On QPCCs, QCQPs, and Completely Positive Programs ${ }^{1}$

John E. Mitchell
Department of Mathematical Sciences RPI, Troy, NY 12180 USA

ICCP, Berlin
August 8, 2014

[^0](1) Introduction
(2) Relationship between QCQPs and QPCCs
(3) Completely Positive Relaxation
(4) Conclusions

Outline

(2) Relationship between QCQPs and QPCCs
(3) Completely Positive Relaxation
4) Conclusions

Introduction

Linear complementarity constraints are quadratic constraints, so a conic quadratic program with complementarity constraints (QPCC) is a conic quadratically constrained quadratic program (QCQP).

- We show a converse: any conic QCQP can be represented as an equivalent conic QPCC.
- We show any conic QCQP has an equivalent convex completely positive reformulation.

Thus we have equivalent convex formulations for several classes of nonconvex optimization problems defined over convex cones, including rank-constrained semidefinite programs and quadratically constrained quadratic programs (QCQPs)

- Our results make no boundedness assumptions on the feasible regions of the various problems considered.

Introduction

Linear complementarity constraints are quadratic constraints, so a conic quadratic program with complementarity constraints (QPCC) is a conic quadratically constrained quadratic program (QCQP).

- We show a converse: any conic QCQP can be represented as an equivalent conic QPCC.
- We show any conic QCQP has an equivalent convex completely positive reformulation.
- Thus we have equivalent convex formulations for several classes of nonconvex optimization problems defined over convex cones, including rank-constrained semidefinite programs and quadratically constrained quadratic programs (QCQPs)
- Our results make no boundedness assumptions on the feasible regions of the various problems considered.

Introduction

Linear complementarity constraints are quadratic constraints, so a conic quadratic program with complementarity constraints (QPCC) is a conic quadratically constrained quadratic program (QCQP).

- We show a converse: any conic QCQP can be represented as an equivalent conic QPCC.
- We show any conic QCQP has an equivalent convex completely positive reformulation.
- Thus we have equivalent convex formulations for several classes of nonconvex optimization problems defined over convex cones, including rank-constrained semidefinite programs and quadratically constrained quadratic programs (QCQPs).
- Our results make no boundedness assumptions on the feasible regions of the various problems considered.

Introduction

Linear complementarity constraints are quadratic constraints, so a conic quadratic program with complementarity constraints (QPCC) is a conic quadratically constrained quadratic program (QCQP).

- We show a converse: any conic QCQP can be represented as an equivalent conic QPCC.
- We show any conic QCQP has an equivalent convex completely positive reformulation.
- Thus we have equivalent convex formulations for several classes of nonconvex optimization problems defined over convex cones, including rank-constrained semidefinite programs and quadratically constrained quadratic programs (QCQPs).
- Our results make no boundedness assumptions on the feasible regions of the various problems considered.

Outline

(1) Introduction

(2) Relationship between QCQPs and QPCCs

(3) Completely Positive Relaxation

4 Conclusions

Conic Quadratic Programs with Complementarity Constraints

$$
\begin{array}{ll}
\underset{x \triangleq\left(x^{0}, x^{1}, x^{2}\right)}{\operatorname{minimize}} & c^{\top} x+\frac{1}{2} x^{\top} Q x \\
\text { subject to } & A x=b \quad(Q P C C) \\
\text { and } & x^{0} \in \mathcal{K}^{0}, \mathcal{K}^{1} \ni x^{1} \perp x^{2} \in \mathcal{K}^{1^{*}}
\end{array}
$$

where \mathcal{K}^{0} and \mathcal{K}^{1} are closed convex cones, and $\mathcal{K}^{1^{*}}$ is the dual cone to \mathcal{K}^{1}.

Eg:

- \mathcal{K}^{1} is the nonnegative orthant: get standard QPCC.
- K^{1} is the semidefinite cone: get SDP-MPCC as considered by Defeng Sun et al.

