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CNRS and UNIVERSITÉ PIERRE et MARIE CURIE

In collaboration with D. HOEHENER and D. TONON

6th International Conference on

Complementarity Problems

BERLIN, August 7th, 2014
H. Frankowska Variational differential inclusions



Variational Differential Inclusions
Control Systems under State Constraints

The Mayer Optimal Control Problem

Outline of the talk

1 Variational Differential Inclusions
Tangents to Sets
Directional ”Derivatives” of Set-Valued Maps
Variational Differential Inclusions

2 Control Systems under State Constraints

3 The Mayer Optimal Control Problem
Relaxed Mayer Problem
Approximation of Control Systems
Second Order Maximum Principle

H. Frankowska Variational differential inclusions



Variational Differential Inclusions
Control Systems under State Constraints

The Mayer Optimal Control Problem

Tangents to Sets
Directional ”Derivatives” of Set-Valued Maps
Variational Differential Inclusions

Tangents to Sets

M - a subset of a Banach space X . The tangent cones to M at
x ∈ M are defined via the Peano-Kuratowski set limits :
adjacent cone to M at x

T [
M(x) := Liminfh→0+

M − x
h = {u ∈ X : lim

h→0+
dist

(
u, M − x

h

)
= 0}

Clarke tangent cone to M at x

CM(x) := Liminfy→Mx , h→0+
M − y

h

CM(x) is convex. Normal cone to M at x

NM(x) := {p ∈ X ∗ : 〈p, u〉 ≤ 0 ∀ u ∈ CM(x)}
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Second Order Tangents

The second-order adjacent subset to M at (x , u) ∈ M × X :

T [(2)
M (x , u) := Liminfh→0+

M − x − hu
h2

T [(2)
M (x , u) = T [(2)

M (x , u) + CM(x)
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Example

Let M = ∩m
j=1Mj , where Mj = {x : hj(x) ≤ 0}, hj ∈ C 2(Rn;R)

0 /∈ co{∇hj(x) : j ∈ Iactive(x)} for all x ∈ ∂M.
Then for every x0 ∈ ∂M,

T [
M(x0) = {u ∈ Rn : 〈∇hj(x0), u〉 ≤ 0 ∀ j ∈ Iactive(x0)}

For every u ∈ T [
M(x0), a vector v ∈ T [(2)

M (x0, u) if and only if

〈∇hj(x0), v〉+
1
2h′′j (x0)uu ≤ 0 ∀ j ∈ I(1)(x0, u),

where I(1)(x0, u) = {j ∈ Iactive(x0) | 〈∇hj(x0), u〉 = 0}. That is if
I(1)(x0, u) 6= ∅, then T [(2)

M (x0, u) is a closed convex polytope in Rn.
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A Second Order Necessary Optimality Condition

Primal Approach to Necessary Conditions :

min
x∈M

φ(x),

where φ : X → R is a C 2 function. Let x̄ ∈ M be a local
minimizer. Fermat rule :

φ′(x̄)u ≥ 0 ∀ u ∈ T [
M(x̄) ⇒ −φ′(x̄) ∈ NM(x̄).

Second order rule :

φ′(x̄)v +
1
2φ
′′(x̄)(u, u) ≥ 0

for all u ∈ T [
M(x̄), v ∈ T [(2)

M (x̄ , u) such that φ′(x̄)u = 0.
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Directional ”Derivatives” of Set-Valued Maps

Let F : Rn ; Rm be a set-valued map, locally Lipschitz around
x ∈ Rn and let y ∈ F (x).

Definition
dF (x , y) : Rn ; Rm is the set-valued map defined by

dF (x , y)u := Liminfh→0+
F (x + hu)− y

h ∀ u ∈ Rn.

For v ∈ dF (x , y)u, the second-order variation d2F (x , y , u, v) is the
set-valued map defined by: ∀ z ∈ Rn

d2F (x , y , u, v)z := Liminfh→0+
F (x + hu + h2z)− y − hv

h2
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Linearization of Differential Inclusions

Let F̃ : Rn ; Rn have nonempty compact images and K0 ⊂ Rn.
Consider the differential inclusion{

x ′(t) ∈ F̃ (x(t)) a.e. in [0, 1]

x(0) ∈ K0
(DI)

Assume∃ γ > 0, maxv∈F̃ (x)
|v | ≤ γ(1 + |x |) ∀ x ∈ Rn;

∀ R > 0, ∃ cR ≥ 0 : F̃ is cR -Lipschitz on B(0,R)
(A)

Define F : Rn ; Rn by F (x) := co F̃ (x)
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First Order Variational Inclusion
Let x̄ be a solution of (DI) and y : [0, 1]→ Rn be a solution of

y ′(t) ∈ dF (x̄(t), x̄ ′(t))y(t) for a.e. t ∈ [0, 1];
y(0) ∈ T [

K0
(x̄(0))

Theorem
Consider any hi → 0+, y 0

i → y(0) such that x̄(0) + hi y0
i ∈ K0.

