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Shape Constrained Curve-fitting/Estimation

Motivation

1 Various static or dynamic models of biologic, engineering and
economic systems contain shape constrained functions

2 Example: convex shape constraint
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Applications

I Biology: dose response, drug combination, and genetic networks

I Engineering: path planning, lifetime estimation in reliability engr.

I Statistics: isotonic regression, log-concave density estimation

I Finance: option price and delivery price
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Focused Topics

Topic I: Computation of shape constrained smoothing splines

1 Formulated as a constrained optimal control or constrained
optimization problem with nonsmooth features

2 Efficient numerical schemes

Topic II: Statistical analysis of shape constrained estimators

1 Convergence of an estimator to the true function: consistency
and convergence rate

2 Optimal rate estimation and minimax optimal estimation

T. Robertson, F.T. Wright, and R.L. Dykstra. Order Restricted Statistical

Inference. John Wiley & Sons Ltd., 1988.
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Smoothing Splines

Smoothing spline model: unconstrained case

1 Classical smoothing splines (Wahba): minf∈S J(f), where
f : [0, 1]→ R, (ti, yi)

n
i=1 are samples, and

J(f) :=
1

n

n∑
i=1

(
f(ti)− yi

)2

+ λ

∫ 1

0

(
f (m)(t)

)2

dt

2 Control theoretical splines (Egerstedt and Martin)

min
1

n

n∑
i=1

(
f(ti)− yi

)2

+ λ

∫ 1

0

u2(t)dt

where

ẋ(t) = Ax(t) + bu(t), f(t) = cTx(t), A ∈ R`×`, b, c ∈ R`.

Example: when m = 2, A =

[
0 1
0 0

]
, b =

[
0
1

]
, c =

[
1
0

]
, and

u(t) = f ′′(t).
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Shape Constrained Smoothing Splines

Example: convex smoothing spline

I min J(f) := 1
n

∑n
i=1

(
f(ti)−yi

)2
+λ

∫ 1

0

(
f (2)(t)

)2
dt, f (2) ≥ 0 a.e. [0, 1]

I equivalently, min J(f) := 1
n

∑n
i=1

(
f(ti)− yi

)2
+λ

∫ 1

0
u2(t)dt subject to

ẋ(t) = Ax(t) + bu(t), f(t) = cTx(t), u(t) ∈ Ω := R+ a.e. [0, 1]

Formulation of shape constrained smoothing spline

Given a (constrained) linear control system Σ(A,B,C,Ω) on R`:

ẋ = Ax+Bu, u ∈ W := {u ∈ L2([0, 1];Rm) |u(t) ∈ Ω a.e.},

where A ∈ R`×`, B ∈ R`×m, C ∈ Rp×`, Ω ⊆ Rm is closed and convex. Given
{(ti, yi)}ni=1 and weights wi > 0 with

∑n
i=1 wi = 1, define the cost functional

J(u, x0) :=
n∑
i=1

wi
∥∥yi − Cx(ti;u, x0)

∥∥2

2
+ λ

∫ 1

0

‖u(t)‖22dt

A shape constrained smoothing spline f̂ is determined by an optimal

solution of inf J(u, x0) subject to Σ(A,B,C,Ω), i.e., f̂(t) = Cx(t;u∗, x∗0). 6 / 29
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Optimality Conditions

Existence and uniqueness of optimal solution

Suppose

H.1 : rank


CeAt1

CeAt2

...
CeAtn

 = `.

Then there exists a unique optimal solution (u∗, x∗0) ∈ W × R` for any

(ti, yi), (wi), and λ > 0.

