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Introduction

Introduction
Linear complementarity constraints are quadratic constraints, so
a conic quadratic program with complementarity constraints (QPCC)
is a conic quadratically constrained quadratic program (QCQP).

We show a converse: any conic QCQP can be represented as an
equivalent conic QPCC.

We show any conic QCQP has an equivalent convex completely
positive reformulation.

Thus we have equivalent convex formulations for several classes
of nonconvex optimization problems defined over convex cones,
including rank-constrained semidefinite programs and
quadratically constrained quadratic programs (QCQPs).

Our results make no boundedness assumptions on the feasible
regions of the various problems considered.
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Relationship between QCQPs and QPCCs

Conic Quadratic Programs with Complementarity
Constraints

minimize
x,(x0,x1,x2)

cT x + 1
2 xT Qx

subject to Ax = b (QPCC)

and x0 ∈ K0, K1 3 x1 ⊥ x2 ∈ K1∗

where K0 and K1 are closed convex cones,
and K1∗ is the dual cone to K1.

Eg:

K1 is the nonnegative orthant: get standard QPCC.
K1 is the semidefinite cone: get SDP-MPCC as considered by
Defeng Sun et al.
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Relationship between QCQPs and QPCCs

Conic Complementarity

Since x1 ∈ K1 and x2 ∈ K2, we have (x1)T x2 ≥ 0.
So complementarity condition can be expressed (x1)T x2 ≤ 0.

If K1 is a polyhedral cone then we get a combinatorial structure,
and can express the problem equivalently as a finite number of
(possibly nonconvex) quadratic programs.

We construct an equivalent convex reformulation for any conic QPCC.
Solving the convex problem would give a globally optimal solution to
the conic complementarily problem.
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Relationship between QCQPs and QPCCs

Conic Quadratically Constrained Quadratic Programs

minimize
x̃∈K̃

f0(x̃) , ( g0 )T x̃ + 1
2 x̃T M 0x̃

subject to Hx̃ = p (QCQP)

and fi(x̃) , νi + ( g i )T x̃ + 1
2 x̃T M i x̃ ≤ 0, i = 1, · · · , I,

for some closed convex cone K̃ ⊆ Rñ and for some positive integer I,
νi ∈ R, g i ∈ Rñ, and M i ∈ Rñ×ñ symmetric for i = 0,1, · · · , I.

A conic QPCC is a conic QCQP.
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Relationship between QCQPs and QPCCs

“no Slater point”
A conic QPCC is a conic QCQP with just one quadratic constraint:

(x1)T x2 ≤ 0

Further, every point in {x ∈ K : Ax = b} satisfies (x1)T x2 ≥ 0.

So this is a QCQP with no Slater point.

Binary quadratic programs also lead to QCQPs with no Slater point:

xj ∈ {0,1} ⇐⇒ xj(1− xj) ≤ 0

provided the conic and linear constraints imply 0 ≤ xj ≤ 1 ∀ j ∈ B.

Nonconvex constraints of this type can be aggregated. Eg:∑
j∈B

xj(1− xj) ≤ 0.
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Relationship between QCQPs and QPCCs

QCQPs with no Slater point

minimize
x∈K

q0(x) , ( c0 )T x + 1
2 xT Q 0x

subject to Ax = b

q(x) , h + gT x + 1
2xT Qx ≤ 0

and qj(x) , hj + ( c j )T x + 1
2 xT Q jx ≤ 0, j = 1, · · · , J,

where q(x) ≥ 0 ∀x ∈ K ∩M withM := {x ∈ Rn : Ax = b}
and where the constraints qj(x) ≤ 0, j = 1 . . . , J, are convex.

We call this problem an nSp-QCQP.
If J = 0, it is denoted as an nSp0-QCQP.

Can always represent a convex quadratic constraint as a second order
cone constraint, so an nSp-QCQP is equivalent to an nSp0-QCQP.
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Relationship between QCQPs and QPCCs

nSp0-QCQP is a broad class

Theorem
A conic QCQP with variables x̃ ∈ Rn is equivalent to an nSp-QCQP
with variables x ∈ Rn+2 with a convex objective.

Main ideas of proof

Introduce variables r , s satisfying s + r = 1, and two constraints:
x̃T x̃ + r2 − s2 ≤ 0: represent as a second order cone constraint.
q(x̃ , r , s) := −x̃T x̃ − r2 + s2 ≤ 0, our nonconvex constraint;
trivially, q(x̃ , r , s) ≥ 0 ∀(x̃ , r , s) satisfying x̃T x̃ + r2 − s2 ≤ 0.

Note that s − r = s2 − r2 = x̃T x̃ .
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Relationship between QCQPs and QPCCs

nSp0-QCQP is a broad class
Theorem
A conic QCQP with variables x̃ ∈ Rn is equivalent to an nSp-QCQP
with variables x ∈ Rn+2 with a convex objective.

