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The AGNEP
There are n players, each labeled by ν = 1, · · · , n.

Parameterized by rivals’ strategies x−ν ,
(
xν

′)n
ν 6=ν ′=1

, player ν’s optimization is

a convex quadratic program:

minimize
xν∈Ξν(x−ν)

θν(x
ν, x−ν) , 1

2
(xν )THννxν + (xν )T

hν +
n∑

ν 6=ν ′=1

Hνν ′ xν
′


︸ ︷︷ ︸

convex quadratic in xν given x−ν

, where

Ξν(x−ν) ,

x
ν ∈ Rnν+ | Bνxν ≥ fν︸ ︷︷ ︸

private constraint

,

n∑
ν ′=1

Aν
′
xν

′ ≥ b︸ ︷︷ ︸
common, coupled constraint

.

Remark: There is no player-dependent coupled constraint of the form:
n∑

ν ′=1

Aνν
′
xν

′ ≥ b ν
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LCP with no structural assumption on multipliers

Introducing multipliers λν,p (for private constraints) and λν,s (for shared con-
straints), we obtain a linear complementarity formulation of the game:

0 ≤ zNE ⊥ wNE , qNE +MNEzNE ≥ 0, with

zNE ,



 x1

...

xn


−−− λ1,p

...

λn,p


−−− λ1,s

...

λn,s





, wNE ,



 y1

...

yn


−−− s1,p

...

sn,p


−−− s1,s

...

sn,s
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MNE ,



H11 · · · H1n | −(B1)T | −(A1)T

... . . . ... | . . . | . . .

Hn1 · · · Hnn | −(Bn)T | −(An)T

−− −− −− | −− −− −− | −− −− −−
B1 | |

. . . | |
Bn | |

−− −− −− | −− −− −− | −− −− −−
A1 · · · An | |
... · · · ... | |
A1 · · · An | |


Note the structures in the last block in the first row (block diagonal) and the
same block in last column (repeating rows).

In general, Hνν ′ 6= Hν ′,ν for ν 6= ν ′; Hνν is symmetric positive semidefinite.
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A statement of Lemke’s algorithm

The augmented LCP with covering vector d > 0:

0 ≤ z ⊥ w , q + τ d+Mz ≥ 0.

3 possible outcomes of Lemke’s algorithm: (a) cycling (degeneracy resolu-
tion), (b) ray termination, or (c) solution obtained.

(I) If the algorithm terminates at a secondary ray, then there exists a tuple
(w∗, w̃, z∗0, z̃0, z∗, z̃) with z∗0 > 0 and z̃ 6= 0 such that for all τ ≥ 0,

0 ≤ z∗ + τ z̃ ⊥ w∗ + τw̃ = q + d (z∗0 + τ z̃0) +M(z∗ + τ z̃) ≥ 0. (1)

(II) If M is a semimonotone matrix, then the scalar z̃0 satisfying (1) must

equal zero; hence, if for every scalar z0 > 0, SOL(q+dz0,M) is bounded, then

the LCP (q,M) has a solution that can be computed by Lemke’s method with

d as the covering vector (with a degeneracy resolution scheme). �
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Specialization to the LCP (qNE,MNE)

Let

JNE ,



H11 · · · H1n | −(B1)T

... . . . ... | . . .

Hn1 · · · Hnn | −(Bn)T

−− −− −− | −− −− −−
B1 |

. . . |
Bn


, A ,

[
A1 · · · An

]
.

• If JNE is semimonotone, and if the nonzero entries in each row of the matrix
A are of a single sign, then MNE is semimonotone.

• Under further conditions:

SOL(0, JNE) = {0 } ⇒ SOL(0,MNE) = 0

⇒ successful termination of Lemke

under degeneracy resolution
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An illustrative example: degeneracy is real!