Optimality conditions in term of VI

u∗(t) = ΠΩ

(
− λ−1

n∑
i=1

wiP
T
i (t)

(
f̂(ti)− yi

))
, and

0 =
n∑
i=1

wi
(
CeAiti

)T (
f̂(ti)− yi

)
,

where f̂(ti) = Cx(ti;u
∗(ti), x

∗
0), and Pi(t) := CeA(ti−t)B · I[0,ti]. 7 / 29
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More on Optimality Conditions

Facts

1 On each [tk, tk+1), u∗(t) depends on f̂(ti) with ti < tk only.

2 The optimal initial condition x∗0 completely determines u∗ and f̂ on
[0, 1] (may write f̂ as f̂(t, x∗0))

3 Given (ti, yi) and (wi) and λ, define Hy,n : R` → R`

Hy,n(z) :=
n∑
i=1

wi
(
CeAiti

)T(
f̂(ti, z)− yi

)
Then the equation Hy,n(z) = 0 has a unique solution (under H.1),
which is the optimal initial condition x∗0.

Nonsmoothness of f̂(t, ·) and Hy,n

1 If ΠΩ is directionally differentiable on Rm, then f̂(t, z) is
B-differentiable in z for any fixed t ∈ [0, 1];

2 If ΠΩ is semismooth on Rm, then f̂(t, z) is semismooth in z for any
fixed t ∈ [0, 1].
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Boundedness of Level Sets

Level set of Hy,n

Given z∗ ∈ R`, define Sz∗ :=
{
z ∈ R` | ‖Hy,n(z)‖ ≤ ‖Hy,n(z∗)‖

}
Proposition (Boundedness of level sets)

Let Ω ⊆ Rm be closed and convex. For any given (ti, yi), (wi), λ > 0

and z∗ such that H.1 holds, the level set Sz∗ is bounded.

Sketch of the proof

Suppose not. Then there exists (zk) in Sz∗ with ‖zk‖ → ∞ and
zk/‖zk‖ → v∗ 6= 0. It can be shown

lim
k→∞

Hy,n(zk)

‖zk‖
= H̃ỹ,n(v∗)

∣∣
ỹ=0

,

where H̃ỹ,n(z) =
∑n
i=1 wi(Ce

Aiti)T
(
f̃(ti, z)− ỹi

)
, f̃ is obtained from the

linear control system Σ(A,B,C,Ω∞), and ỹi = 0, ∀i. Since H̃0,n(z) = 0 has

a unique solution z = 0, H̃0,n(v∗) 6= 0 and ‖Hy,n(zk)‖ → ∞, contradiction.
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Solving Hy,n(z) = 0 for Polyhedral Ω (I)

Notation

I Define F (z) := B ◦ΠΩ ◦BT

I For each k = 1, 2, . . . , n− 1, let

vk(z) :=
1

λ

k∑
i=1

wi
(
CeAit

)T(
f̂(ti, z)− yi

)
, q(t, v) := e−A

T tv

Then Bu∗(t, z) = F (q(t, vk(z)) for all t ∈ [tk, tk+1).

Non-degenerate case

1 F : R` → R` is continuous and piecewise affine, and admits a
polyhedral subdivision Ξ.

2 For any v and k, q(t, v) has finitely many switchings on Ξ in [tk, tk+1].

3 q(t, v) is called non-degenerate on [tk, tk+1] if it is in the interior of a
polyhedron of Ξ between any consecutive switching times; otherwise,
q(t, v) is called degenerate.
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Solving Hy,n(z) = 0 for Polyhedral Ω (II)

More assumptions and notation

I Let ρ1 > 0 and ρ2 > 0 be such that ‖CeA(t−s)‖∞ ≤ ρ1, ∀ t, s ∈ [0, 1]
and maxi ‖Ei‖∞ ≤ ρ2, where each matrix Ei corresponds to an affine
piece of F .

I Assumption H.2: there exist ρt > 0 and µ ≥ ν > 0 such that for all n,

max
0≤i≤n−1

|ti+1 − ti| ≤
ρt
n
,

ν

n
≤ wi ≤

µ

n
, ∀ i.

