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Goal: To find, for and elastic body, an admissible shape of a part of its boundary such
that, after applying the body forces and given surface tractions, the variables
corresponding to the shape, the displacement and the multiplier associated with the
Signorini condition will create a local minimizer of a given objective.

We will be dealing with 2 friction models, namely

A Coulomb friction with a fixed friction coefficient (3D);

B Coulomb friction with a solution-dependent friction ceofficient (2D).
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Outline:

Outline:

(i) Backgroung from variational analysis;

(ii) Algebraic setting of the problems;

(iii) Implicit programming approach (ImP);

(iv) Computation of limiting coderivatives of the set-valued parts of the respective GEs;

(v) Sensitivity analysis;

(vi) Numerical results.
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Ad (i): Background from variational analysis

Consider a closed set A ⊂ Rn and x̄ ∈ A.

TA(x̄) := Lim sup
τ↓0

A−x̄
τ

is the contingent (Bouligand) cone to A at x̄ .

N̂A(x̄) := (TA(x̄))0 is the regular (Fréchet) normal cone to A at x̄ .

The limiting (Mordukhovich) normal cone to A at x̄ is defined by

NA(x̄) := Lim sup
A

x→x̄

N̂(x) = {x∗ ∈ Rn|∃
A

xk → x̄ , x∗k → x∗ such that x∗k ∈ N̂A(xk )∀k}.
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Background from variational analysis

Now consider a closed-graph multifunction Φ[Rn ⇒ Rm] and a point (x̄ , ȳ) ∈ gph Φ.

The multifunction D̂∗Φ(x̄ , ȳ)[Rm ⇒ Rn] defined by

D̂∗Φ(x̄ , ȳ)(y∗) := {x∗ ∈ Rn|(x∗,−y∗) ∈ N̂gphΦ(x̄ , ȳ)}

is the regular (Fréchet) coderivative of Φ at (x̄ , ȳ).
The multifunction D∗Φ(x̄ , ȳ)[Rm ⇒ Rn] defined by

D∗Φ(x̄ , ȳ)(y∗) := {x∗ ∈ Rn|(x∗,−y∗) ∈ NgphΦ(x̄ , ȳ)}

is the limiting (Mordukhovich) coderivative of Φ at (x̄ , ȳ).
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Geometrical setting

b

C0

γ

Ω(α)

Γ (α)

Γ

Γ

P

c

u

a

Γ
P

Elastic body and its contact boundary:

Ω(α) := {(x1, x2) | a < x1 < b, α(x1) < x2 < γ}, Γc(α) := Grα,

where

α ∈ Uad :=

{
α ∈ C0,1([a, b])

∣∣∣∣∣ 0 ≤ α ≤ C0, ‖α′‖L∞ ≤ C1

C2 ≤ meas Ω(α) ≤ C3

}
.

Jiří V. Outrata (UTIA) 6 / 23



Ad (ii): In both considered models the discretized state problems attain the form

minimize J(α, y)
subject to

0 ∈ F (α, y) + Q(y)

α ∈ ω ⊂ Rl ,

(1)

where l denotes the number of nodes on the contact boundary, the state variable y
amounts to (ut , uν , λ), where ut , uν stand for the tangential and normal displacements,
respectively, λ is the multiplier associated with the Signorini condition and ω is the
discretized set of admissible shapes. Concretely, the GE from (1) takes the form

0 ∈ Att (α)ut + Atν(α)uν − Lt (α) + Q̃(ut , uν , λ)

0 = Aνt (α)ut + Aνν(α)uν − Lν(α)− λ
0 ∈ uν + α + NRl

+
(λ),

(2)
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where the blocks Att ,Atν ,Aνt and Aνν correspond to the stiffness matrix and vectors
Lt , Lν correspond to the body forces and surface tractions. All of them depend on α in a
continuously differentiable way. Further,

ω = {α ∈ Rl |

0 ≤ αi ≤ C0, i = 1, 2, . . . , l, |αi+1 − αi | ≤ C1h, i = 1, 2, . . . , l − 1,C2 ≤ meas Ω(α) ≤ C3},

(Q̃(ut , uν , λ))i = Fλi∂‖u i
t‖2, i = 1, 2, . . . l (in model A)

and

(Q̃(ut , uν , λ))i = F(|u i
t |)λi∂|u i

t |, i = 1, 2, . . . l (in model B).

