ICCP 2014, Berlin 4-8 August 2014

Calmness of solution mappings in parametric optimization problems

Diethard Klatte, University Zurich

in collaboration with Bernd Kummer, Humboldt University Berlin

Based on:

[KK14] D. Klatte, B. Kummer, On calmness of the argmin mapping in parametric optimization problems, *Optimization online*, February 2014.
[KKK12] D. Klatte, A. Kruger, B. Kummer, From convergence principles to stability and optimality conditions, *J. Convex Analysis*, 19 (2012) 1043-1073.
[KK09] D. Klatte, B. Kummer, Optimization methods and stability of inclusions in Banach spaces, *Math. Program. Ser. B* 117 (2009) 305-330.
[KK02] D. Klatte, B. Kummer, *Nonsmooth Equations in Optimization*, Kluwer 2002.

Contents:

- 1. Basic model and main purpose
- 2. Definition of calmness and motivations
- 3. Calmness of the argmin map via calmness of auxiliary maps
- 4. Application to an inequality constrained setting
- 5. Final remarks

1. Basic model and main purpose

Consider the parametric optimization problem

 $f(x,t) \rightarrow \min_x$ s.t. $x \in M(t)$, t varies near t^* , (1)

where M is the **feasible set mapping** of (1). We assume throughout:

T is a normed linear space, $M : T \rightrightarrows \mathbb{R}^n$ has closed graph gph M, $(t^*, x^*) \in \operatorname{gph} M$ is a given reference point, $f : \mathbb{R}^n \times T \to \mathbb{R}$ is Lipschitzian near (t^*, x^*) .

1. Basic model and main purpose

Consider the parametric optimization problem

 $f(x,t) \to \min_x$ s.t. $x \in M(t)$, t varies near t^* , (1)

where M is the **feasible set mapping** of (1). We assume throughout:

T is a normed linear space, $M : T \rightrightarrows \mathbb{R}^n$ has closed graph gph M, $(t^*, x^*) \in \operatorname{gph} M$ is a given reference point, $f : \mathbb{R}^n \times T \to \mathbb{R}$ is Lipschitzian near (t^*, x^*) .

For (1), define the infimum value function φ by

$$\varphi(t) := \inf_{x} \{ f(x,t) \mid x \in M(t) \}, \ t \in T$$

and the argmin mapping Ψ by

$$\Psi(t) := \underset{x}{\operatorname{argmin}} \{f(x,t) \mid x \in M(t)\}, \ t \in T.$$
(2)

We are interested in conditions for calmness of the argmin mapping

$$t \mapsto \Psi(t) = \{x \in M(t) \mid f(x,t) \le \varphi(t)\},\$$

for t near t^* , and to relate this to calmness of the **auxiliary mappings**

$$\begin{array}{rcl} (t,\mu) &\mapsto & L(t,\mu) &= \{x \in M(t) \mid f(x,t^*) \leq \mu\}, \\ \mu &\mapsto & L(t^*,\mu) &= \{x \in M(t^*) \mid f(x,t^*) \leq \mu\}. \end{array}$$
(3)

We are interested in conditions for calmness of the argmin mapping

$$t \mapsto \Psi(t) = \{x \in M(t) \mid f(x,t) \le \varphi(t)\},\$$

for t near t^* , and to relate this to calmness of the **auxiliary mappings**

$$\begin{array}{rcl} (t,\mu) &\mapsto & L(t,\mu) &= \{x \in M(t) \mid f(x,t^*) \leq \mu\}, \\ \mu &\mapsto & L(t^*,\mu) &= \{x \in M(t^*) \mid f(x,t^*) \leq \mu\}. \end{array}$$
(4)

If M(t) is described by inequalities, then $L(t,\mu)$ is so, too, and moreover, $L(t^*,\mu)$ is given by inequalities perturbed only at the right-hand side.

We are interested in conditions for calmness of the argmin mapping

$$t \mapsto \Psi(t) = \{x \in M(t) \mid f(x,t) \leq \varphi(t)\},\$$

for t near t^* , and to relate this to calmness of the **auxiliary mappings**

$$\begin{array}{rcl} (t,\mu) &\mapsto & L(t,\mu) &= \{x \in M(t) \mid f(x,t^*) \leq \mu\}, \\ \mu &\mapsto & L(t^*,\mu) &= \{x \in M(t^*) \mid f(x,t^*) \leq \mu\}. \end{array}$$
(4)

If M(t) is described by inequalities, then $L(t,\mu)$ is so, too, and moreover, $L(t^*,\mu)$ is given by inequalities perturbed only at the right-hand side.

