniqueness theorem: $0 \leq(m * z)(t)+q(t) \perp z(t) \geq 0$ for all $t$ has no solutions or multiple solutions if and only if there is $\zeta(\cdot)$ where $(m * \zeta)(t) \zeta(t) \leq 0$ for all $t \geq 0$ with $\zeta(0)=0$.
(2) Use self-similarity. Suppose $\theta(s)=1$ for $|s| \leq 1, \theta(s)=0$ for $|s| \geq 2, s \theta^{\prime}(s) \geq 0$ for all $s, \theta$ is $C^{\infty}$ and $\int_{-2}^{+2} \theta(s) d s=1$. Look for
$\zeta(t ; \eta)=\sum_{k \in \mathbb{Z}}(-1)^{k} \mu^{-k} \zeta_{1}\left(\gamma^{k} t ; \eta\right), \quad \zeta_{1}(s ; \eta)=\eta^{-1} \theta\left(\eta^{-1}(s-\widehat{s})\right)$
where $\widehat{s}=\frac{1}{2}(1+\gamma)$.
(3) Choose $\mu, \gamma>0$ so that $\sum_{k=1}^{\infty}(-1)^{k}(\mu \gamma)^{-k}\left(1-\gamma^{-k}\right)^{\alpha}<0$; thus $\lim _{\eta \downarrow 0}\left(\psi_{\alpha} * \zeta\right)(\widehat{s} ; \eta)<0$. Then make $\eta>0$ sufficiently small so that $\left(\psi_{\alpha} * \zeta\right)(s ; \eta)<0$ for all $|s-\widehat{s}| \leq 2 \eta$. Note: We need $\mu \gamma>1$ for the infinite series to converge.

## Conclusions

■ Soutions are exist for index in range [0, 2]
■ Solutions are unique (supposing dominant term in $m(t)$ for $t \approx 0$ is symmetric and positive definite) for index in range $[0,1]$
■ Non-uniqueness of solution to Kelvin-Voigt 1-D viscoelastic rod in impact at end
■ Probably, non-uniqueness for general K-V viscoelastic bodies in impact