It is well-known that under suitable assumptions concerning F (in A) or F(·) (in B) the
solution map

S(α) := {y |0 ∈ F (α, y) + Q(y)

is single-valued and Lipschitz. Moreover, for l →∞ the solutions of (1) (which exist
due to the boundedness of ω) converge to a solution of the original continuous problem
in the appropriate function spaces.
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Ad (iii): Define Θ(α) := J(α,S(α)). Then (1) amounts to the optimization problem

mimimize Θ(α)
subject to

α ∈ ω.
(3)

Assume that J is continuously differentiable. Then Θ is locally Lipschitz and (3) can be
numerically solved, e.g., by a bundle method of nonsmooth optimization. To this aim
we must be able to compute for each α ∈ ω the value Θ(α) and a vector ξ ∈ ∂̄Θ(u).
The latter will be done by using the relationship

∂̄Θ(u) = conv∂Θ(u) ⊃ ∂Θ(u) = {ξ|ξ ∈ ∇uJ(α, y) + D∗S(u)(∇y J(α, y))},

where y = S(α). Furthermore, for a given vector a, one has

D∗S(u)(a) ⊂ {(∇αF (α, y))T b|0 ∈ a+

(∇y F (α, y))T b + D∗Q(y ,−F (α, y))(b)}.

The above inclusion becomes equality provided either

(i) ∇αF (α, y) is surjective, or

(ii) gphQ is (normally) regular at (y ,−F (α, y)).
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Ad(iv): In the computation of ξ the most difficult part consists in the computation of the
limiting coderivative of Q. To facilitate this step we regroup GE (2) in such a way that

Q(y) =
l
X

i=1
Q̄(y i ),

with the multifunctions

Q̄(y i ) =

Fλ
i∂‖u i

t‖2

0

NR+ (λi )

 and Q̄(y i ) =

F(|u i
t |)λi∂|u i

t |
0

NR+ (λi )

 (4)

in the cases A and B, respectively. It follows that for u ∈ Q(y) one has

d ∈ D∗Q(y , u)(c)⇔ d i ∈ D∗Q̄(yi , ui )(ci ) ∀ i.

So, everything boils down to analysis of multifunctions Q̄ which are associated to single
nodes lying on the contact part of the boundary.
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Theorem 1.
Consider the multifunction Ψ[Rn × Rm × Ro ⇒ Rp × Rs] defined by

F (x , y , z) =

[
G(x , y)

H(y , z)

]
,

where G[Rn × Rm ⇒ Rp] and H[Rm × Ro ⇒ Rs] are closed-graph multifunctions.
Assume that (x̄ , ȳ , z̄, ū, v̄) ∈ gphF and the qualification condition[

0

w2

]
∈ D∗G(x̄ , ȳ , ū)(0),[

−w2

0

]
∈ D∗H(ȳ , z̄, v̄)(0)

⇒ w2 = 0 (5)

holds true. Then for any d∗1 , d
∗
2 ∈ Rp × Rs one has

D∗F (x̄ , ȳ , z̄)(d∗1 , d
∗
2 ) ⊂ {(w1,w2 + w3,w4)|(w1,w2) ∈ D∗G(x̄ , ȳ , ū)(d∗1 ),

(w3,w4) ∈ D∗H(ȳ , z̄, v̄)(d∗2 )}. (6)

Remark
Qualification condition (5) can be weakened on the basis of the calmness of respective
perturbation maps.
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Theorem 2.
Inclusion (6) becomes equality provided

(i) G is single-valued and continuously differentiable near (x̄ , ȳ). In this case
condition (5) is automatically fulfilled;

(i) In addition to the assumptions of Theorem 1, for each sequence y (i) → ȳ and
each η ∈ D∗G(x̄ , ȳ)(d∗1 )∃ sequences x (i) → x̄ , u(i) → ū, d∗(i)

1 → d∗1 such that

(x (i), y (i), u(i)) ∈ gphG

η ∈ Lim sup
i→∞

D̂∗G(x (i), y (i), u(i))(d∗(i)
1 ).