Main purpose of the paper:

To show under suitable conditions and for a large class of problems that

$$L \operatorname{calm} \Rightarrow \Psi \operatorname{calm}$$
 (5)

and to discuss inspired by Canovas et al. (JOTA '14) whether (or not)

$$\Psi \text{ calm } \Rightarrow L \text{ calm.} \tag{6}$$

Canovas et al. proved (6) for canonically perturbed linear SIPs.

2. Definition of calmness and motivations

Definitions

Let *T* be a normed linear space, *B* closed unit ball (in *T* or *X*), $B(x,\varepsilon) := \{x\} + \varepsilon B$. Given a multifunction $\Phi : T \rightrightarrows \mathbb{R}^n$ and $x^* \in \Phi(t^*)$, Φ is called **calm** at (t^*, x^*) if there are $\varepsilon, \delta, L > 0$ such that $\Phi(t) \cap B(x^*, \varepsilon) \subset \Phi(t^*) + L ||t - t^*|| B \quad \forall t \in B(t^*, \delta),$ (7) <u>in particular,</u> $\Phi(t) \cap B(x^*, \varepsilon) = \emptyset$ for $t \neq t^*$ possible.

Example: If $T = \mathbb{R}^m$ and $gph \Phi$ is the union of finitely many convex polyhedral sets, then Φ is calm at each $(t^*, x^*) \in gph \Phi$. (Robinson '81)

2. Definition of calmness and motivations

Definitions

Let T be a normed linear space, B closed unit ball (in T or X), $B(x,\varepsilon) := \{x\} + \varepsilon B$.

Given a multifunction $\Phi:T \rightrightarrows \mathbb{R}^n$ and $x^* \in \Phi(t^*)$,

 Φ is called **calm** at (t^*, x^*) if there are $\varepsilon, \delta, L > 0$ such that

$$\Phi(t) \cap B(x^*, \varepsilon) \subset \Phi(t^*) + L \| t - t^* \| B \quad \forall t \in B(t^*, \delta),$$
(7)

in particular, $\Phi(t) \cap B(x^*, \varepsilon) = \emptyset$ for $t \neq t^*$ possible.

In contrast, we say that

 Φ has the Aubin property at (t^*, x^*) if for some $\varepsilon, \delta, L > 0$,

 $\emptyset \neq \Phi(t) \cap B(x^*, \varepsilon) \subset \Phi(t') + L \| t' - t \| B \quad \forall t, t' \in B(t^*, \delta).$ (8)

Example: If $T = \mathbb{R}^m$ and $gph \Phi$ is the union of finitely many convex polyhedral sets, then Φ is calm at each $(t^*, x^*) \in gph \Phi$. (Robinson '81)

Special cases

1. Calmness and error bounds: For $g: X \to T$, let Φ be defined by

 $\Phi(t) := \{x \in X \mid g(x) + t \in T^0\}, \ T^0 \subset T \text{ closed, } g \text{ continuous,}$ then Φ is calm at $(0, x^*) \in \text{gph } \Phi$ if and only if for some $L, \varepsilon > 0$, $\text{dist}(x, \Phi(0)) \leq L \text{dist}(g(x), T^0) \quad \forall x \in B(x^*, \varepsilon).$ (local error bound)

2.

Special cases

- 1. Calmness and error bounds: For $g: X \to T$, let Φ be defined by $\Phi(t) := \{x \in X | g(x) + t \in T^0\}, T^0 \subset T \text{ closed}, g \text{ continuous},$ then Φ is calm at $(0, x^*) \in \text{gph } \Phi$ if and only if for some $L, \varepsilon > 0$, $\text{dist}(x, \Phi(0)) \leq L \text{dist}(t, T^0) \quad \forall x \in B(x^*, \varepsilon)$. (local error bound)
- 2. Canonically perturbed linear SIPs: Consider the special case of (1) with I a compact metric space, $a \in (C(I,\mathbb{R}))^n$ given,

$$f(x,c) = c^{\mathsf{T}}x \to \min_{x} \quad \text{s.t.} \quad a_i^{\mathsf{T}}x \le b_i, \, i \in I, \tag{9}$$

t = (c, b) varies in $T = \mathbb{R}^n \times C(I, \mathbb{R})$ (i.e. $b : I \to \mathbb{R}$ continuous, max-norm).

