
ICCP 2014, Berlin 4-8 August 2014

Calmness of solution mappings in parametric
optimization problems

Diethard Klatte, University Zurich

in collaboration with Bernd Kummer, Humboldt University Berlin

Based on:

[KK14] D. Klatte, B. Kummer, On calmness of the argmin mapping in parametric

optimization problems, Optimization online, February 2014.

[KKK12] D. Klatte, A. Kruger, B. Kummer, From convergence principles to stability

and optimality conditions, J. Convex Analysis, 19 (2012) 1043-1073.

[KK09] D. Klatte, B. Kummer, Optimization methods and stability of inclusions in

Banach spaces, Math. Program. Ser. B 117 (2009) 305-330.

[KK02] D. Klatte, B. Kummer, Nonsmooth Equations in Optimization, Kluwer 2002.

1



Contents:

1. Basic model and main purpose

2. De�nition of calmness and motivations

3. Calmness of the argmin map via calmness of auxiliary maps

4. Application to an inequality constrained setting

5. Final remarks

2



1. Basic model and main purpose

Consider the parametric optimization problem

f(x, t) → minx s.t. x ∈ M(t) , t varies near t∗, (1)

where M is the feasible set mapping of (1). We assume throughout:

T is a normed linear space, M : T ⇒ Rn has closed graph gphM ,

(t∗, x∗) ∈ gphM is a given reference point,

f : Rn × T → R is Lipschitzian near (t∗, x∗).
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1. Basic model and main purpose

Consider the parametric optimization problem

f(x, t) → minx s.t. x ∈ M(t) , t varies near t∗, (1)

where M is the feasible set mapping of (1). We assume throughout:

T is a normed linear space, M : T ⇒ Rn has closed graph gphM ,

(t∗, x∗) ∈ gphM is a given reference point,

f : Rn × T → R is Lipschitzian near (t∗, x∗).

For (1), de�ne the in�mum value function φ by

φ(t) := inf
x
{f(x, t) | x ∈ M(t)} , t ∈ T

and the argmin mapping Ψ by

Ψ(t) := argmin
x

{f(x, t) | x ∈ M(t)} , t ∈ T . (2)
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We are interested in conditions for calmness of the argmin mapping

t 7→ Ψ(t) = {x ∈ M(t) | f(x, t) ≤ φ(t)} ,

for t near t∗, and to relate this to calmness of the auxiliary mappings

(t, µ) 7→ L(t, µ) = {x ∈ M(t) | f(x, t∗) ≤ µ} ,

µ 7→ L(t∗, µ) = {x ∈ M(t∗) | f(x, t∗) ≤ µ} .
(3)
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L(t∗, µ) is given by inequalities perturbed only at the right-hand side.
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We are interested in conditions for calmness of the argmin mapping

t 7→ Ψ(t) = {x ∈ M(t) | f(x, t) ≤ φ(t)} ,

for t near t∗, and to relate this to calmness of the auxiliary mappings

(t, µ) 7→ L(t, µ) = {x ∈ M(t) | f(x, t∗) ≤ µ} ,

µ 7→ L(t∗, µ) = {x ∈ M(t∗) | f(x, t∗) ≤ µ} .
(4)

If M(t) is described by inequalities, then L(t, µ) is so, too, and moreover,

L(t∗, µ) is given by inequalities perturbed only at the right-hand side.

Main purpose of the paper:

To show under suitable conditions and for a large class of problems that

L calm ⇒ Ψ calm (5)

and to discuss inspired by Canovas et al. (JOTA '14) whether (or not)

Ψ calm ⇒ L calm. (6)

Canovas et al. proved (6) for canonically perturbed linear SIPs.
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2. De�nition of calmness and motivations

De�nitions

Let T be a normed linear space,

B closed unit ball (in T or X), B(x, ε) := {x}+ εB.

Given a multifunction Φ : T ⇒ Rn and x∗ ∈ Φ(t∗),

Φ is called calm at (t∗, x∗) if there are ε, δ, L > 0 such that

Φ(t) ∩B(x∗, ε) ⊂ Φ(t∗) + L∥t− t∗∥B ∀t ∈ B(t∗, δ), (7)

in particular, Φ(t) ∩B(x∗, ε) = ∅ for t ̸= t∗ possible.