Conic Quadratic Programs with Complementarity Constraints

$$
\begin{array}{ll}
\underset{x \triangleq\left(x^{0}, x^{2}, x^{2}\right)}{\operatorname{minimize}} & c^{\top} x+\frac{1}{2} x^{\top} Q x \\
\text { subject to } & A x=b \\
\text { and } & x^{0} \in \mathcal{K}^{0}, \mathcal{K}^{1} \ni x^{1} \perp x^{2} \in \mathcal{K}^{1^{*}} \tag{QPCC}
\end{array}
$$

where \mathcal{K}^{0} and \mathcal{K}^{1} are closed convex cones, and $\mathcal{K}^{1^{*}}$ is the dual cone to \mathcal{K}^{1}.

Eg:

- \mathcal{K}^{1} is the nonnegative orthant: get standard QPCC.
- \mathcal{K}^{1} is the semidefinite cone: get SDP-MPCC as considered by Defeng Sun et al.

Conic Complementarity

Since $x^{1} \in \mathcal{K}^{1}$ and $x^{2} \in \mathcal{K}^{2}$, we have $\left(x^{1}\right)^{T} x^{2} \geq 0$.
So complementarity condition can be expressed $\left(x^{1}\right)^{T} x^{2} \leq 0$.
If \mathcal{K}^{1} is a polyhedral cone then we get a combinatorial structure, and can express the problem equivalently as a finite number of (possibly nonconvex) quadratic programs.

We construct an equivalent convex reformulation for any conic QPCC. Solving the convex problem would give a globally optimal solution to the conic complementarily problem.

Conic Quadratically Constrained Quadratic Programs

$\operatorname{minimize}_{\tilde{x} \in \tilde{\mathcal{K}}} \quad f_{0}(\tilde{x}) \triangleq\left(g^{0}\right)^{T} \tilde{x}+\frac{1}{2} \tilde{x}^{\top} M^{0} \tilde{x}$
subject to $H \tilde{x}=p$
(QCQP)
and

$$
f_{i}(\tilde{x}) \triangleq \nu_{i}+\left(g^{i}\right)^{\top} \tilde{x}+\frac{1}{2} \tilde{x}^{\top} M^{i} \tilde{x} \leq 0, \quad i=1, \cdots, l,
$$

for some closed convex cone $\tilde{\mathcal{K}} \subseteq \mathbb{R}^{\tilde{n}}$ and for some positive integer I, $\nu_{i} \in \mathbb{R}, g^{i} \in \mathbb{R}^{\tilde{n}}$, and $M^{i} \in \mathbb{R}^{\tilde{n} \times \tilde{n}}$ symmetric for $i=0,1, \cdots, l$.

A conic QPCC is a conic QCQP.

"no Slater point"

A conic QPCC is a conic QCQP with just one quadratic constraint:

$$
\left(x^{1}\right)^{T} x^{2} \leq 0
$$

Further, every point in $\{x \in \mathcal{K}: A x=b\}$ satisfies $\left(x^{1}\right)^{T} x^{2} \geq 0$.
So this is a QCQP with no Slater point.
Binary quadratic programs also lead to QCQPs with no Slater point:

$$
x_{j} \in\{0,1\} \Longleftrightarrow x_{j}\left(1-x_{j}\right) \leq 0
$$

provided the conic and linear constraints imply $0 \leq x_{j} \leq 1 \forall j \in B$.
Nonconvex constraints of this type can be aggregated. Eg:

$$
\sum_{j \in B} x_{j}\left(1-x_{j}\right) \leq 0 .
$$

QCQPs with no Slater point

$\underset{x \in \mathcal{K}}{\operatorname{minimize}} \quad q_{0}(x) \triangleq\left(c^{0}\right)^{T} x+\frac{1}{2} x^{T} Q^{0} x$
subject to $A x=b$

$$
q(x) \triangleq \mathbf{h}+\mathbf{g}^{\top} x+\frac{1}{2} x^{\top} \mathbf{Q} x \leq 0
$$

and

$$
q_{j}(x) \triangleq h_{j}+\left(c^{j}\right)^{T} x+\frac{1}{2} x^{T} Q^{j} x \leq 0, \quad j=1, \cdots, J
$$