Special cases

1. Calmness and error bounds: For $g: X \to T$, let Φ be defined by

 $\Phi(t) := \{x \in X \mid g(x) + t \in T^0\}, \ T^0 \subset T \text{ closed, } g \text{ continuous,}$ then Φ is calm at $(0, x^*) \in \text{gph } \Phi$ if and only if for some $L, \varepsilon > 0$, $\text{dist}(x, \Phi(0)) \leq L \text{ dist}(t, T^0) \quad \forall x \in B(x^*, \varepsilon).$ (local error bound)

2. Canonically perturbed linear SIPs: Consider the special case of (1) with I - a compact metric space, $a \in (C(I,\mathbb{R}))^n$ given,

$$f(x,c) = c^{\mathsf{T}}x \to \min_{x} \quad \text{s.t.} \quad a_i^{\mathsf{T}}x \le b_i, \ i \in I, \tag{9}$$

t = (c, b) varies in $T = \mathbb{R}^n \times C(I, \mathbb{R})$ (i.e. $b : I \to \mathbb{R}$ continuous, max-norm).

Theorem 1 (Canovas et al. '14): Given $(t^*, x^*) \in \text{gph } \Psi$, $t^* = (c^*, b^*)$, and under Slater CQ at b^* , Ψ is calm at (t^*, x^*) if and only if

 $\mu \mapsto L(b,\mu) = \{x \mid a_i^{\mathsf{T}} x \leq b_i, i \in I, c^{*\mathsf{T}} x \leq \mu\} \text{ is calm at } ((t^*,\varphi(t^*)),x^*).$

Every nonempty closed convex set S can be represented by a linear semiinfinite system of the type as given in (9), see Goberna-Lopez '98.

Question: Does Proposition 1 also hold for a problem e.g. of the type

$$f(x,c) = c^{\mathsf{T}}x \to \min_{x}$$
 s.t. $g_i(x) \le b_i, i = 1, \dots, m,$

where (c, b) varies and g_1, \ldots, g_m are <u>convex</u> functions?

Every nonempty closed convex set S can be represented by a linear semiinfinite system of the type as given in (9), see Goberna-Lopez '98.

Question: Does Proposition 1 also hold for a problem e.g. of the type

$$f(x,c) = c^{\mathsf{T}}x \to \min_{x}$$
 s.t. $g_i(x) \le b_i, i = 1, \dots, m,$

where (c, b) varies and g_1, \ldots, g_m are <u>convex</u> functions?

No! The "only if"-direction fails.

Example 1:*) Consider

min $y - c_1 x - c_2 y$ s.t. $x^2 - y \le b$, (c_1, c_2, b) close to $\underline{o} = (0, 0, 0)$. Its argmin mapping Ψ is Lipschitz near \underline{o} , and hence calm at $(\underline{o}, (0, 0))$:

$$\Psi(c_1, c_2, b) = \left\{ \left(\frac{c_1}{2(1-c_2)}, \frac{c_1^2}{4(1-c_2)^2} - b \right) \right\}.$$

However, $L(0,\mu) = \{(x,y) \mid y \leq \mu, x^2 \leq y\}$ is not calm at the origin.

*) For this and a 2nd example, with quadratic f and linear g_i , see [KK14].

3. Calmness of the argmin map via calmness of auxiliary maps

Consider again the parametric optimization problem (1),

 $f(x,t) \rightarrow \min_x$ s.t. $x \in M(t)$, t varies near t^* ,

and assume

M is closed, $(t^*, x^*) \in \text{gph } \Psi$ is a given point, and *f* is Lipschitzian near (x^*, t^*) with modulus $\varrho_f > 0$.

(10)

Standard tools in parametric optimization relate

Lipschitz properties of f and M

to

calmness of the optimal values.

3. Calmness of the argmin map via calmness of auxiliary maps

Consider again the parametric optimization problem (1),

 $f(x,t) \rightarrow \min_x$ s.t. $x \in M(t)$, t varies near t^* ,

and assume

M is closed, $(t^*, x^*) \in \operatorname{gph} \Psi$ is a given point, and

f is Lipschitzian near (x^*, t^*) with modulus $\varrho_f > 0$.