Example: If T = Rm and gphΦ is the union of �nitely many convex

polyhedral sets, then Φ is calm at each (t∗, x∗) ∈ gphΦ. (Robinson '81)

5



2. De�nition of calmness and motivations

De�nitions

Let T be a normed linear space,
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Φ is called calm at (t∗, x∗) if there are ε, δ, L > 0 such that

Φ(t) ∩B(x∗, ε) ⊂ Φ(t∗)+ L∥t− t∗∥B ∀t ∈ B(t∗, δ), (7)

in particular, Φ(t) ∩B(x∗, ε) = ∅ for t ̸= t∗ possible.

In contrast, we say that

Φ has the Aubin property at (t∗, x∗) if for some ε, δ, L > 0,

∅ ̸= Φ(t) ∩B(x∗, ε) ⊂ Φ(t′) + L∥t′ − t∥B ∀t, t′ ∈ B(t∗, δ). (8)

Example: If T = Rm and gphΦ is the union of �nitely many convex

polyhedral sets, then Φ is calm at each (t∗, x∗) ∈ gphΦ. (Robinson '81)
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Special cases

1. Calmness and error bounds: For g : X → T , let Φ be de�ned by

Φ(t) := {x ∈ X | g(x) + t ∈ T0}, T0 ⊂ T closed, g continuous,

then Φ is calm at (0, x∗) ∈ gphΦ if and only if for some L, ε > 0,

dist(x,Φ(0)) ≤ Ldist(g(x), T0) ∀x ∈ B(x∗, ε) . (local error bound)

2.
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Special cases

1. Calmness and error bounds: For g : X → T , let Φ be de�ned by

Φ(t) := {x ∈ X | g(x) + t ∈ T0}, T0 ⊂ T closed, g continuous,

then Φ is calm at (0, x∗) ∈ gphΦ if and only if for some L, ε > 0,

dist(x,Φ(0)) ≤ Ldist(t, T0) ∀x ∈ B(x∗, ε) . (local error bound)

2. Canonically perturbed linear SIPs: Consider the special case of (1)

with I - a compact metric space, a ∈ (C(I,R))n given,

f(x, c) = cTx → min
x

s.t. aTi x ≤ bi, i ∈ I, (9)

t = (c, b) varies in T = Rn × C(I,R) (i.e. b : I → R continuous, max-norm).

Theorem 1 (Canovas et al. '14): Given (t∗, x∗) ∈ gphΨ, t∗ = (c∗, b∗),
and under Slater CQ at b∗, Ψ is calm at (t∗, x∗) if and only if

µ 7→ L(b, µ) = {x | aTi x ≤ bi, i ∈ I, c∗Tx ≤ µ} is calm at ((t∗, φ(t∗)), x∗).
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Every nonempty closed convex set S can be represented by a linear semi-

in�nite system of the type as given in (9), see Goberna-Lopez '98.

Question: Does Proposition 1 also hold for a problem e.g. of the type

f(x, c) = cTx → min
x

s.t. gi(x) ≤ bi, i = 1, . . . ,m,

where (c, b) varies and g1, . . . , gm are convex functions?
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Every nonempty closed convex set S can be represented by a linear semi-

in�nite system of the type as given in (9), see Goberna-Lopez '98.

Question: Does Proposition 1 also hold for a problem e.g. of the type

f(x, c) = cTx → min
x

s.t. gi(x) ≤ bi, i = 1, . . . ,m,

where (c, b) varies and g1, . . . , gm are convex functions?

No! The "only if"-direction fails.

Example 1:∗) Consider

min y − c1x− c2y s.t. x2 − y ≤ b, (c1, c2, b) close to o = (0,0,0).

Its argmin mapping Ψ is Lipschitz near o, and hence calm at (o, (0,0)):

Ψ(c1, c2, b) =

{(
c1

2(1−c2)
,

c21
4(1−c2)2

− b

)}
.

However, L(0, µ) = {(x, y) | y ≤ µ, x2 ≤ y} is not calm at the origin.