Theorem (Non-degenerate case)

Let Ω be a polyhedron in Rm. Assume that H.1−H.2 hold and
λ ≥ µ2ρ21ρ2ρt/(4ν). Suppose that q(t, vk(z)) is non-degenerate on
[tk, tk+1] for each k = 1, 2 . . . , n− 1. Then there exists a unique
direction vector d ∈ R` such that

Hy,n(z) +H ′y,n(z; d) = 0.
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Solving Hy,n(z) = 0 for Polyhedral Ω (III)

Proposition (Degenerate case)

Assume additionally that (C,A) is an observable pair. If q(t, vk(z)) is

degenerate on [tk, tk+1] for some k ∈ {1, . . . , n− 1}, then for any

ε > 0, there exists d ∈ R` with 0 < ‖d‖ ≤ ε such that q(t, vk(z + d)) is

non-degenerate on [tk, tk+1] for each k = 1, . . . , n− 1.

Modified Nonsmooth Newton’s Method w. Line Search

I Apply the modified nonsmooth Newton’s method with line
search based on (Pang, 1990) to solve Hy,n(z) = 0

I Numerical convergence is proved under suitable conditions

J.-S. Pang. Newton’s method for B-differentiable equations. Mathematics of

Operations Research, Vol. 15, pp. 311–341, 1990.
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Numerical Results: Example I

Consider yi − f(ti) ∼ N (0, σ2)

Example 1: Convex constraint w. unevenly spaced design pts

f(t) =


4
3
t3 − t+ 1 if t ∈ [0, 1

2
)

− 8
3
t3 + 6t2 − 4t+ 3

2
if t ∈ [ 1

2
, 3

4
)

1
2
t+ 3

8
if t ∈ [ 3

4
, 1]

u(t) = f ′′(t) =


8t if t ∈ [0, 1

2
)

12− 16t if t ∈ [ 1
2
, 3

4
)

0 if t ∈ [ 3
4
, 1]

∈ Ω := [0,∞),

z0 = (2, 3)T , σ = 0.1,
σ

|fmax − fmin|
= 30%, λ = 10−4,

Design points (ti):{
0,

1

2n
, . . . ,

1

20
,

1

20
+

4

3n
, . . . ,

9

20
,

9

20
+

1

2n
, . . . ,

11

20
,

11

20
+

4

3n
, . . . ,

19

20
,

19

20
+

1

2n
, . . . , 1

}
,

x0 = (1,−1)T , A =

[
0 1
0 0

]
, B =

[
0 1

]T
, C =

[
1 0

]
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Numerical Results: Example I with n = 50
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Numerical Results: Example II

Example 2: General dynamics and constraint with unevenly
spaced design points u(t) ∈ Ω := [8,∞)

f(t) =


11.60967t(e−t + e−2t)− 27.21935e−t + 25.21945e−2t + 2 if t ∈ [0, 1

4
)

−6.23368e−t + 3.25670e−2t + 3 if t ∈ [ 1
4
, 1

2
)

−11.60967t(e−t + e−2t) + 18.22245e−t − 21.69226e−2t + 3 if t ∈ [ 1
2
, 3

4
)

−3.34450e−t + 1.30615e−2t + 2 if t ∈ [ 3
4
, 1]

u(t) = f ′′(t) + 3f ′(t) + 2f(t) =


23.21935(e−t − e−2t) + 8 if t ∈ [0, 1

4
)

12 if t ∈ [ 1
4
, 1

2
)

−38.28223e−t + 63.11673e−2t + 6 if t ∈ [ 1
2
, 3

4
)

8 if t ∈ [ 3
4
, 1]

z0 = (0, 1/2)T , σ = 0.2,
σ

|fmax − fmin|
= 14.5%, λ = 10−4,

Design points (ti) =

{
0,

1

2n
,

2

2n
, . . . ,

1

20
,

1

20
+

9

8n
, . . . ,

19

20
,

19

20
+

1

2n
, . . . , 1

}
,

x0 = (7/2,−7)T , A =

[
0 1
−2 −3

]
, B =

[
0 1

]T
, C =

[
1 0

]
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Numerical Results: Example II with n = 25
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Numerical Performance

Constrained vs. unconstrained smoothing splines

Shape constrained smoothing splines outperform their unconstrained

counterparts

‖f − f̂‖L2
‖f − f̂‖L∞ ‖x(0)− x̂0‖2

const. unconst. const. unconst. const. unconst.