where $q(x) \geq 0 \forall x \in \mathcal{K} \cap \mathcal{M}$ with $\mathcal{M}:=\left\{x \in \mathbb{R}^{n}: A x=b\right\}$
and where the constraints $q_{j}(x) \leq 0, j=1 \ldots, J$, are convex.
We call this problem an nSp-QCQP.
If $J=0$, it is denoted as an nSp0-QCQP.
Can always represent a convex quadratic constraint as a second order cone constraint, so an nSp-QCQP is equivalent to an nSp0-QCQP

nSp0-QCQP is a broad class

Theorem

A conic QCQP with variables $\tilde{x} \in \mathbb{R}^{n}$ is equivalent to an $n S p-Q C Q P$ with variables $x \in \mathbb{R}^{n+2}$ with a convex objective.

Main ideas of proof

Introduce variables r, s satisfying $s+r=1$, and two constraints:

Note that $s-r=s^{2}-r^{2}=\tilde{x}^{\top} \tilde{x}$.

nSp0-QCQP is a broad class

Theorem

A conic QCQP with variables $\tilde{x} \in \mathbb{R}^{n}$ is equivalent to an $n S p-Q C Q P$ with variables $x \in \mathbb{R}^{n+2}$ with a convex objective.

Main ideas of proof

Introduce variables r, s satisfying $s+r=1$, and two constraints:

- $\tilde{x}^{T} \tilde{x}+r^{2}-s^{2} \leq 0$: represent as a second order cone constraint.

Note that $s-r=s^{2}-r^{2}=\tilde{x}^{\top} \tilde{x}$.

nSp0-QCQP is a broad class

Theorem

A conic QCQP with variables $\tilde{x} \in \mathbb{R}^{n}$ is equivalent to an $n S p-Q C Q P$ with variables $x \in \mathbb{R}^{n+2}$ with a convex objective.

Main ideas of proof

Introduce variables r, s satisfying $s+r=1$, and two constraints:

- $\tilde{x}^{T} \tilde{x}+r^{2}-s^{2} \leq 0$: represent as a second order cone constraint.
- $q(\tilde{x}, r, s):=-\tilde{x}^{\top} \tilde{x}-r^{2}+s^{2} \leq 0$, our nonconvex constraint; trivially, $q(\tilde{x}, r, s) \geq 0 \forall(\tilde{x}, r, s)$ satisfying $\tilde{x}^{\top} \tilde{x}+r^{2}-s^{2} \leq 0$. Note that $s-r=s^{2}-r^{2}=\tilde{x}^{\top} \tilde{x}$.

$\mathrm{nSp0}-\mathrm{QCQP}$ is a broad class

Theorem

A conic QCQP with variables $\tilde{x} \in \mathbb{R}^{n}$ is equivalent to an $n S p$-QCQP with variables $x \in \mathbb{R}^{n+2}$ with a convex objective.

Main ideas of proof

Introduce variables r, s satisfying $s+r=1$, and two constraints:

- $\tilde{x}^{T} \tilde{x}+r^{2}-s^{2} \leq 0$: represent as a second order cone constraint.
- $q(\tilde{x}, r, s):=-\tilde{x}^{T} \tilde{x}-r^{2}+s^{2} \leq 0$, our nonconvex constraint; trivially, $q(\tilde{x}, r, s) \geq 0 \forall(\tilde{x}, r, s)$ satisfying $\tilde{x}^{\top} \tilde{x}+r^{2}-s^{2} \leq 0$.
Note that $s-r=s^{2}-r^{2}=\tilde{x}^{\top} \tilde{x}$.
If M^{i} not positive semidefinite, replace quadratic constraint by

$$
\nu_{i}+\left(g^{i}\right)^{T} \tilde{x}-\frac{1}{2} \lambda_{i}(s-r)+\frac{1}{2} \tilde{x}^{T}\left(M^{i}+\lambda_{i} l\right) \tilde{x} \leq 0
$$

for appropriately chosen λ_{i}. Similarly modify the objective.

nSp0-QCQP is a broad class (continued)

Corollary

A conic QCQP with variables $x \in \mathbb{R}^{n}$ and I quadratic constraints is equivalent to an $n S p O-Q C Q P$ with variables $\tilde{x} \in \mathbb{R}^{n+2+21}$.