(10)

Standard tools in parametric optimization relate

Lipschitz properties of f and M

to

calmness of the optimal values.

Define for given $V \subset \mathbb{R}^n$,

 $\Psi_V(t) := \operatorname{argmin}_x \{ f(x,t) \mid x \in M(t) \cap V \}, \quad t \in T,$ $\varphi_V(t) := \operatorname{inf}_x \{ f(x,t) \mid x \in M(t) \cap V \}, \quad t \in T,$ **Definition:** *M* is called **Lipschitz I.s.c.** at $(t^*, x^*) \in \text{gph } M$ if there are constants $\delta, \varrho > 0$ such that

$$dist(x^*, M(t)) \le \varrho \|t - t^*\| \quad \forall t \in B(t^*, \delta).$$

Obviously, the Aubin property implies both calmness and Lipschitz I.s.c. **Definition:** Given a function $F: T \to \overline{\mathbb{R}}$ and $t^* \in \text{dom } F$,

F is called **calm** at t^* if there are $\delta, L > 0$ such that

 $|F(t) - F(t^*)| \le L ||t - t^*|| \quad \forall t \in \operatorname{dom} F \cap B(t^*, \delta),$

Definition: *M* is called **Lipschitz I.s.c.** at $(t^*, x^*) \in \text{gph } M$ if there are constants $\delta, \varrho > 0$ such that

$$dist(x^*, M(t)) \le \varrho \|t - t^*\| \quad \forall t \in B(t^*, \delta).$$

Obviously, the Aubin property implies both calmness and Lipschitz I.s.c. **Definition:** Given a function $F: T \to \overline{\mathbb{R}}$ and $t^* \in \text{dom } F$,

F is called **calm** at t^* if there are $\delta, L > 0$ such that

$$|F(t) - F(t^*)| \le L ||t - t^*|| \quad \forall t \in \operatorname{dom} F \cap B(t^*, \delta),$$

Lemma 1. [KK14]*)

If M is calm and Lipschitz I.s.c. at $(t^*, x^*) \in \text{gph } \Psi$, then there exists a closed neighborhood V of x^* such that the function φ_V is calm at t^* .

*) **Proof** based on ideas in Alt '83 and Klatte '84.

Theorem 2. [KK14]

Consider the problem (1) under the assumptions (10). Suppose that for the reference point $(t^*, x^*) \in \text{gph } \Psi$,

(i) the feasible set map M is calm and Lipschitz I.s.c. at (t^*, x^*) ,

(ii) $L(t,\mu) = \{x \in M(t) \mid f(x,t^*) \le \mu\}$ is calm at $((t^*,\varphi(t^*)),x^*)$.

Then the argmin mapping Ψ is calm at (t^*, x^*) .

Note. In general, one cannot avoid to assume **M I.s.c.**, even if M(t) is given by convex inequalities with rhs perturbations (see examples in Bank-Guddat-Klatte-Kummer-Tammer, *Nonlinear Parametric Optimization* '82).

Theorem 2. [KK14]

Consider the problem (1) under the assumptions (10). Suppose that for the reference point $(t^*, x^*) \in \text{gph } \Psi$,

(i) the feasible set map M is calm and Lipschitz I.s.c. at (t^*, x^*) ,

(ii) $L(t,\mu) = \{x \in M(t) \mid f(x,t^*) \le \mu\}$ is calm at $((t^*,\varphi(t^*)),x^*)$.

Then the argmin mapping Ψ is calm at (t^*, x^*) .

Note. In general, one cannot avoid to assume **M I.s.c.**, even if M(t) is given by convex inequalities with rhs perturbations (see examples in Bank-Guddat-Klatte-Kummer-Tammer, *Nonlinear Parametric Optimization* '82).

The proof of Theorem 2 essentially uses Lemma 1 and

 $\Psi(t) \cap V \neq \emptyset \Rightarrow \Psi_V(t) = \Psi(t) \cap V$ (hence, $\varphi_V(t)) = \varphi(t)$) for given $t \in T$ and $V \subset \mathbb{R}^n$, as well as

 $\Psi(t) = L(t, \mu(x, t)) \quad \text{with } \mu(x, t) := \varphi(t) + f(x, t^*) - f(x, t).$

Corollary 1. [KK14]

Suppose that for the reference point $(t^*, x^*) \in \operatorname{gph} \Psi$,

(i) the feasible set map M is calm and Lipschitz I.s.c. at (t^*, x^*) ,

(ii) $\mu \mapsto L(t^*, \mu) = \{x \in M(t^*) \mid f(x, t^*) \leq \mu\}$ is calm at $(\varphi(t^*), x^*)$, and

(iii) the level set map $F(\mu) = \{x \mid f(x, t^*) \le \mu\}$ is calm at $(\varphi(t^*), x^*)$.