In verification of the assumptions in (ii) one may use the following statement.

Lemma.
Assume that G(x , y) = f (x)g(y), where f [Rn → R] and g[Rm → Rp] are Lipschitz near
x̄ and ȳ , respectively. Then for any (x , y) close to (x̄ , ȳ) and any d∗ one has

D̂∗G(x , y)(d∗) =

[
D̂∗f (x)(〈g(y), d∗〉)

D̂∗g(y)(f (x)d∗)

]
.

The above assertion enables us to prove that such mapping G fulfills the assumptions
in (ii) whenever g is continuously differetiable near ȳ .
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Analysis of the friction terms

Denote by Φ the friction terms in the definitions of Q̄ in (4), i.e.,

Φ(y i ) = Fλi∂‖u i
t‖2 (in the case A)

Φ(y i ) = F(|u i
t |)λi∂|u i

t | (in the case B).

Let z̄ ∈ gphΦ and ∃ neighborhood O of z̄ such that

gphΦ ∩O = Γ ∪ Ξ ∪ Λ,

where Γ and Ξ are open in the relative topology of gphΦ and z̄ ∈ Λ ⊂ bd Γ ∩ bd Ξ.
Then, by the definition,

NgphΦ(z̄) = Lim sup
Γ

z→z̄

N̂Γ(z) ∪ Lim sup
Ξ

z→z̄

N̂Ξ(z) ∪ Lim sup
Λ

z→z̄

N̂gphΦ(z) =

Lim sup
Γ

z→z̄

N̂Γ(z) ∪ Lim sup
Ξ

z→z̄

N̂Ξ(z) ∪ Lim sup
Λ

z→z̄

(TΓ(z) ∪ TΞ(z))◦ =

Lim sup
Γ

z→z̄

N̂Γ(z) ∪ Lim sup
Ξ

z→z̄

N̂Ξ(z) ∪ Lim sup
Λ

z→z̄

(N̂Γ(z) ∩ N̂Ξ(z)).
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Ad (v): Sensitivity analysis in the case A

Computation of D∗Q̄ is based on the following partition of gphQ̄. Fix i and consider
b̄ ∈ Q̄(ā), where ā = (ā1, ā2, ā3, ā4) = (ū i

t , ū
i
ν , λ̄

i ) ∈ R4. To simplify the notation, put
ā12 = (ā1, ā2) and b̄12 = (b̄1, b̄2).

no contact: weak contact: strong contact:
a4 = 0, b4 < 0 a4 = 0, b4 = 0 a4 > 0, b4 = 0

sliding:

L

M2 M1a12 6= 0,
b12 = Fa4a12‖a12‖−1

weak sticking:
M4 M−3a12 = 0,

‖b12‖ = Fa4

strong sticking:
××× ××× M+

3a12 = 0,
‖b12‖ < Fa4

Table: Possible positions of (ā, b̄) in gphQ̄
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Sensitivity analysis in the case A

In the case of L,M1 and M+
3 ,D

∗Q̄(ā, b̄)(b∗) can be computed easily by standard
calculus rules.

Proposition 1.

Let (ā, b̄) ∈ M2 ⊂ R4 × R4. Then for any b∗ ∈ R4 one has

D∗Q̄(ā, b̄)(b∗) =


0

0

0
ā1

‖a12‖
b∗1 +

ā2

‖ā12‖
b∗2 + w

∣∣∣∣∣∣∣∣∣∣∣
w ∈


R if b∗4 = 0
R− if b∗4 < 0
0 otherwise


.
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Sensitivity analysis in the case A

Proposition 2.

