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Introduction

Consider the following bilevel programming problem

(BLP) min
(x ,y)∈Rn×Rm

f (x , y)

s.t. y ∈ S(x)

x ∈ C

where S(x) denotes the set of solutions of the lower level problem

(Px ) min
y∈Rm

ϕ(x , y)

s.t. y ∈ Γ

f , ϕ : Rn×m → R are C2

C ⊂ Rn closed.
Γ := {y ∈ Rm |qi(y) ≤ 0, i = 1, . . . , l} with qi ∈ C2
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First-order approach for (BLP)

Condition y ∈ S(x) is replaced by the first order optimality
conditions.
Karush-Kuhn-Tucker conditions: Under some Constraint
qualification (CQ) there are Lagrange multipliers λ ∈ Rl such that

0 = ∇yϕ(x , y) + λT∇q(y), λ ≥ 0, q(y) ≤ 0, λT q(y) = 0

(Complementarity conditions)
Disadvantage: Multiplier λ is introduced as additional variable and
this will cause troubles if the multiplier is not unique
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Example

Upper level objective: minx ,y (x1 − 1)2 + (x2 − 1)2

Lower level problem:

(Px ) min
y

x1y1 + x2y2

s.t. −y2 ≤ 0
1
2

y2
1 − y2 ≤ 0

Unique solution is x̄ = (1,1), ȳ = (−1, 1
2). But for the formulation with

complementarity conditions the point x̄ = (0,1) ȳ = (0,0), λ = (1,0)
also is a local minimizer.
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Alternative to KKT condition

Working with the generalized equation

0 ∈ ∇yϕ(x , y) + N̂Γ(y)

and modern methods of variational analysis without introducing
multipliers to the overall problem.
N̂Γ(y) denotes the regular normal cone to Γ at y .
Hence we replace (BLP) by

(FOP) min
(x ,y)∈Rn×Rm

f (x , y)

s.t. 0 ∈ ∇yϕ(x , y) + N̂Γ(y)

x ∈ C
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Combined first order and value function approach

If the lower level program is not convex, the first order approach may
fail. In this case we can replace (BLP) by the equivalent problem

(VFP) min
(x ,y)∈Rn×Rm

f (x , y)

s.t. ϕ(x , y) ≤ V (x),

0 ∈ ∇yϕ(x , y) + N̂Γ(y),

x ∈ C,

where
V (x) := min{φ(x , y) | y ∈ Γ}

denotes the optimal value function of the lower level problem.
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Variational Geometry

Definition
Let Ω ⊂ Rd be closed, z̄ ∈ Ω

1 The (Bouligand-Severi) tangent/contingent cone to Ω at z̄ is
defined by

TΩ(z̄) :=
{

u ∈ Rd | ∃ tk ↓ 0, uk → u with z̄ + tkuk ∈ Ω}.

2 The (Fréchet) regular normal cone to Ω at z̄ can be equivalently
defined by

N̂Ω(z̄) :=
{

v∗ ∈ Rd | lim sup
z Ω→z̄

〈v∗, z − z̄〉
‖z − z̄‖

≤ 0
}

= (TΩ(z̄))◦.

The regular normal cone is always convex.
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Definition
Let Ω ⊂ Rd be closed, z̄ ∈ Ω, u ∈ Rd .

1 The (Mordukhovich) limiting normal cone to Ω at z̄ is defined by

NΩ(z̄) :=
{

v∗ ∈ Rd | ∃zk
Ω→ z̄, v∗k → v∗ : v∗k ∈ N̂Ω(zk )

}
2 (Gfr2013) The limiting normal cone to Ω at z̄ in direction u is

defined by

NΩ(z̄; u) :=
{

v∗ ∈ Rd | ∃tk ↓ 0, uk → u, v∗k → v∗ : v∗k ∈ N̂Ω(z̄+tkuk )
}

In general the limiting normal cone is nonconvex and
N̂Ω(z̄) ⊂ NΩ(z̄).
If Ω is convex then N̂Ω(z̄) = NΩ(z̄) coincides with the normal cone
of convex analysis.
NΩ(z̄) = NΩ(z̄; 0).
If u 6∈ TΩ(z̄) then NΩ(z̄; u) = ∅
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Example