Since:

Any convex quadratic constraint can be replaced by an equivalent second order cone constraint, after the addition of two variables:

$$
\begin{gathered}
h+c^{T} x+\frac{1}{2} x^{T} L L^{T} x \leq 0 \\
\Longleftrightarrow \\
\left\|L^{T} x\right\|_{2}^{2}+u^{2} \leq v^{2}, \quad \text { (second order cone) } \\
\text { with } u=\frac{1}{2}+h+c^{T} x \text { and } v=\frac{1}{2}-h-c^{\top} x .
\end{gathered}
$$

A conic QCQP is equivalent to a conic QPCC

Theorem

Any conic QCQP can be reformulated as an equivalent conic QPCC, by first constructing an equivalent $n S p 0-Q C Q P$.

Main ideas of proof

For the $\mathrm{nSp0}$-QCQP, $\{x \in \mathcal{K} \cap \mathcal{M} \mid q(x) \leq 0\}=\underset{x \in \mathcal{K} \cap \mathcal{M}}{\operatorname{argmin}} q(x)$.
For $-\nabla q(x)$ be in the normal cone to $\mathcal{K} \cap \mathcal{M}$ at $x \in \mathcal{K} \cap \mathcal{M}$ need:

$$
\begin{aligned}
& \mathcal{K} \ni x \perp \mathbf{g}+\mathbf{Q} x+A^{\top} \lambda \in \mathcal{K}^{*} \\
& 0=A x-b .
\end{aligned}
$$

Thus, for local minimizers of $q(x)$, have $q(x)=\frac{1}{2}\left(\mathbf{g}^{\top} x-b^{\top} \lambda\right)+\mathbf{h}$, so add linear constraint $\frac{1}{2}\left(\mathbf{g}^{\top} x-b^{\top} \lambda\right)+\mathbf{h}=0$.

Outline

(9) Introduction

(2) Relationship between QCQPs and QPCCs

(3) Completely Positive Relaxation

4) Conclusions

Lifting the nSp0-QCQP

We have a QCQP with a single quadratic constraint:

$$
q(x):=\mathbf{h}+\mathbf{g}^{\top} x+\frac{1}{2} x^{\top} \mathbf{Q} x \leq 0
$$

such that $A x=b, x \in \mathcal{K}$ implies $q(x) \geq 0$.
Can be lifted to a completely positive program in a well-known manner:
$\underset{x, X}{\operatorname{minimize}} \quad\left(c^{0}\right)^{T} x+\frac{1}{2}\left\langle Q^{0}, X\right\rangle$
subject to $A x=b \quad$ and $\quad A_{i} X A_{i}^{T}=b_{i}^{2}, \quad i=1, \cdots, k$,

$$
\mathbf{h}+\mathbf{g}^{\top} x+\frac{1}{2}\langle\mathbf{Q}, X\rangle=0
$$

and $\quad\left(\begin{array}{cc}1 & x^{T} \\ x & X\end{array}\right) \in \mathcal{C} \mathcal{P}_{1+n}(\mathcal{K}) \quad\binom{$ cone of completely }{ positive matrices over $\mathcal{K}}$.
In general, this convex problem is a relaxation of a QCQP.

Completely Positive Matrices

Cone $\mathcal{C} \mathcal{P}_{1+n}(\mathcal{K})$ of completely positive matrices over \mathcal{K} :

$$
\mathcal{C} \mathcal{P}_{1+n}(\mathcal{K}) \triangleq \operatorname{conv}\left\{M \in \mathcal{S}^{1+n} \mid M=x x^{\top}, x \in \mathbb{R}_{+} \times \mathcal{K}\right\}
$$

Dual cone $\mathcal{C O} \mathcal{P}_{1+n}(\mathcal{K})$ of copositive matrices over \mathcal{K} :

$$
\mathcal{C O P}_{1+n}(\mathcal{K}) \triangleq\left\{M \in \mathcal{S}^{1+n} \mid x^{\top} M x \geq 0, \forall x \in \mathbb{R}_{+} \times \mathcal{K}\right\} .
$$

We also use the notation $\mathcal{C} \mathcal{P}_{1+n}:=\mathcal{C} \mathcal{P}_{1+n}\left(\mathbb{R}_{+}^{n}\right)$ and $\mathcal{C O} \mathcal{P}_{1+n}:=\mathcal{C O} \mathcal{P}_{1+n}\left(\mathbb{R}_{+}^{n}\right)$.