I
n = 25 0.00696 0.00723 0.06809 0.07216 0.25985 0.30825
n = 50 0.00351 0.00362 0.04971 0.05218 0.19141 0.22549
n = 100 0.00177 0.00180 0.03487 0.03588 0.14021 0.15958

II
n = 25 0.01302 0.01492 0.12639 0.15609 0.76778 1.45583
n = 50 0.00704 0.00791 0.09998 0.12474 0.70899 1.41832
n = 100 0.00387 0.00436 0.08048 0.10519 0.75410 1.54277

Numerical convergence of modified Newton’s method

I Depends heavily on examples but appears to be superlinear

I Typically ranges between 10 and 30 iterations

I Iterations for convergence increase slightly with sample size n

17 / 29
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Shape Constrained Regression

Regression model

yi = f(ti) + εi, i = 1, 2, . . . , n,

where f : [0, 1]→ R is the underlying true function subject to the

constraint f ∈ C, ti are design points, yi are samples, and εi are i.i.d.

random variables with εi ∼ N(0, σ2).

Constraints
1 Shape constraint: f ∈ S, where for some m ∈ N,

S :=
{
f : [0, 1]→ R | (f (m−1)(t1)−f (m−1)(t2))·(t1−t2) ≥ 0,∀ t1, t2 ∈ [0, 1]

}
.

2 Smoothness constraint: f is in the Hölder class H(r, L) with
r ∈ (m− 1,m], L > 0, i.e., the family of ` := (m− 1) times
continuously differentiable functions whose `-th derivative is uniformly
Hölder continuous with exponent γ := r − ` ∈ (0, 1], i.e.,

|f (`)(t1)− f (`)(t2)| ≤ L · |t1 − t2|γ , ∀ t1, t2 ∈ [0, 1].
18 / 29
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Minimax Optimal Estimation

Key issues on a given function class C
I What is the “best rate” of convergence of estimators uniformly on C?
I How can one construct an estimator that achieves the “best rate” of

convergence on C? (minimax upper bound)

I Is the “best rate” of convergence strict on C for any permissible
estimator? (minimax lower bound)

Optimal rate of convergence on H(r, L) in the sup-norm

inf
f̂

sup
f∈H(r,L)

E
(
‖f̂ − f‖∞

)
� L

1
2r+1 σ

2r
2r+1

( logn

n

) r
2r+1

,

where f̂ : estimate of a true function f , and a � b: a/b is bounded by two

positive constants from below and above for all n sufficiently large.

Motivating question

For a given m ∈ N, what are the minimax upper and lower bounds over

SH(r, L) := H(r, L) ∩ S as n→∞ (when the sup-norm is used)? 19 / 29
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Constrained B-spline Estimator (I)

Constrained B-spline estimator

f̂(t) =

Kn+m−1∑
k=1

b̂kBk(t)

where ti = i/n, Bk are B-splines of (m− 1)th degree with knots κi = i/Kn,

and the optimal spline coefficient b̂ = {b̂k, k = 1, . . . ,Kn +m− 1} is

b̂ = arg min
Dmb≥0

n∑
i=1

[
yi −

Kn+m−1∑
k=1

bkBk(ti)
]2

Here Dm ∈ R(Kn−1)×(Kn+m−1) corresponds to the m-th difference operator.
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Figure: Left: B-splines of degree 1; Right: B-splines of degree 2 20 / 29
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Constrained B-spline Estimator (II)

Quadratic program for optimal spline coefficients

b̂ = arg min
Dmb≥0

1

2
bTΛKnb− b

T ȳ,

where

ΛKn =
1

βn
XTX, ȳ =

1

βn
XT y, y = (y1, . . . , yn)T .