Ω = {(x1, x2) ∈ R2
+ | x1x2 = 0}
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Generalized differentiation

Definition
Let Ψ : Rd ⇒ Rs be a multifunction,
(z̄, w̄) ∈ gph Ψ := {(z,w) |w ∈ Ψ(z)}, (u, v) ∈ Rd × Rs. The

1 graphical derivative DΨ(z̄, w̄) : Rd ⇒ Rs,
2 regular coderivative D̂∗Ψ(z̄, w̄) : Rs ⇒ Rd ,
3 limiting coderivative D∗Ψ(z̄, w̄) : Rs ⇒ Rd ,
4 limiting coderivative in direction (u, v)

D∗Ψ((z̄, w̄); (u, v)) : Rs ⇒ Rd

are defined by
gph DΨ(z̄, w̄) = Tgph Ψ(z̄, w̄),

gph D̂∗Ψ(z̄, w̄) = {(w∗, z∗) | (z∗,−w∗) ∈ N̂gph Ψ(z̄, w̄)},

gph D∗Ψ(z̄, w̄) = {(w∗, z∗) | (z∗,−w∗) ∈ Ngph Ψ(z̄, w̄)},

gph D∗Ψ((z̄, w̄); (u, v)) = {(w∗, z∗) | (z∗ − w∗) ∈ Ngph Ψ((z̄, w̄); (u, v))}.
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Optimization problems

Consider
(P) min

z
f (z) subject to 0 ∈ Ψ(z)

where
f : Rd → R continuously differentiable
Ψ : Rd ⇒ Rs is a multifunction with closed graph

Then the basic optimality condition at a local minimizer z̄ is

∇f (z̄)u ≥ 0 ∀u ∈ Tψ−1(0)(z̄)

which can be equivalently written as

0 ∈ ∇f (z̄) + N̂ψ−1(0)(z̄)

(B-stationarity: no feasible descent direction exists.)
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Constraint qualifications

We want to know wether a small residual d(0,Ψ(z)) at a point z means
that z is near to the feasible region Ψ−1(0).

Definition
Ψ is called metrically regular around (z̄,0) ∈ gph Ψ with modulus
κ > 0, if there are neighborhoods U of z̄ and V of 0 such that

d(z,Ψ−1(w)) ≤ κd(w ,Ψ(z)) ∀z ∈ U,w ∈ V .

Ψ is called metrically subregular at (z̄,0) ∈ gph Ψ with modulus
κ > 0, if there is a neighborhood U of z̄ such that

d(z,Ψ−1(0)) ≤ κd(0,Ψ(z)) ∀z ∈ U.

Note: If Ψ is metrically subregular at (z̄,0) then

TΨ−1(0)(z̄) = {u |0 ∈ DΨ(z̄,0)(u)}
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Characterizations of metric (sub)regularity

Note:
Ψ is metrically regular around (z̄,0)⇔ Ψ−1 has the Aubin
property (is Lipschitz-like, pseudo-Lipschitz) around (0, z̄).
Ψ is metrically subregular at (z̄,0)⇔ Ψ−1 is calm at (0, z̄).

Theorem
Let 0 ∈ ψ(z̄).

1 (Mordukhovich criterion) Ψ is metrically regular around (z̄,0) if
and only if

0 ∈ D∗Ψ(z̄,0)(w∗) ⇒ w∗ = 0

2 (Gfr.2013, First order sufficient condition for metric subregularity
(FOSCMS)) Ψ is metrically subregular at (z̄,0) if for every u 6= 0
with 0 ∈ DΨ(z̄,0)(u) one has

0 ∈ D∗Ψ((z̄,0), (u,0))(w∗) ⇒ w∗ = 0
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Metric (sub)regularity of inequality systems

Γ = {y |0 ∈ M(y)}, M(y) := q(y)− Rl
−

Notation:

I(y) := {i |qi (y) = 0}, T lin
Γ (y) := {v | ∇qi (y)v ≤ 0, i ∈ I(y)} ∀y ∈ Γ

Theorem
1 (Mordukhovich criterion) M is metrically regular around (ȳ ,0) iff

∇q(ȳ)Tλ = 0, λ ≥ 0,q(ȳ)Tλ = 0 ⇒ λ = 0.