Consider a 2-person game with individual optimization problems as follows:

maximize
x1≥0

x1(1− 0.5x1 − 0.5x2)

subject to 1− x1 − x2

(λ1)
≥ 0

maximize
x2≥0

x2(2− 0.5x1 − 0.5x2)

subject to 1− x1 − x2

(λ2)
≥ 0

The following 2 tableaux detail the first pivot in Lemke’s algorithm.

q z0 x1 x2 λ1 λ2

w1 -1 1 1 0.5 1 0
w2 -2 1 0.5 1 0 1
s1 1 1 -1 -1 0 0
s2 1 1 -1 -1 0 0

q w2 x1 x2 λ1 λ2

w1 1 1 0.5 -0.5 1 -1
z0 2 1 -0.5 -1 0 -1
s1 3 1 -1.5 -2 0 -1
s2 3 1 -1.5 -2 0 -1

• s2 made nonbasic: pivots of < s2, x2 >; < w1, λ2 >; < z0, x1 > terminate at
the solution (1,0,0,1.5).

• s1 made nonbasic: pivot of < s1, x2 > leads to ray termination and the
method fails.

2 remarks: (a) algorithm may fail, and (b) only one multiplier (λ2) is positive.

8



LCP with common multipliers on shared constraints

Variational equilibria: λν,s = λs for all ν; i.e., common multipliers
of shared constraints.

zVE ,




x1

...

xn


−−−
λ1,p

...

λn,p


−−−

λs

collapsed
into one
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MVE ,



H11 · · · H1n | −(B1)T | −(A1)T

... . . . ... | . . . | ...

Hn1 · · · Hnn | −(Bn)T | −(An)T

−− −− −− | −− −− −− | −−
B1 | |

. . . | |
Bn | |

−− −− −− | −− −− −− | −−
A1 · · · An | |


Excluding the upper left block, MVE has a skew symmetry structure that is
absent in the previous non-VE formulation. Let

JVE ,

 H11 · · · H1n

... . . . ...

Hn1 · · · Hnn

 .
• If JVE is copositive, then so is MVE.
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Summary of results with Lemke’s algorithm
pertaining to multipliers of shared constraints

• Applied to the non-VE formulation, Lemke’s algorithm, if successful, com-
putes only one kind of NE, those for which at most one player has a non-zero
multiplier associated with each shared constraint.

• Thus, many NE are elusive by this algorithm, motivating the need to modify
it for (a) robustness, and (b) capability to compute NE of other kinds.

• Multipliers provide meaningful insights on the constraints; thus desirable to
be able to compute solutions with different kinds of multipliers.

• Introduced the notion of a partial VE computable by a modified Lemke
method; such a partial VE enforced multiplier consistency across all players
for certain shared constraints.

• Rosen’s VE can be approximated by specialized regularizations of the LCP
formulation of the game.

• Introduced an equivalent reformulation of shared constraints and a param-

eterization idea, yielding computable NE with yet a different property of the

multipliers of these constraints.
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Structural property of multipliers in Lemke solutions

Proposition. If Lemke’s method finds a solution of the LCP (qNE,MNE) of
the non-VE formulation of the AGNEP, then for each shared constraint ` =
1, · · · ,ms, ∃ in that solution at most one ν ∈ {1, · · · , N} such that λν,s` > 0. �

Thus, the only VE that can be computed by Lemke’s algorithm when applied

to the LCP (qNE,MNE) is the one with all multipliers equal to zero.
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A modified Lemke algorithm for the AGNEP

Perform Lemke’s method until the s-variables of shared constraint ` become
blocking. Call this Tableau 1 and randomly choose sν,s` to pivot out of the

basis so that the next entering variable is λν,s` . Define I , {ν}.

• If ray termination occurs at any point after sν,s` is made nonbasic, choose

sν
′,s
` with ν ′ /∈ I as the blocking variable in Tableau 1 so that λν

′,s
` is the next

entering variable.

• Resume the usual operation of the algorithm using the new blocking variable
in Tableau 1. Stop if a solution is found. Otherwise, either return to Step 1
with I , I ∪ {ν ′} or proceed to Step 2 following ray termination.