∗) For this and a 2nd example, with quadratic f and linear gi, see [KK14].
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3. Calmness of the argmin map via calmness of auxiliary maps

Consider again the parametric optimization problem (1),

f(x, t) → minx s.t. x ∈ M(t) , t varies near t∗,

and assume

M is closed, (t∗, x∗) ∈ gphΨ is a given point, and

f is Lipschitzian near (x∗, t∗) with modulus ϱf > 0.
(10)

Standard tools in parametric optimization relate

Lipschitz properties of f and M

to
calmness of the optimal values.
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3. Calmness of the argmin map via calmness of auxiliary maps

Consider again the parametric optimization problem (1),

f(x, t) → minx s.t. x ∈ M(t) , t varies near t∗,

and assume

M is closed, (t∗, x∗) ∈ gphΨ is a given point, and

f is Lipschitzian near (x∗, t∗) with modulus ϱf > 0.
(10)

Standard tools in parametric optimization relate

Lipschitz properties of f and M

to
calmness of the optimal values.

De�ne for given V ⊂ Rn,

ΨV (t) := argminx{f(x, t) | x ∈ M(t) ∩ V }, t ∈ T,

φV (t) := infx{f(x, t) | x ∈ M(t) ∩ V }. t ∈ T,
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De�nition: M is called Lipschitz l.s.c. at (t∗, x∗) ∈ gphM if there are

constants δ, ϱ > 0 such that

dist(x∗,M(t)) ≤ ϱ∥t− t∗∥ ∀t ∈ B(t∗, δ).

Obviously, the Aubin property implies both calmness and Lipschitz l.s.c.

De�nition: Given a function F : T → R and t∗ ∈ domF ,

F is called calm at t∗ if there are δ, L > 0 such that

|F (t)− F (t∗)| ≤ L∥t− t∗∥ ∀t ∈ domF ∩B(t∗, δ),

9



De�nition: M is called Lipschitz l.s.c. at (t∗, x∗) ∈ gphM if there are

constants δ, ϱ > 0 such that

dist(x∗,M(t)) ≤ ϱ∥t− t∗∥ ∀t ∈ B(t∗, δ).

Obviously, the Aubin property implies both calmness and Lipschitz l.s.c.

De�nition: Given a function F : T → R and t∗ ∈ domF ,

F is called calm at t∗ if there are δ, L > 0 such that

|F (t)− F (t∗)| ≤ L∥t− t∗∥ ∀t ∈ domF ∩B(t∗, δ),

Lemma 1. [KK14]∗)

If M is calm and Lipschitz l.s.c. at (t∗, x∗) ∈ gphΨ, then there exists a

closed neighborhood V of x∗ such that the function φV is calm at t∗.

∗) Proof based on ideas in Alt '83 and Klatte '84.
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Theorem 2. [KK14]

Consider the problem (1) under the assumptions (10). Suppose that for

the reference point (t∗, x∗) ∈ gphΨ,

(i) the feasible set map M is calm and Lipschitz l.s.c. at (t∗, x∗),

(ii) L(t, µ) = {x ∈ M(t) | f(x, t∗) ≤ µ} is calm at ((t∗, φ(t∗)), x∗).

Then the argmin mapping Ψ is calm at (t∗, x∗).

Note. In general, one cannot avoid to assume M l.s.c., even if M(t) is

given by convex inequalities with rhs perturbations (see examples in Bank-

Guddat-Klatte-Kummer-Tammer, Nonlinear Parametric Optimization '82).

10



Theorem 2. [KK14]

Consider the problem (1) under the assumptions (10). Suppose that for

the reference point (t∗, x∗) ∈ gphΨ,

(i) the feasible set map M is calm and Lipschitz l.s.c. at (t∗, x∗),

(ii) L(t, µ) = {x ∈ M(t) | f(x, t∗) ≤ µ} is calm at ((t∗, φ(t∗)), x∗).

Then the argmin mapping Ψ is calm at (t∗, x∗).

Note. In general, one cannot avoid to assume M l.s.c., even if M(t) is

given by convex inequalities with rhs perturbations (see examples in Bank-

Guddat-Klatte-Kummer-Tammer, Nonlinear Parametric Optimization '82).

The proof of Theorem 2 essentially uses Lemma 1 and

Ψ(t) ∩ V ̸= ∅ ⇒ ΨV (t) = Ψ(t) ∩ V (hence, φV (t)) = φ(t))

for given t ∈ T and V ⊂ Rn, as well as

Ψ(t) = L(t, µ(x, t)) with µ(x, t) := φ(t) + f(x, t∗)− f(x, t).