Moreover, this condition holds if and only MFCQ is fulfilled at ȳ .
2 (Gfr.2011, Second order sufficient condition for metric

subregularity (SOSCMS)): If for every 0 6= v ∈ T lin
Γ (ȳ) one has

∇q(ȳ)Tλ = 0, λ ≥ 0, q(ȳ)Tλ = 0, vT∇2(λT q)(ȳ)v ≥ 0 ⇒ λ = 0,

then M is metrically subregular at (ȳ ,0).
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Example

Γ =

y ∈ R2 |
−y2

1 + y2 ≤ 0
−y2

1 − y2 ≤ 0
y1 ≤ 0


MFCQ is violated at (0,0), but SOSCMS is fulfilled.
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S-stationarity and M-stationarity

Recall that B-stationarity reads as

0 ∈ ∇f (z̄) + N̂ψ−1(0)(z̄).

Assumption: We have the representation

ψ−1(0) = {z |G(z) ∈ Q}

where G : Rd → Rp smooth and Q ⊂ Rp closed.
Then we always have

∇G(z̄)T N̂Q(G(z̄)) ⊂ N̂ψ−1(0)(z̄)

and, if G(·)−Q is metrically subregular at (z̄,0),

N̂ψ−1(0)(z̄) ⊂ ∇G(z̄)T NTQ(G(z̄))(0).
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Definition
1 z̄ is called to be S-stationary if

0 ∈ ∇f (z̄) +∇G(z̄)T N̂Q(G(z̄))

2 z̄ is called to be M-stationary if

0 ∈ ∇f (z̄) +∇G(z̄)T NTQ(G(z̄))(0)

A S-stationary point is always B-stationary, but a local minimizer
needs not to be S-stationary. An extra condition is required, e.g.
that ∇G(z̄) is surjective.
Under metric subregularity, a local minimizer is always
M-stationary.
A M-stationary point needs not to be B-stationary, i.e., a feasible
descent direction can exist.
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Theorem (Gfr./Outrata 2014)
Assume that G(z̄) ∈ Q, G(·)−Q is metrically subregular at (z̄,0). If
there exists a subspace L such that

TQ(G(z̄)) + L ⊂ TQ(G(z̄))

and
∇G(z̄)Rd + L = Rp

then
N̂G−1(Q)(z̄) = ∇G(z̄)T N̂Q(G(z̄))
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First order approach

(FOP) min
(x ,y)∈Rn×Rm

f (x , y)

s.t. 0 ∈ ∇yϕ(x , y) + N̂Γ(y)

x ∈ C

Constraints can be written in the form 0 ∈ Ψ(x , y) respectively
G(x , y) ∈ Q with

Ψ(x , y) :=

(
∇yϕ(x , y) + N̂Γ(y)

x − C

)
,

G(x , y) =

(
(y ,−∇yϕ(x , y))

x

)
, Q = gph N̂Γ × C
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FOSCMS

Let 0 ∈ Ψ(x̄ , ȳ), ȳ∗ := −∇yϕ(x̄ , ȳ).
If there does not exist (u, v) 6= (0,0) and w 6= 0 satisfying

u ∈ TC(x̄), 0 ∈ ∇2
xyϕ(x̄ , ȳ)u +∇2

yyϕ(x̄ , ȳ)v + DN̂Γ(ȳ , ȳ∗)(v),

−∇2
xyϕ(x̄ , ȳ)T w ∈ NC(x̄ ; u),

0 ∈ ∇2
yyϕ(x̄ , ȳ)w + D∗N̂Γ((ȳ , ȳ∗); (v ,−∇2

xyϕ(x̄ , ȳ)u−∇2
yyϕ(x̄ , ȳ)v))(w),

then the multifunction Ψ is metrically subregular at ((x̄ , ȳ),0)).