Here βn :=
∑n
i=1 B

2
k(ti) for any k = m, . . . ,Kn, and X =

[
Bk(tj)

]
j,k

.

Key questions for statistical asymptotic analysis

Since the number of knots Kn depends on n and Kn →∞ as n→∞, it is
desired to know how to choose Kn for favorable asymptotic properties:

I uniform convergence on [0, 1], including consistency on the boundary
(and in the interior)

I optimal convergence rate

21 / 29
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Piecewise Linear Formulation of b̂

Properties of b̂ for fixed Kn

1 Optimality condition:

ΛKn b̂− ȳ −D
T
mλ = 0, 0 ≤ λ ⊥ Dmb̂ ≥ 0.

2 b̂ : RKn+m−1 → RKn+m−1 is a continuous, piecewise linear function of
ȳ with 2Kn−1 linear selection functions (may write b̂ as b̂(Kn))

3 b̂ is Lipschitz in ȳ, and the Lipschitz constant may depend on Kn and
a norm (e.g., the `∞-norm).

Formulation of linear pieces of b̂

1 For each ȳ, define the index set

α := {i | (Dmb̂(ȳ))i = 0} ⊆ {1, . . . ,Kn − 1}

2 For each α, a row linearly independent matrix Fα exists such that

b̂(ȳ) = FTα (FαΛKnF
T
α )−1Fαȳ

22 / 29
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Uniform Lipschitz Property of b̂

Theorem (Uniform Lipschitz property)

The family of piecewise linear functions {b̂(Kn) |Kn ∈ N} is uniformly
Lipschitz in the `∞-norm, i.e., there exists a constant Lm > 0 s.t.

sup
Kn∈N

sup
u 6=v∈RKn+m−1

∥∥b̂(Kn)(u)− b̂(Kn)(v)
∥∥
∞

‖u− v‖∞
≤ Lm

Sufficient condition for uniform Lipschitz property

In light of the piecewise linear formulation of b̂(Kn), it suffices to show

sup
Kn,α

‖FTα (FαΛKnF
T
α )−1Fα‖∞ < ∞

T. Lebair and J. Shen. Uniform Lipschitz property of constrained B-splines

subject to general shape constraints. 2014. 23 / 29
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Proof of Uniform Lipschitz Property

Sketch of the proof

1 Cornerstone result

Theorem (de Boor’s Conjecture (Shadrin, 2001))

Let T = (tk)nk=0 be a knot sequence on [a, b], let NT ,Em,k := (Ñk)n+m−1
k=1 be

B-splines of degree (m− 1) defined by T and some extension E. Let

M̃k := ‖Ñk‖−1
L1
· Ñk for each k, and G be the Grammian matrix given by

Gij = 〈M̃i, Ñj〉. Then ‖G−1‖∞ is bounded independent of a, b, n, and T .

2 Main idea: for any Kn and α, relate FTα (FαΛKnF
T
α )−1Fα to a suitable

Grammian defined by some B-splines with certain knot sequence
satisfying the shape constraint, and apply the above theorem to
obtain a uniform bound on ‖FTα (FαΛKnF

T
α )−1Fα‖∞.

A.Y. Shadrin. The L∞-norm of the L2-spline projector is bounded independently

of the knot sequence: A proof of de Boor’s conjecture. Acta Mathematica, Vol.