Even with $\mathcal{K}=\mathbb{R}^{n}$, determining membership in $\mathcal{C} \mathcal{P}_{1+n}(\mathcal{K})$ or $\mathcal{C O} \mathcal{P}_{1+n}(\mathcal{K})$ is NP-Complete.
May be able to approximate $\mathcal{C} \mathcal{P}_{1+n}(\mathcal{K})$ or $\mathcal{C O} \mathcal{P}_{1+n}(\mathcal{K})$. Eg, see work of Dür et al, or Dickinson.

Burer's result

```
Theorem (Burer, Math Progg, 2009)
If \mathcal{K}=\mp@subsup{\mathbb{R}}{+}{n}\mathrm{ and }q(x)=\mp@subsup{\sum}{i\inB}{}\mp@subsup{x}{i}{}(1-\mp@subsup{x}{i}{})\mathrm{ and if }Ax=b,x\geq0\mathrm{ implies}
0\leq\mp@subsup{x}{i}{}\leq1\foralli\inB then the QCQP and its completely positive relaxation are equivalent.
```

Note that Burer imposes no convexity assumption on the objective function Q^{0}.

Burer extended his results to LPCCs and later to problems defined over convex cones. See also Dickinson, Eichfelder, and Povh for results on more general sets.
All these results require a bounded feasible region.

An example where the relaxation of QPCC is not tight

The QPCC has an optimal value of 0 , but the completely positive lifting is unbounded below.

$\underset{x \geq 0}{\operatorname{minimize}}$	$-x_{2}^{2}$
subject to	$x_{1}+x_{2}-x_{3}=3$
	$x_{1}-x_{4}=2$
and	$x_{1} \perp x_{2}$.

Optimal value is 0 , since $x_{1} \geq 2$, so $x_{2}=0$.

An example where the relaxation of QPCC is not tight

The QPCC has an optimal value of 0 , but the completely positive lifting is unbounded below.

$\underset{x \geq 0}{\operatorname{minimize}}$	$-x_{2}^{2}$
subject to	$x_{1}+x_{2}-x_{3}=3$
	$x_{1}-x_{4}=2$
and	$x_{1} \perp x_{2}$.

Optimal value is 0 , since $x_{1} \geq 2$, so $x_{2}=0$.

An example (continued)

$$
\begin{array}{ll}
\underset{x \geq 0}{\operatorname{minimize}} & -x_{2}^{2} \\
\text { subject to } & x_{1}+x_{2}-x_{3}=3 \\
& x_{1}-x_{4}=2 \\
\text { and } & x_{1} \perp x_{2} . \\
\bar{d} \triangleq(0,1,1,0)^{T} \text { has } A \bar{d}=0 . \\
\text { Not valid direction in QPCC } \\
\text { since must have } x_{1}>0, \text { so } \\
\text { must have } d_{2}=0 .
\end{array}
$$

An example (continued)

$$
\begin{array}{ll}
\underset{x \geq 0}{\operatorname{minimize}} & -x_{2}^{2} \\
\text { subject to } & x_{1}+x_{2}-x_{3}=3 \\
& x_{1}-x_{4}=2 \\
\text { and } & x_{1} \perp x_{2} .
\end{array}
$$

$$
\bar{d} \triangleq(0,1,1,0)^{T} \text { has } A \bar{d}=0
$$

Not valid direction in QPCC since must have $x_{1}>0$, so must have $d_{2}=0$.