In Gfr./Outrata 2014 explicit formulas for the graphical derivative and
the regular coderivative of N̂Γ under a weak constraint qualification for
the lower level problem (SOSCMS) were given.
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Notation: L(x , y , λ) = ϕ(x , y) + λT q(y)

K (ȳ , ȳ∗) = {v ∈ T lin
Γ (ȳ) | ȳ∗T v = 0}

Λ(ȳ , ȳ∗) := {λ ∈ NRl
−

(q(ȳ)) | ∇q(ȳ)Tλ = ȳ∗},

Λ(ȳ , ȳ∗; v) := arg max
λ∈Λ(ȳ ,ȳ∗)

vT∇2(λT q)(ȳ)v

Theorem (Gfr.2014)
Let 0 ∈ Ψ(x̄ , ȳ), assume that SOSCMS holds for q(·)− Rl

− at ȳ and assume
that there does not exist (u, v , λ, µ,w) satisfying

(0,0) 6= (u, v) ∈ TC(x̄)× K (ȳ , ȳ∗), w 6= 0, −∇2
xyϕ(x̄ , ȳ)T w ∈ NC(x̄ ; u),

λ ∈ Λ(ȳ , ȳ∗; v), µ ∈ TNRl
−

(q(ȳ))(λ), µT∇q(ȳ)v = 0,

0 = ∇2
xyϕ(x̄ , ȳ)u +∇2

yyL(x̄ , ȳ , λ)v +∇q(ȳ)Tµ,

∇qi (ȳ)w = 0,∀i : λi > 0 ∨ µi > 0
wT∇2

yyL(x̄ , ȳ , λ)w ≤ 0.

Then Ψ is metrically subregular at ((x̄ , ȳ),0).
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S-stationarity conditions

Theorem (Gfr./Outrata 2014)
Let (x̄ , ȳ) be a local minimum for (FOP), assume that SOSCMS holds
for q(·)− Rl

− at ȳ and that Ψ is metrically subregular at ((x̄ , ȳ),0). If
there is a subspace L with TC(x̄) + L ⊂ TC(x̄) and a multiplier
λ ∈ Λ(ȳ , ȳ∗) such that

∇2
xyϕ(x̄ , ȳ)L + span {∇qi(ȳ) | i ∈ I+(λ)} = Rm,

then there is a multiplier w such that the S-stationarity conditions

0 ∈ ∇x f (x̄ , ȳ) +∇2
xyϕ(x̄ , ȳ)∗w + N̂C(x̄)

0 ∈ ∇y f (x̄ , ȳ) +∇2
yyϕ(x̄ , ȳ)∗w + D̂∗N̂Γ(ȳ , ȳ∗)(w)

hold.
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Value function approach

(VFP) min
(x ,y)∈Rn×Rm

f (x , y)

s.t. ϕ(x , y) ≤ V (x),

0 ∈ ∇yϕ(x , y) + N̂Γ(y),

x ∈ C,

The constraint ϕ(x , y) ≤ V (x) introduces some redundancy and the
multifunction associated with the constraints is never metrically regular.
However we can give sufficient conditions for metric subregularity.
Then we can replace (VFP) by the problem

min
(x,y)∈Rn×Rm

f (x , y) + σ(ϕ(x , y)− V (x))

s.t. 0 ∈ ∇yϕ(x , y) + N̂Γ(y),

x ∈ C,

where the penalty parameter σ is chosen sufficiently large (but finite).
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Ψ̂(x , y) :=

 ϕ(x , y)− V (x)− R−
∇yϕ(x , y) + N̂Γ(y)

x − C


Theorem
Let 0 ∈ Ψ̂(x̄ , ȳ), ȳ∗ := −∇yϕ(x̄ , ȳ), C = {x |hi (x) ≤ 0, i = 1, . . . ,p}, where
hi ∈ C1. Assume that there is a compact set Ω ⊂ Rm and a neighborhood U
of x̄ such that S(x) ⊂ Ω ∀x ∈ U and assume that q(·)− Rl

− fulfills SOSCMS
at ȳ . If there is a direction u ∈ Rn satisfying

∇hi (x̄)u < 0, i : hi (x̄) = 0,

∇xϕ(x̄ , ȳ)u < ∇xϕ(x̄ , y)u ∀y ∈ S(x̄), y 6= ȳ

and for every critical direction 0 6= v ∈ K (ȳ , ȳ∗), every extreme point λ of
Λ(ȳ , ȳ∗; v) and every w 6= 0 with ∇qi (ȳ)w = 0, ∀i : λi > 0 one has

wTL(x̄ , ȳ , λ)w > 0,

then Ψ̂ is metrically subregular at ((x̄ , ȳ),0).
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