Main ideas of proof

Introduce variables r , s satisfying s + r = 1, and two constraints:
x̃T x̃ + r2 − s2 ≤ 0: represent as a second order cone constraint.
q(x̃ , r , s) := −x̃T x̃ − r2 + s2 ≤ 0, our nonconvex constraint;
trivially, q(x̃ , r , s) ≥ 0 ∀(x̃ , r , s) satisfying x̃T x̃ + r2 − s2 ≤ 0.

Note that s − r = s2 − r2 = x̃T x̃ .
If M i not positive semidefinite, replace quadratic constraint by

νi + ( g i )T x̃ −1
2 λi(s − r) + 1

2 x̃T (M i + λi I)x̃ ≤ 0

for appropriately chosen λi . Similarly modify the objective.
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Relationship between QCQPs and QPCCs

nSp0-QCQP is a broad class (continued)

Corollary
A conic QCQP with variables x ∈ Rn and I quadratic constraints is
equivalent to an nSp0-QCQP with variables x̃ ∈ Rn+2+2I .

Since:

Any convex quadratic constraint can be replaced by an equivalent
second order cone constraint, after the addition of two variables:

h + cT x + 1
2xT LLT x ≤ 0
⇐⇒

||LT x ||22 + u2 ≤ v2, (second order cone)

with u = 1
2 + h + cT x and v = 1

2 − h − cT x .
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Relationship between QCQPs and QPCCs

A conic QCQP is equivalent to a conic QPCC

Theorem
Any conic QCQP can be reformulated as an equivalent conic QPCC,
by first constructing an equivalent nSp0-QCQP.

Main ideas of proof

For the nSp0-QCQP, { x ∈ K ∩M | q(x) ≤ 0} = argmin
x∈K∩M

q(x).

For −∇q(x) be in the normal cone to K ∩M at x ∈ K ∩M need:

K 3 x ⊥ g + Qx + ATλ ∈ K∗

0 = Ax − b.

Thus, for local minimizers of q(x), have q(x) = 1
2

(
gT x − bTλ

)
+ h,

so add linear constraint 1
2

(
gT x − bTλ

)
+ h = 0.
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Completely Positive Relaxation

Lifting the nSp0-QCQP
We have a QCQP with a single quadratic constraint:

q(x) := h + gT x + 1
2xT Qx ≤ 0,

such that Ax = b, x ∈ K implies q(x) ≥ 0.

Can be lifted to a completely positive program in a well-known manner:

minimize
x , X

(c0)T x + 1
2

〈
Q0, X

〉
subject to Ax = b and Ai X AT

i = b2
i , i = 1, · · · , k ,

h + gT x + 1
2 〈Q,X 〉 = 0

and

(
1 xT

x X

)
∈ CP1+n(K)

(
cone of completely
positive matrices over K

)
.

In general, this convex problem is a relaxation of a QCQP.
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Completely Positive Relaxation

Completely Positive Matrices
Cone CP1+n(K) of completely positive matrices over K:

CP1+n(K) , conv
{

M ∈ S1+n | M = xxT , x ∈ R+ ×K
}
,

Dual cone COP1+n(K) of copositive matrices over K:

COP1+n(K) ,
{

M ∈ S1+n | xT Mx ≥ 0, ∀ x ∈ R+ ×K
}
.

We also use the notation CP1+n := CP1+n(Rn
+) and

COP1+n := COP1+n(Rn
+).

Even with K = Rn, determining membership in CP1+n(K) or
COP1+n(K) is NP-Complete.

May be able to approximate CP1+n(K) or COP1+n(K).
Eg, see work of Dür et al, or Dickinson.
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Completely Positive Relaxation

Burer’s result

Theorem (Burer, Math Progg, 2009)
If K = Rn

+ and q(x) =
∑

i∈B xi(1− xi) and if Ax = b, x ≥ 0 implies
0 ≤ xi ≤ 1∀i ∈ B then the QCQP and its completely positive relaxation
are equivalent.

Note that Burer imposes no convexity assumption on the objective
function Q0.

Burer extended his results to LPCCs and later to problems defined
over convex cones. See also Dickinson, Eichfelder, and Povh for
results on more general sets.
All these results require a bounded feasible region.
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Completely Positive Relaxation

An example where the relaxation of QPCC is not tight

The QPCC has an optimal value of 0, but the completely positive lifting
is unbounded below.

minimize
x≥0

−x2
2

subject to x1 + x2 − x3 = 3

x1 − x4 = 2

and x1 ⊥ x2.

Optimal value is 0,
since x1 ≥ 2, so x2 = 0.

x2

x10
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Completely Positive Relaxation

An example (continued)

minimize
x≥0

−x2
2

subject to x1 + x2 − x3 = 3

x1 − x4 = 2

and x1 ⊥ x2.

d̄ , (0,1,1,0)T has Ad̄ = 0.
Not valid direction in QPCC
since must have x1 > 0, so
must have d2 = 0.

minimize
x , X

−X2,2

subject to x1 + x2 − x3 = 3

x1 − x4 = 2

X1,1 + 2X1,2 + X2,2 − 2X1,3

−2X2,3 + X3,3 = 9

X1,1 + X4,4 − 2X1,4 = 4

X1,2 = 0(
1 xT

x X

)
∈ CP5.