10-1



Corollary 1. [KK14]

Suppose that for the reference point (t∗, x∗) ∈ gphΨ,

(i) the feasible set map M is calm and Lipschitz l.s.c. at (t∗, x∗),

(ii) µ 7→ L(t∗, µ) = {x ∈ M(t∗) | f(x, t∗) ≤ µ} is calm at (φ(t∗), x∗), and

(iii) the level set map F (µ) = {x | f(x, t∗) ≤ µ} is calm at (φ(t∗), x∗).

Then the argmin mapping Ψ is calm at (t∗, x∗).

Proof: By Theorem 2, one has to prove that L is calm.
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Suppose that for the reference point (t∗, x∗) ∈ gphΨ,

(i) the feasible set map M is calm and Lipschitz l.s.c. at (t∗, x∗),

(ii) µ 7→ L(t∗, µ) = {x ∈ M(t∗) | f(x, t∗) ≤ µ} is calm at (φ(t∗), x∗), and

(iii) the level set map F (µ) = {x | f(x, t∗) ≤ µ} is calm at (φ(t∗), x∗).

Then the argmin mapping Ψ is calm at (t∗, x∗).

Proof: By Theorem 2, one has to prove that L is calm. To show this,

apply Thm. 2.5 in [KK02] (calm intersection theorem) to

L(t, µ) := {x ∈ M(t) | f(x, t∗) ≤ µ} = M(t) ∩ F (µ).

By the intersection thm, one has to check (at the corresponding points)

M , F and L(t∗, ·) are calm, and F−1 has Aubin property.
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Corollary 1. [KK14]

Suppose that for the reference point (t∗, x∗) ∈ gphΨ,

(i) the feasible set map M is calm and Lipschitz l.s.c. at (t∗, x∗),

(ii) µ 7→ L(t∗, µ) = {x ∈ M(t∗) | f(x, t∗) ≤ µ} is calm at (φ(t∗), x∗), and

(iii) the level set map F (µ) = {x | f(x, t∗) ≤ µ} is calm at (φ(t∗), x∗).

Then the argmin mapping Ψ is calm at (t∗, x∗).

Proof: By Theorem 2, one has to prove that L is calm. To show this,

apply Thm. 2.5 in [KK02] (calm intersection theorem) to

L(t, µ) := {x ∈ M(t) | f(x, t∗) ≤ µ} = M(t) ∩ F (µ).

By the intersection thm, one has to check (at the corresponding points)

M , F and L(t∗, ·) are calm, and F−1 has Aubin property.

Calmness is guaranteed by (i)�(iii), while F−1(x) = {µ |µ ≥ f(x, t∗)} has

the Aubin property since f is locally Lipschitz.
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4. Application to an inequality constrained setting

Consider the canonically perturbed program P (t), t = (c, b) ∈ Rn×C(I,R)
varies near t∗ = (c∗, b∗),

min
x

f(x, c) = h(x) + cTx s.t. gi(x) ≤ bi ∀ i ∈ I, (11)

where the mappings M , Ψ, L are as above, and (11) satis�es ∗)

• I compact metric space (including �nite I),

• (t∗, x∗) ∈ gphΨ is a given reference point,

• (i, x) ∈ I × Rn 7→ gi(x) ∈ R is continuous,

• h, gi : Rn → R are convex (i ∈ I).

C(I,R) = space of continuous fcts b : I → R (normed by ∥b∥ = maxi∈I |bi|).

∗) For h, gi linear, this is the setting of Theorem 1 (Canovas et al '14)
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Application of Corollary 1 to the parametric problem (11),

min
x

f(x, c) = h(x) + cTx s.t. gi(x) ≤ bi, ∀ i ∈ I.

Suppose (as in Theorem 1) the Slater CQ at M(b∗), i.e.

∃x̃ ∀i ∈ I : gi(x̃) < b∗i ,

and let µ∗ = f(x∗, c∗) = φ(c∗, b∗). Let F (µ) = {x |h(x) + (c∗)′x ≤ µ}.

Then

• M has the Aubin property at (b∗, x∗) (consequence of the Robinson-
Ursescu theorem), cf. e.g. Canovas-Dontchev et al.'05.
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Otherwise, see error bound literature (e.g. Li '97, Pang '97).
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Application of Corollary 1 to the parametric problem (11),

min
x

f(x, c) = h(x) + cTx s.t. gi(x) ≤ bi, ∀ i ∈ I.