$$
\begin{array}{ll}
\underset{X, X}{\operatorname{minimize}} & -X_{2,2} \\
\text { subject to } & x_{1}+x_{2}-x_{3}=3 \\
& x_{1}-x_{4}=2 \\
& X_{1,1}+2 X_{1,2}+X_{2,2}-2 X_{1,3} \\
& -2 X_{2,3}+X_{3,3}=9 \\
& X_{1,1}+X_{4,4}-2 X_{1,4}=4 \\
& X_{1,2}=0 \\
& \left(\begin{array}{cc}
1 & x^{T} \\
x & X
\end{array}\right) \in \mathcal{C} \mathcal{P}_{5} .
\end{array}
$$

An example (continued)

$\underset{x \geq 0}{\operatorname{minimize}}$	$-x_{2}^{2}$
subject to	$x_{1}+x_{2}-x_{3}=3$
	$x_{1}-x_{4}=2$
and	$x_{1} \perp x_{2}$.
$\bar{d} \triangleq(0,1,1,0)^{T}$ has $A \bar{d}=0$.	

Not valid direction in QPCC since must have $x_{1}>0$, so must have $d_{2}=0$.

$$
\begin{array}{ll}
\underset{X, X}{\operatorname{minimize}} & -X_{2,2} \\
\text { subject to } & x_{1}+x_{2}-x_{3}=3 \\
& x_{1}-x_{4}=2 \\
& X_{1,1}+2 X_{1,2}+X_{2,2}-2 X_{1,3} \\
& -2 X_{2,3}+X_{3,3}=9 \\
& X_{1,1}+X_{4,4}-2 X_{1,4}=4 \\
& X_{1,2}=0 \\
& \left(\begin{array}{cc}
1 & x^{T} \\
x & X
\end{array}\right) \in \mathcal{C} \mathcal{P}_{5} .
\end{array}
$$

But $\left(\begin{array}{cc}0 & \overline{0} \\ 0 & \bar{d} \bar{d}^{T}\end{array}\right)$ is a feasible ray of the completely positive program, so it is unbounded below.

Our assumptions

1. Our QCQP is an $n S p 0-Q C Q P$.
2. Let $L \triangleq\left\{d \in \mathcal{K} \mid A d=0\right.$ and $\left.d^{T} \mathbf{Q} d=0\right\}$.

Assume objective function matrix Q^{0} is copositive on L.

* Note: No boundedness assumption on any of the variables.
* Note: Assumptions all hold if $q(x)=\sum_{i \in B} x_{i}\left(1-x_{i}\right)$ and $0 \leq x_{i} \leq 1 \forall i \in B$. (Burer: third assumption holds provided optimal value of BQP is finite.)

Completely positive relaxation is tight

Theorem
Under our two assumptions, the nSpO-QCQP and its completely positive relaxation are equivalent in the sense that

> The nSpO-QCQP is feasible if and only if the completely positive program is feasible.
> 2 Fither the ontimal values of the nSpO-QCQP and the completely positive program are finite and equal, or both of them are unbounded below.
> 3. Ascume both the $n \mathrm{Sn} \cap-\cap C \cap P$ and the completely positive program are bounded below, and (\bar{x}, \bar{X}) is optimal for the completely positive program, then \bar{x} is in the convex hull of the optimal solutions of the nSp0-QCQP.
> 4. The optimal value of the nSp0-QCQP is attained if and only if the same holds for the completely positive program.

Completely positive relaxation is tight

Theorem
Under our two assumptions, the nSpO-QCQP and its completely positive relaxation are equivalent in the sense that

1. The $n S p 0-Q C Q P$ is feasible if and only if the completely positive program is feasible.

Completely positive relaxation is tight

Theorem

Under our two assumptions, the nSpO-QCQP and its completely positive relaxation are equivalent in the sense that

1. The $n S p 0-Q C Q P$ is feasible if and only if the completely positive program is feasible.
2. Either the optimal values of the $\mathrm{nSpO}-Q C Q P$ and the completely positive program are finite and equal, or both of them are unbounded below.