Then the argmin mapping Ψ is calm at (t^*, x^*) .

Proof: By Theorem 2, one has to prove that L is calm.

Corollary 1. [KK14]

Suppose that for the reference point $(t^*, x^*) \in \operatorname{gph} \Psi$,

(i) the feasible set map M is calm and Lipschitz I.s.c. at (t^*, x^*) ,

(ii) $\mu \mapsto L(t^*, \mu) = \{x \in M(t^*) \mid f(x, t^*) \leq \mu\}$ is calm at $(\varphi(t^*), x^*)$, and

(iii) the level set map $F(\mu) = \{x \mid f(x, t^*) \le \mu\}$ is calm at $(\varphi(t^*), x^*)$.

Then the argmin mapping Ψ is calm at (t^*, x^*) .

Proof: By Theorem 2, one has to prove that L is calm. To show this, apply Thm. 2.5 in [KK02] (calm intersection theorem) to

$$L(t,\mu) := \{x \in M(t) \mid f(x,t^*) \leq \mu\} = M(t) \cap F(\mu).$$

By the intersection thm, one has to check (at the corresponding points)

M, F and $L(t^*, \cdot)$ are calm, and F^{-1} has Aubin property.

Corollary 1. [KK14]

Suppose that for the reference point $(t^*,x^*)\in \operatorname{gph}\Psi$,

(i) the feasible set map M is calm and Lipschitz I.s.c. at (t^*, x^*) ,

(ii)
$$\mu \mapsto L(t^*, \mu) = \{x \in M(t^*) \mid f(x, t^*) \leq \mu\}$$
 is calm at $(\varphi(t^*), x^*)$, and

(iii) the level set map $F(\mu) = \{x \mid f(x, t^*) \le \mu\}$ is calm at $(\varphi(t^*), x^*)$.

Then the argmin mapping Ψ is calm at (t^*, x^*) .

Proof: By Theorem 2, one has to prove that L is calm. To show this, apply Thm. 2.5 in [KK02] (calm intersection theorem) to

$$L(t,\mu) := \{x \in M(t) \mid f(x,t^*) \leq \mu\} = M(t) \cap F(\mu).$$

By the intersection thm, one has to check (at the corresponding points)

M, F and $L(t^*, \cdot)$ are calm, and F^{-1} has Aubin property.

Calmness is guaranteed by (i)–(iii), while $F^{-1}(x) = \{\mu \mid \mu \ge f(x, t^*)\}$ has the Aubin property since f is locally Lipschitz.

4. Application to an inequality constrained setting

Consider the canonically perturbed program P(t), $t = (c, b) \in \mathbb{R}^n \times C(I, \mathbb{R})$ varies near $t^* = (c^*, b^*)$,

$$\min_{x} f(x,c) = h(x) + c^{\mathsf{T}}x \quad \text{s.t.} \quad g_i(x) \le b_i \quad \forall i \in I,$$
(11)

where the mappings M, Ψ , L are as above, and (11) satisfies $^{*)}$

- *I* compact metric space (including finite *I*),
- $(t^*, x^*) \in \operatorname{gph} \Psi$ is a given reference point,
- $(i,x) \in I \times \mathbb{R}^n \mapsto g_i(x) \in \mathbb{R}$ is continuous,
- $h, g_i : \mathbb{R}^n \to \mathbb{R}$ are convex $(i \in I)$.

 $C(I,\mathbb{R}) =$ space of continuous fcts $b : I \to \mathbb{R}$ (normed by $||b|| = \max_{i \in I} |b_i|$).

*) For h, g_i linear, this is the setting of Theorem 1 (Canovas et al '14)

$$\min_{x} f(x,c) = h(x) + c^{\mathsf{T}}x \quad \text{s.t.} \quad g_i(x) \le b_i, \ \forall \ i \in I.$$

Suppose (as in Theorem 1) the Slater CQ at $M(b^*)$, i.e.