Mitchell (RPI) QPCCs and QCQPs ICCP, August 8, 2014 19 / 26



Completely Positive Relaxation

An example (continued)

minimize
x≥0

−x2
2

subject to x1 + x2 − x3 = 3

x1 − x4 = 2

and x1 ⊥ x2.

d̄ , (0,1,1,0)T has Ad̄ = 0.
Not valid direction in QPCC
since must have x1 > 0, so
must have d2 = 0.

minimize
x , X

−X2,2

subject to x1 + x2 − x3 = 3

x1 − x4 = 2

X1,1 + 2X1,2 + X2,2 − 2X1,3

−2X2,3 + X3,3 = 9

X1,1 + X4,4 − 2X1,4 = 4

X1,2 = 0(
1 xT

x X

)
∈ CP5.

Mitchell (RPI) QPCCs and QCQPs ICCP, August 8, 2014 19 / 26



Completely Positive Relaxation

An example (continued)

minimize
x≥0
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2
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subject to x1 + x2 − x3 = 3

x1 − x4 = 2

X1,1 + 2X1,2 + X2,2 − 2X1,3

−2X2,3 + X3,3 = 9

X1,1 + X4,4 − 2X1,4 = 4

X1,2 = 0(
1 xT

x X

)
∈ CP5.

But
(

0 0
0 d̄ d̄ T

)
is a feasible ray of the completely positive program,

so it is unbounded below.

Mitchell (RPI) QPCCs and QCQPs ICCP, August 8, 2014 19 / 26



Completely Positive Relaxation

Our assumptions

1. Our QCQP is an nSp0-QCQP.

2. Let L ,
{

d ∈ K | A d = 0 and d T Qd = 0
}

.

Assume objective function matrix Q0 is copositive on L.

∗ Note: No boundedness assumption on any of the variables.

∗ Note: Assumptions all hold if q(x) =
∑

i∈B xi(1− xi) and
0 ≤ xi ≤ 1∀i ∈ B. (Burer: third assumption holds provided
optimal value of BQP is finite.)
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Completely Positive Relaxation

Completely positive relaxation is tight

Theorem
Under our two assumptions, the nSp0-QCQP and its completely
positive relaxation are equivalent in the sense that

1. The nSp0-QCQP is feasible if and only if the completely
positive program is feasible.

2. Either the optimal values of the nSp0-QCQP and the
completely positive program are finite and equal, or both
of them are unbounded below.

3. Assume both the nSp0-QCQP and the completely
positive program are bounded below, and (x̄ , X̄ ) is optimal
for the completely positive program, then x̄ is in the
convex hull of the optimal solutions of the nSp0-QCQP.

4. The optimal value of the nSp0-QCQP is attained if and
only if the same holds for the completely positive program.
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Completely Positive Relaxation

Completely positive representations of QPCCs

Corollary
The QPCC

minimize
x,(x0,x1,x2)

(c0)T x + 1
2 xT Q0x

subject to Ax = b (QPCC)

and x0 ∈ K0, K1 3 x1 ⊥ x2 ∈ K1∗

is equivalent to its convex completely positive lifting, provided Q0 is
copositive on an appropriate subset of the recession cone.

Note that we impose no boundedness assumption on the
complementary variables.
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Completely Positive Relaxation

Our second assumption

Recall our second assumption:
∗ Let L ,

{
d ∈ K | A d = 0 and d T Qd = 0

}
.

Assume objective function matrix Q0 is copositive on L.

This assumption can be removed:

replace the quadratic objective function by a linear objective function
min(c0)T x + z, and add the constraint −z + 1

2xT Q0x ≤ 0.
Then construct the corresponding nSp0-QCQP.

Hence we have the following theorem:

Theorem
Any QCQP is equivalent to a convex completely positive program.

Mitchell (RPI) QPCCs and QCQPs ICCP, August 8, 2014 23 / 26



Completely Positive Relaxation

Rank-constrained SDPs

minX 〈C,X 〉
subject to 〈Ai ,X 〉 = bi ∀i

rank(X ) ≤ p

X ∈ Sn
+

where Sn
+ is set of n × n

symmetric psd matrices,
C, Ai symmetric n × n
matrices.

Equivalent to (Sun et al.):

minX ,W 〈C,X 〉
subject to 〈Ai ,X 〉 = bi ∀i

trace(W ) = p

Sn
+ 3 X ⊥ I −W ∈ Sn

+

W ∈ Sn
+.

Objective function is linear,
this problem is equivalent
to its convex completely
positive lifting. The lifting
has O(n4) variables.
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Conclusions

Conclusions

A conic quadratically constrained quadratic program is equivalent to a
conic quadratic program with complementarity constraints.

Conic quadratically constrained quadratic programs are equivalent to
convex conic programs, even if the variables are unbounded and even
if the constraints and/or objective are nonconvex.

Mitchell (RPI) QPCCs and QCQPs ICCP, August 8, 2014 26 / 26


	Outline
	Introduction
	Relationship between QCQPs and QPCCs
	Completely Positive Relaxation
	Conclusions