Let (ā, b̄) ∈ M−3 and w̄ = b̄12
F ā4

. Then one has, with b∗12 = (b∗1 , b
∗
2 ), that for any b∗

D∗Q̄(ā, b̄)(b∗) =
{a∗ ∈ R4|a∗12 = 0, a∗3 = 0, a∗4 = Fα} if b∗12 = αw̄ , α ≥ 0,
{a∗ ∈ R4|〈a∗12, w̄〉 ≤ 0, a∗3 = 0, a∗4 = Fα} if b∗12 = αw̄ , α < 0,
R2 × {0}2 if b∗12 = 0
∅ otherwise.
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Sensitivity analysis in the case B

Computation of D∗Q̄ is based on the following partition of gphQ̄: 1 Fix i and consider
b̄ ∈ Φ(ā), where ā = (ā1, ā2, ā3) = (ū i

t , ū
i
ν , λ̄

i ) ∈ R3.

no contact: weak contact: strong contact:
a3 = 0, b3 < 0 a3 = 0, b3 = 0 a3 > 0, b3 = 0

sliding:

L

M2 M1a1 6= 0,
b1 = sgn(a1)F(a1)a3

weak sticking:
M4 M−3a1 = 0,

|b1| = F(0)a3

strong sticking:
××× ××× M+

3a1 = 0,
|b1| < F(0)a3

Table: Possible positions of (ā, b̄) in gphQ̄

1In the sequel we shall work with the even extension of F into R, i.e. F(x) = F(−x) ∀x < 0.
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Sensitivity analysis in the case B

In the case of L,M1 and M+
3 ,D

∗Q̄(ā, b̄)(b∗) can be computed easily by standard
calculus rules.

Proposition 3.

Let (a, b) ∈ M2 ⊂ R3 × R3. Then for any b∗ ∈ R3 one has

D∗Q̄(a, b)(b∗) =


{0} × {0} × R if b∗3 = 0,
{0} × {0} × (−∞, sgn(a1)F(a1)b∗1 ] if b∗3 < 0,
{0} × {0} × {sgn(a1)F(a1)b∗1} if b∗3 > 0.

Proposition 4.

Let (a, b) ∈ M−3 , and assume that F is weakly semismooth at 0. Then for any b∗

D∗Q̄(a, b)(b∗) =
R× {0} × {0} if b∗1 = 0,(
F ′+(0)ā3b∗1 + sgn(b̄1)R+

)
× {0} × {sgn(b̄1)F(0)b∗1} if b∗1 sgn(b̄1) < 0,

{F ′+(0)ā3b∗1} × {0} × {sgn(b̄1)F(0)b∗1} otherwise.

Jiří V. Outrata (UTIA) 18 / 23



Numerical results (case B)

We consider the problem data a = 0, b = 2, γ = 1, l = 81, and assume that the
admissible control set is given by the constants C0 = 0.75,C1 = 3,C2 = 1.8,C3 = 2.
The objective is J (α, y) = ‖λ‖6

6. Further we suppose that the friction coefficient F is
defined by

F(t) = 0.25 · 1
t2 + 1

∀t ∈ R+,

The state problem is discretized by isoparametric quadrilateral elements of Lagrange
type and solved with MatSol, developed at the TU Ostrava. Problem (3) is minimized by
the Bundle Trust method.
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Example 1

Figure: Initial design: unloaded and deformed body; J (α0) = 2.1159 · 1011

Figure: Optimal design: unloaded and deformed body; J (αopt) = 2.6513 · 108
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Example 1

Figure: Normal stress for initial (left) and optimal (right) design.
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Conclusion:

Both considered problems belong to the class of MPECs solvable by ImP. To compute
the needed subgradient information, one has to deal with a complicated set-valued
mapping coupled with complementarity constraints. To its analysis we applied the
generalized calculus of B. Mordukhovich which does contain suitable rules for this kind
of computations. Nevertheless, in these rules one mostly has inclusions, which
contradicts our intention to compute the mentioned subgradient information as exact as
possible. To overcome this hurdle, we have exploited the available special structure

(1) to obtain "strenthened" variants of one from these rules which are valid as
equalities,

(2) to compute some limiting coderivatives "almost from the scratch".

The results of the computed test examples correspond to the expertize of the
engineers and demonstrate the efficiency of the proposed method.
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