 $\exists \widetilde{x} \, \forall i \in I : g_i(\widetilde{x}) < b_i^*,$

and let $\mu^* = f(x^*, c^*) = \varphi(c^*, b^*)$. Let $F(\mu) = \{x \mid h(x) + (c^*)'x \le \mu\}$. Then

• *M* has the Aubin property at (b^*, x^*) (consequence of the Robinson-Ursescu theorem), cf. e.g. Canovas-Dontchev et al.'05.

$$\min_{x} f(x,c) = h(x) + c^{\mathsf{T}}x \quad \text{s.t.} \quad g_i(x) \le b_i, \ \forall \ i \in I.$$

Suppose (as in Theorem 1) the Slater CQ at $M(b^*)$, i.e.

$$\exists \widetilde{x} \, \forall i \in I : g_i(\widetilde{x}) < b_i^*,$$

and let $\mu^* = f(x^*, c^*) = \varphi(c^*, b^*)$. Let $F(\mu) = \{x \mid h(x) + (c^*)'x \le \mu\}$. Then

- *M* has the Aubin property at (b^*, x^*) (consequence of the Robinson-Ursescu theorem), cf. e.g. Canovas-Dontchev et al.'05.
- If $x^* \notin \operatorname{argmin}_x f(x, c^*)$, then $F(\mu^*)$ fulfills SlaterCQ (\Rightarrow calm). Otherwise, see error bound literature (e.g. Li '97, Pang '97).

$$\min_{x} f(x,c) = h(x) + c^{\mathsf{T}}x \quad \text{s.t.} \quad g_i(x) \le b_i, \ \forall \ i \in I.$$

Suppose (as in Theorem 1) the Slater CQ at $M(b^*)$, i.e.

$$\exists \widetilde{x} \, \forall i \in I : g_i(\widetilde{x}) < b_i^*,$$

and let $\mu^* = f(x^*, c^*) = \varphi(c^*, b^*)$. Let $F(\mu) = \{x \mid h(x) + (c^*)'x \le \mu\}$. Then

- *M* has the Aubin property at (b^*, x^*) (consequence of the Robinson-Ursescu theorem), cf. e.g. Canovas-Dontchev et al.'05.
- If $x^* \notin \operatorname{argmin}_x f(x, c^*)$, then $F(\mu^*)$ fulfills SlaterCQ (\Rightarrow calm). Otherwise, see error bound literature (e.g. Li '97, Pang '97).
- F^{-1} has Aubin property since f is convex.

$$\min_{x} f(x,c) = h(x) + c^{\mathsf{T}}x \quad \text{s.t.} \quad g_i(x) \le b_i, \ \forall \ i \in I.$$

Suppose (as in Theorem 1) the Slater CQ at $M(b^*)$, i.e.

$$\exists \widetilde{x} \, \forall i \in I : g_i(\widetilde{x}) < b_i^*,$$

and let $\mu^* = f(x^*, c^*) = \varphi(c^*, b^*)$. Let $F(\mu) = \{x \mid h(x) + (c^*)'x \le \mu\}$.

Then

- *M* has the Aubin property at (b^*, x^*) (consequence of the Robinson-Ursescu theorem), cf. e.g. Canovas-Dontchev et al.'05.
- If $x^* \notin \operatorname{argmin}_x f(x, c^*)$, then $F(\mu^*)$ fulfills SlaterCQ (\Rightarrow calm). Otherwise, see error bound literature (e.g. Li '97, Pang '97).
- F^{-1} has Aubin property since f is convex.
- To check that

$$\mu \mapsto L(c^*, b^*, \mu) = M(b^*) \cap F(\mu)$$

is calm at (μ^*, x^*) reduces to calmness of a (semi-infinite) inequality system with right-hand side perturbations, see e.g. Henrion-Outrata'05, [KK09], Canovas et al.'14 and the following.

Calmness for solution maps of inequality systems

Let $h : \mathbb{R}^n \to \mathbb{R}$ be locally Lipschitz and consider the level sets

 $S_h(q) = \{ x \in \mathbb{R}^n \, | \, h(x) \le q \}, \, q \in \mathbb{R}.$

Calmness of S_h is obviously equivalent to

calmness of the inverse multifunction to $h^+(x) = \max\{0, h(x)\}$

Theorem 3. [KK09] (see also [KKK12] for generalizations to Hölder calmness and l.s.c. functions on complete metric spaces).