Suppose (as in Theorem 1) the Slater CQ at M(b∗), i.e.

∃x̃ ∀i ∈ I : gi(x̃) < b∗i ,

and let µ∗ = f(x∗, c∗) = φ(c∗, b∗). Let F (µ) = {x |h(x) + (c∗)′x ≤ µ}.

Then

• M has the Aubin property at (b∗, x∗) (consequence of the Robinson-
Ursescu theorem), cf. e.g. Canovas-Dontchev et al.'05.

• If x∗ ̸∈ argminx f(x, c
∗), then F (µ∗) ful�lls SlaterCQ (⇒ calm).

Otherwise, see error bound literature (e.g. Li '97, Pang '97).

• F−1 has Aubin property since f is convex.

• To check that
µ 7→ L(c∗, b∗, µ) = M(b∗) ∩ F (µ)

is calm at (µ∗, x∗) reduces to calmness of a (semi-in�nite) inequa-
lity system with right-hand side perturbations, see e.g. Henrion-
Outrata'05, [KK09], Canovas et al.'14 and the following.
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Calmness for solution maps of inequality systems

Let h : Rn → R be locally Lipschitz and consider the level sets

Sh(q) = {x ∈ Rn |h(x) ≤ q}, q ∈ R.

Calmness of Sh is obviously equivalent to

calmness of the inverse multifunction to h+(x) = max{0, h(x)}

Theorem 3. [KK09] (see also [KKK12] for generalizations to Hölder

calmness and l.s.c. functions on complete metric spaces).

Given a zero x∗ of h, Sh is calm at (0, x∗) if and only if for H(x) = h+(x),

there are λ, δ > 0 such that for all x ∈ B(x∗, δ) there is some x′

satisfying H(x′)−H(x) ≤ −λ ∥x′ − x∥ and ∥x′ − x∥ ≥ λH(x).
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Application to the semi-in�nite setting (11)

Replace in the setting (11) "gi convex" by "gi locally Lipschitz".

Then Theorem 3 applies to the solution set map S of the system

gi(x) ≤ bi, i ∈ I, and for b∗ = 0,

since calmness of S is equivalent to calmness of

Σ(q) =

{
x

∣∣∣∣∣H(x) :=

(
max
i∈I

gi(x)

)+

= q

}
, q real.

For

H(x) =

(
max
i∈I

gi(x)

)+

> 0

de�ne the relative slack of gi by

si(x) =
H(x)− gi(x)

H(x)
(≥ 0).
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Suppose here for simplicity even gi ∈ C1,

see also Henrion-Outrata '05 for di�erent conditions, and for more general

cases see [KK09] and [KKK12].

Theorem 4 (slope condition) [KK09].

S is calm at (b∗, x∗) = (0, x∗) if and only if

for some λ ∈]0,1[ and some nbhd Ω of x∗, one has

For all x ∈ Ω with H(x) = (maxi∈I gi(x))
+ > 0

there is some u ∈ bdB : Dgi(x)u ≤
si(x)

λ
− λ ∀i ∈ I .

Note: the right-hand side of the latter inequality may be positive also for

active i (in contrast to the extended MFCQ).
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5. Final remarks

1. At �rst glance, calmness seems to be a very weak Lipschitz stability

concept for the argmin mapping, since solvability can disappear un-

der small perturbations. However, it is useful as a kind of minimal

requirement for the lower level in bi-level problems (CQ).

2. We have shown that calmness of

L∗(µ) := L(t∗, µ) := {x ∈ M(t∗) | f(x, t∗) ≤ µ}

is essential for checking calmness of the argmin map Ψ. Note that

calmness of L∗ at (f(x∗, t∗), x∗) for each x∗ ∈ Ψ(t∗) (provided Ψ(t∗) is
compact) implies: Ψ(t∗) is a weak sharp minimizing set of the problem

f(x, t∗) → minx s.t. x ∈ M(t∗), cf. Henrion, Jourani, Outrata '02.

3. The calm intersection theorem used in the proof of Theorem 2 is a

powerful tool also in other situations, see recent papers by Henrion,

Outrata, Surowiec and the authors.
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