Then there exist solutions xi of (DI) satisfying

xi (0) = x̄(0) + hi y0
i

such that 1
hi

(xi − x̄) converge uniformly to y when i →∞.

If F (x) = {f (x)} is single valued with f ∈ C 1, then the
corresponding variational equation is

y ′(t) = fx (x̄(t))y(t)
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Second Order Variational Inclusion
For y(·) as above assume for some a2 ∈ L1([0, 1];R+) and all small
h > 0

distF (x̄(t)+hy(t))(x̄ ′(t) + hy ′(t)) ≤ a2(t)h2 a.e.

We abbreviate [t] := (x̄(t), x̄ ′(t), y(t), y ′(t))
and consider a solution w : [0, 1]→ Rn of

w ′(t) ∈ d2F [t]w(t) for a.e. t ∈ [0, 1];
w(0) ∈ T [(2)

K0
(x̄(0), y(0)).

If F (x) = {f (x)} is single valued with f ∈ C 2, then the
corresponding variational equation is

w ′(t) = fx (x̄(t))w(t) +
1
2 fxx (x̄(t))y(t)y(t)
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Theorem

Let hi → 0+, w0
i → w(0) be such that x̄(0) + hi y(0) + h2

i w0
i ∈ K0.

Then there exist solutions xi of (DI) satisfying

xi (0) = x̄(0) + hi y(0) + h2
i w0

i

such that
1
h2

i
(xi − x̄ − hi y)

converge uniformly to w when i →∞.
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Control System under State Constraints


x ′(t) = f (x(t), u(t)), u(t) ∈ U a.e. in [0, 1]

x(0) ∈ K0

x(t) ∈ K for all t ∈ [0, 1]

U is a complete separable metric space, K0, K ⊂ Rn are nonempty
and closed, f : Rn × U → Rn.
Controls are Lebesgue measurable functions u(·) : [0, 1]→ U
SK (x0) denotes the set of trajectories of the control system
starting at x0.

We assume that f (x , ·) is continuous, f (x ,U) are closed, ∃ γ > 0,
supu∈U |f (x , u)| ≤ γ(1 + |x |) and for every R > 0 there exists
cR > 0 such that f (·, u) is cR−Lipschitz on B(0,R) for any u ∈ U.
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Mayer Problem

For ϕ : Rn → R the Mayer problem under state constraints is

minimize {ϕ(x(1)) | x(·) ∈ SK (x0), x0 ∈ K0}

(x̄ , ū) is called a strong local minimizer if for some ε > 0 and for
all x(·) ∈ SK (x0), x0 ∈ K0 satisfying ||x̄ − x ||∞ < ε we have
ϕ(x(1)) ≥ ϕ(x̄(1)).

Let (x̄ , ū) be a strong local minimizer, ϕ ∈ C2 on a neighborhood
of x̄(1),

fx (x̄(t), ·) is continuous on a neighborhood of ū(t) for a.e. t

and for some ε > 0, c ≥ 0 and for a.e. t ∈ [0, 1], fx (·, ū(t)) is
Lipschitz on B(x̄(t), ε) with Lipschitz constant c.
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Relaxed trajectories of control system are solutions of

x ′(t) ∈ co f (x(t),U) a.e. in [0, 1].

Set F (x) = co f (x ,U). The Inward Pointing Condition :

F (x) ∩ Int CK (x) 6= ∅ ∀x ∈ ∂K (IPC)

Theorem
If (IPC) holds true and (x̄ , ū) is a strong local minimizer, then x̄ is
a strong local minimizer for the relaxed Mayer problem

minimize ϕ(x(1))

x ′(t) ∈ F (x(t)) a.e. in [0, 1], x(0) ∈ K0, x(t) ∈ K ∀ t ∈ [0, 1].

HF+ F. Rampazzo, JDE 2000; HF + M. Mazzola, NoDEA 2013,
measurably t-dependent f and a different (IPC)
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First Order Approximation of Control Systems

Denote by V(1)(x̄ , ū) the set of solutions y of the following
”linearized” along (x̄ , ū) system :

y ′(t) = fx (x̄(t), ū(t))y(t) + v(t), v(t) ∈ F (x̄(t))− x̄ ′(t) a.e.

y(0) ∈ T [
K0

(x̄(0))

y(t) ∈ CK (x̄(t)) for all t ∈ [0, 1].