Given a zero x^* of h, S_h is calm at $(0, x^*)$ if and only if for $H(x) = h^+(x)$,

there are $\lambda, \delta > 0$ such that for all $x \in B(x^*, \delta)$ there is some x'satisfying $H(x') - H(x) \leq -\lambda ||x' - x||$ and $||x' - x|| \geq \lambda H(x)$.

Application to the semi-infinite setting (11)

Replace in the setting (11) " g_i convex" by " g_i locally Lipschitz".

Then Theorem 3 applies to the solution set map S of the system

$$g_i(x) \leq b_i, i \in I$$
, and for $b^* = 0$,

since calmness of \boldsymbol{S} is equivalent to calmness of

$$\Sigma(q) = \left\{ x \mid H(x) := \left(\max_{i \in I} g_i(x) \right)^+ = q \right\}, \ q \text{ real.}$$

For

$$H(x) = \left(\max_{i \in I} g_i(x)\right)^+ > 0$$

define the *relative slack of* g_i by

$$s_i(x) = \frac{H(x) - g_i(x)}{H(x)} \quad (\ge 0).$$

Suppose here for simplicity even $g_i \in C^1$,

see also Henrion-Outrata '05 for different conditions, and for more general cases see [KK09] and [KKK12].

Theorem 4 (slope condition) [KK09].

S is calm at $(b^*, x^*) = (0, x^*)$ if and only if

for some $\lambda \in]0,1[$ and some nbhd Ω of x^* , one has

For all
$$x \in \Omega$$
 with $H(x) = (\max_{i \in I} g_i(x))^+ > 0$
there is some $u \in \text{bd } B$: $Dg_i(x)u \leq \frac{s_i(x)}{\lambda} - \lambda \quad \forall i \in I$

Note: the right-hand side of the latter inequality may be positive also for active i (in contrast to the extended MFCQ).

5. Final remarks

- 1. At first glance, calmness seems to be a very weak Lipschitz stability concept for the argmin mapping, since solvability can disappear under small perturbations. However, it is useful as a kind of minimal requirement for the lower level in bi-level problems (CQ).
- 2. We have shown that calmness of

$$L^{*}(\mu) := L(t^{*}, \mu) := \{x \in M(t^{*}) \mid f(x, t^{*}) \leq \mu\}$$

is essential for checking calmness of the argmin map Ψ . Note that calmness of L^* at $(f(x^*, t^*), x^*)$ for each $x^* \in \Psi(t^*)$ (provided $\Psi(t^*)$ is compact) implies: $\Psi(t^*)$ is a weak sharp minimizing set of the problem $f(x, t^*) \rightarrow \min_x$ s.t. $x \in M(t^*)$, cf. Henrion, Jourani, Outrata '02.

 The calm intersection theorem used in the proof of Theorem 2 is a powerful tool also in other situations, see recent papers by Henrion, Outrata, Surowiec and the authors.

Some further references mentioned in the talk

W. Alt: Lipschitzian perturbations of infinite optimization problems. In Fiacco, A.V. (ed.): Mathematical Programming with Data Perturbations, M. Dekker Publ. (1983)

M.J. Cánovas, A. Hantoute, J. Parra, F.J. Toledo: Calmness of the argmin mapping in linear semi-infinite optimization. J. Optim. Theory Appl. **160**, 111–126 (2014)

M.J. Cánovas, A.L. Dontchev, M.A. López, and J. Parra: Metric regularity of semiinfinite constraint systems. Math. Program. B **104**, 329–346 (2005)

M. Goberna, M. López, Linear Semi-Infinite Optimization, Wiley (1998)

R. Henrion, A. Jourani. J. Outrata: On the calmness of a class of multifunctions. SIAM J. Optim. B **13**, 603–618 (2002)

R. Henrion, J. Outrata: Calmness of constraint systems with applications. Math. Program. B **104**, 437–464 (2005)

D. Klatte: Habilitation Thesis, Humboldt Univ. Berlin (1984)

W. Li: Abadie's constraint qualification, metric regularity, and error bounds for differentiable convex inequalities. SIAM J. Optim. **7**, 966–978 (1997)

J.-S. Pang: Error bounds in mathematical programming. Math. Program. **79**, 299–332 (1997)

S.M. Robinson: Some continuity properties of polyhedral multifunctions. Math. Programming Study 14, 206–214 (1981)