Completely positive relaxation is tight

Theorem

Under our two assumptions, the nSpO-QCQP and its completely positive relaxation are equivalent in the sense that

1. The nSpO-QCQP is feasible if and only if the completely positive program is feasible.
2. Either the optimal values of the nSpo-QCQP and the completely positive program are finite and equal, or both of them are unbounded below.
3. Assume both the $n S p 0-Q C Q P$ and the completely positive program are bounded below, and (\bar{x}, \bar{X}) is optimal for the completely positive program, then \bar{x} is in the convex hull of the optimal solutions of the $n S p 0-Q C Q P$.
only if the same holds for the completely positive program.

Completely positive relaxation is tight

Theorem

Under our two assumptions, the nSpO-QCQP and its completely positive relaxation are equivalent in the sense that

1. The nSpO-QCQP is feasible if and only if the completely positive program is feasible.
2. Either the optimal values of the nSpo-QCQP and the completely positive program are finite and equal, or both of them are unbounded below.
3. Assume both the $n S p 0-Q C Q P$ and the completely positive program are bounded below, and (\bar{x}, \bar{X}) is optimal for the completely positive program, then \bar{x} is in the convex hull of the optimal solutions of the nSp0-QCQP.
4. The optimal value of the nSpO-QCQP is attained if and only if the same holds for the completely positive program.

Completely positive representations of QPCCs

Corollary

The QPCC

$$
\begin{array}{ll}
\underset{x \triangleq\left(x^{0}, x^{1}, x^{2}\right)}{\operatorname{minimize}} & \left(c^{0}\right)^{T} x+\frac{1}{2} x^{T} Q^{0} x \\
\text { subject to } & A x=b \quad(Q P C C) \\
\text { and } & x^{0} \in \mathcal{K}^{0}, \mathcal{K}^{1} \ni x^{1} \perp x^{2} \in \mathcal{K}^{1^{*}}
\end{array}
$$

is equivalent to its convex completely positive lifting, provided Q^{0} is copositive on an appropriate subset of the recession cone.

Note that we impose no boundedness assumption on the complementary variables.

Our second assumption

Recall our second assumption:

* Let $L \triangleq\left\{d \in \mathcal{K} \mid A d=0\right.$ and $\left.d^{\top} \mathbf{Q} d=0\right\}$.

Assume objective function matrix Q^{0} is copositive on L.
This assumption can be removed:
replace the quadratic objective function by a linear objective function $\min \left(c^{0}\right)^{T} x+z$, and add the constraint $-z+\frac{1}{2} x^{T} Q^{0} x \leq 0$.
Then construct the corresponding $\mathrm{nSpO}-\mathrm{QCQP}$.
Hence we have the following theorem:

Theorem

Any QCQP is equivalent to a convex completely positive program.

Rank-constrained SDPs

$\min _{X}$	$\quad\langle C, X\rangle$
subject to	
	$\left\langle A_{i}, X\right\rangle$

where S_{+}^{n} is set of $n \times n$ symmetric psd matrices,
C, A_{i} symmetric $n \times n$ matrices.

Objective function is linear, this problem is equivalent to its convex completely positive lifting. The lifting has $O\left(n^{4}\right)$ variables.

Rank-constrained SDPs

$\min _{X}$	$\langle C, X\rangle$
subject to	
$\left\langle A_{i}, X\right\rangle$	$=b_{i} \quad \forall i$
$\operatorname{rank}(X)$	$\leq p$
X	$\in S_{+}^{n}$

where S_{+}^{n} is set of $n \times n$ symmetric psd matrices,
C, A_{i} symmetric $n \times n$ matrices.

Objective function is linear, this problem is equivalent to its convex completely positive lifting. The lifting has $O\left(n^{4}\right)$ variables.

Outline

(2) Relationship between QCQPs and QPCCs

(3) Completely Positive Relaxation

4 Conclusions

Conclusions

A conic quadratically constrained quadratic program is equivalent to a conic quadratic program with complementarity constraints.

Conic quadratically constrained quadratic programs are equivalent to convex conic programs, even if the variables are unbounded and even if the constraints and/or objective are nonconvex.

[^0]: ${ }^{1}$ Joint work with Jong-Shi Pang and Lijie Bai. Supported by AFOSR and NSF