∀z ∈ Rn we have

fx (x̄(t), ū(t))z + F (x̄(t))− ˙̄x(t) ⊂ dF (x̄(t), ˙̄x(t))z
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Second Order Approximation of Control Systems

Let K := {x ∈ C([0, 1];Rn) | x(t) ∈ K ∀t ∈ [0, 1]}.

For y ∈ V(1)(x̄ , ū) we introduce the sets E(y ; t),F(y ; t) ⊂ Rn

defined for almost all t ∈ [0, 1] by

E(y ; t) := TdF (x̄(t),x̄ ′(t))y(t)(y ′(t))

F(y ; t) := {v | ∃ uh ∈ U, limh→0+ uh = ū(t) such that ∀ h > 0

x̄ ′(t) + hy ′(t) + h2v = f (x̄(t) + hy(t), uh) + o(h2)}
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Second Order Approximation of Control Systems

Consider the set V(2)(x̄ , ū, y) of all w ∈W 1,1([0, 1];Rn) satisfying
w ′(t) ∈ fx (x̄(t), ū(t))w(t) + F(y ; t) + E(y ; t) for a.e. t ∈ [0, 1]

w(0) ∈ T [(2)
K0

(x̄(0), y(0))

w ∈ T [(2)
K (x̄ , y).

We abbreviate [t] := (x̄(t), x̄ ′(t), y(t), y ′(t))

Proposition

Let y ∈ V(1)(x̄ , ū). Then for almost all t ∈ [0, 1] and all z ∈ Rn,

fx (x̄(t), ū(t))z + F(y ; t) + E(y ; t) ⊂ d2F [t]z .
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Maximum Principle

Theorem (well known maximum principle)

There exist p ∈W 1,1([0, 1];Rn), λ ∈ {0, 1}, a non-negative Borel
measure µ on [0, 1] and a Borel measurable selection

ν(t) ∈ NK (x̄(t)) ∩ B µ-a.e. in [0, 1] ⇒ Complementarity

such that for ψ : [0, 1]→ Rn defined by ψ(t) :=
∫

[0,t] ν(s)dµ(s) if
t ∈ ]0, 1] and ψ(0) = 0 we have (p, ψ, λ) 6= 0,

−p′(t) = fx (x̄(t), ū(t))∗(p(t) + ψ(t)) a.e.

p(0) ∈ NK0(x̄(0)), −p(1) = λ∇ϕ(x̄(1)) + ψ(1)

〈p(t) + ψ(t), f (x̄(t), ū(t))〉 = maxu∈U〈p(t) + ψ(t), f (x̄(t), u)〉a.e.
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Second Order Maximum Principle

Theorem

Let y ∈ V(1)(x̄ , ū), 〈∇ϕ(x̄(1)), y(1)〉 = 0 and V(2)(x̄ , ū, y) 6= ∅. If
(IPC) holds true, then ∃ (λ, p, ψ) as in the maximum principle
such that in addition 〈p(t) + ψ(t), fx (x̄(t), ū(t))y(t)〉 =

max{〈p(t) + ψ(t),
∑k

i=1 λi fx (x̄(t), ui )y(t)〉 |

λi ≥ 0,
∑k

i=1 λi = 1, ui ∈ U, f (x̄(t), ū(t)) =
∑k

i=1 λi f (x̄(t), ui )}

for a.e. t ∈ [0, 1].
In particular, for almost all t ∈ [0, 1] and for every u ∈ U satisfying
f (x̄(t), ū(t)) = f (x̄(t), u) we have

〈p(t) + ψ(t), fx (x̄(t), ū(t))y(t)〉 ≥ 〈p(t) + ψ(t), fx (x̄(t), u)y(t)〉
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Normality of the Maximum Principle
λ = 1, if CK0(x̄(0))∩ Int CK (x̄(0))) 6= ∅ and a pointwise inward
pointing condition holds true : for a.e. t ∈ [0, 1]

E(y ; t) ∩ IntCK (x̄(t)) 6= ∅

Conclusions and Future Work

1. To get necessary optimality conditions it is enough to know
subsets of tangents. ”Linearizations” provide such subsets.

2. Inward pointing conditions imposed on state constraints allow
to relax control systems and to show that solutions of ”linearized
systems” are in tangents.

3. The infinite dimensional case is under investigation and
relaxation theorems with state constraints are already proved.
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