187(1), pp. 59–137, 2001. 24 / 29
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Implications of Uniform Lipschitz Property (I)

Uniform convergence and optimal estimation on SH(r, L)

1 Asymptotic performance in the sup-norm:

E
(
‖f̂ − f‖∞

)
= O

(
LK−rn + σ

√
Kn logn

n

)
2 Optimal rate of convergence in the sup-norm (minimax upper bound):

Let Kn =

⌈(
L
σ

) 2
2r+1

(
n

logn

) 1
2r+1

⌉
, then ∃ a constant C > 0 s.t.

sup
f∈SH (r,L)

E
(
‖f̂ − f‖∞

)
≤ C · L

1
2r+1 σ

2r
2r+1

( logn

n

) r
2r+1

, ∀ n

3 f̂ is consistent on the boundary of [0, 1] as Kn, n→∞

X. Wang and J. Shen. Uniform convergence and rate adaptive estimation of

convex functions via constrained optimization. SIAM Journal on Control and

Optimization, Vol. 51(4), pp. 2753–2787, 2013. 25 / 29
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Implications of Uniform Lipschitz Property (II)

Let f be the estimator based on noise free data, i.e.,

f(t) =

Kn+m−1∑
k=1

bkBk(t), where b := arg min
Dmb≥0

1

2
bTΛKnb− b

TE(ȳ)

Pointwise uniform bound

1 There exist positive constants C1 and C2 such that for any t0 ∈ (0, 1),

E
(
|f̂(t0)− f(t0)|2

)
≤ C1 · σ2Kn

n

E
(
|f̂(t0)− f(t0)|4

)
≤ C2 · σ4

(Kn

n

)2

2 For any t0 ∈ (0, 1) and any m− 1 ≤ r′ ≤ r,

sup
f∈SH (r,L)

E
(
|f̂(t0)− f(t0)|2

)
= O

(
C1 · σ2Kn

n
+ C′1

L2

K2r′
n

)
26 / 29
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Implications of Uniform Lipschitz Property (III)

Adaptive constrained estimation on SH(r, L)

1 Assume that the Hölder order r ∈ [m− 1,m] is unknown

2 Develop a constrained spline based adaptive estimator that achieves
the optimal sup-norm risk:

sup
r∈[m−1,m]

sup
f∈SH (r,L)

E
(
‖f̂(r̂) − f‖∞

)
≤ π2 L

1
2r+1 σ

2r
2r+1

( logn

n

) r
2r+1

.

3 Develop an adaptive estimator that achieves the optimal pointwise
risk:

sup
r∈[m−1,m]

sup
f∈SH (r,L)

E
(
|f̃(x0)− f(x0)|2

)
≤ π3L

2
(2r+1) σ

4r
(2r+1) n

− 2r
(2r+1) .

27 / 29



Introduction Constrained Smoothing Splines Shape Constrained Estimation via B-splines Conclusions

Minimax Lower Bound

Background

Based on information theoretical results on probability measure distance.

Construction for lower bound

Construct a family of shape constrained functions fj,n, j = 0, 1, . . . ,Mn s.t.

(C1) each fj,n ∈ CH(r, L), j = 0, 1, . . . ,Mn;

(C2) once j 6= k, ‖fj,n − fk,n‖∞ ≥ 2sn > 0, where sn � (logn/n)r/(2r+1);

(C3) there exists a fixed constant c0 ∈ (0, 1/8) s.t. for all large n,

1

Mn

Mn∑
j=1

K(Pj , P0) ≤ c0 log(Mn),

where Pj : distribution of (Yj,1, . . . , Yj,n), Yj,i = fj,n(Xi) + ξi,
i = 1, . . . , n with Xi = i/n and ξi: iid r.v., and K(P,Q): Kullback
divergence between two probability measures P and Q.

T. Lebair, J. Shen, and X. Wang. Minimax optimal estimation of convex functions

in the sup-norm. 2013. 28 / 29
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Conclusions

Summary

1 Computation of general shape constrained smoothing splines via a
nonsmooth Newton’s method

2 Statistical analysis of constrained B-spline estimation: uniform
Lipschitz property

Future research

1 Numerical issues: constrained smoothing splines subject to additional
constraints

2 Statistical issues: minimax analysis under general constraints

3 Multivariable shape constrained estimation and computation

Thank you!
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