• If ray termination has occurred after all s•,s` pivots, return to Tableau 1 and

• delete all but one row corresponding to the `th shared constraint and
relabel the variable ss

`;

• combine all λ•,s` variables into a single multiplier labeled λs
`;

• recalculate the λs
` column of the new tableau.
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An illustration of the modified scheme

A river basin pollution game

(Haurie-Krawczyk 1997; Nabetani-Tseng-Fukushima 2011)

3 competitive players and 2 shared constraints:

minimize
xν≥0

[ανxν + 0.01 (x1 + x2 + x3 )− χν ] xν

subject to −100 ≤ −3.25x1 − 1.25x2 − 4.125x3

and −100 ≤ −2.2915x1 − 1.5625x2 − 2.8125x3,

with parameters α1 = 0.01, α2 = 0.05, α3 = 0.01, χ1 = 2.9,

χ2 = 2.88, and χ3 = 2.85.
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q z0 x1 x2 x3 λ1,s
1 λ2,s

1 λ3,s
1 λ1,s

2 λ2,s
2 λ3,s

2

w1 -2.9 1 0.04 0.01 0.01 3.25 0 0 2.29 0 0

w2 -2.88 1 0.01 0.12 0.01 0 1.25 0 0 1.56 0

w3 -2.85 1 0.01 0.01 0.04 0 0 4.12 0 0 2.81

s1,s
1 100 1 -3.25 -1.25 -4.12 0 0 0 0 0 0

s2,s
1 100 1 -3.25 -1.25 -4.12 0 0 0 0 0 0

s3,s
1 100 1 -3.25 -1.25 -4.12 0 0 0 0 0 0

s1,s
2 100 1 -2.30 -1.51 -2.81 0 0 0 0 0 0

s2,s
2 100 1 -2.30 -1.51 -2.81 0 0 0 0 0 0

s3,s
2 100 1 -2.30 -1.51 -2.81 0 0 0 0 0 0

Table 0: The river basic game: Original formulation
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q w1 w2 w3 x3 λ1,s
1 λs2,1 λ3,s

1 λ1,s
2 λ2,s

2 λ3,s
2

z0 2.8 -0.3 -0.09 1.42 -0.05 1.08 0.1 -5.9 0.8 0.1 -4

x1 1.7 33.3 0 -33 1 -108 0 138 -76.4 0 94

x2 0.3 0 9.1 -9.1 0.3 0 -11.4 37.5 0 -14 26

s1,s
1 97.1 -109 -11.5 121 -7.8 353 14 -500 249 18 -341

s2,s
1 97.1 -109 -11.5 121 -7.8 353 14 -500 249 18 -341

s3,s
1 97.1 -109 -11.5 121 -7.8 353 14 -500 249 18 -341

s1,s
2 98.6 -76.7 -13.8 91.6 -5.6 249.3 17.3 -377.7 176 21.6 -258

s2,s
2 98.6 -76.7 -13.8 91.6 -5.6 249.3 17.3 -377.7 176 21.6 -258

s3,s
2 98.6 -76.7 -13.8 91.6 -5.6 249.3 17.3 -377.7 176 21.6 -258

Table 1: After 3 pivots from original, x3 is the entering variable

Note the repetition of the rows of the shared constraints, leading to ties in choosing the

leaving variable.
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q w1 w2 w3 s1,s
1 λ1,s

1 λ2,s
1 λ3,s

1 λ1,s
2 λ2,s

2 λ3,s
2

z0 2.17 0.40 -0.01 0.60 0.01 -1.31 0.02 -2.48 -0.93 0.02 -1.69

x1 14 19.3 -1.5 -17.7 -0.13 -62.9 1.8 73 -44 2.3 50

x2 3.7 -3.8 8.7 -4.8 -0.04 12.4 -10.9 20 8.7 -13.6 13.6

x3 12.5 -14 -1.5 15.6 -0.13 45.5 1.8 -64.3 32.1 2.3 -44

s2,s
1 0 0 0 0 1 0 0 0 0 0 0

s3,s
1 0 0 0 0 1 0 0 0 0 0 0

s1,s
2 29 1.2 -5.6 4.7 0.7 -3.9 7 -19.5 -2.7 8.8 -13.3

s2,s
2 29 1.2 -5.6 4.7 0.7 -3.9 7 -19.5 -2.7 8.8 -13.3

s3,s
2 29 1.2 -5.6 4.7 0.7 -3.9 7 -19.5 -2.7 8.8 -13.3

Table 2: Next pivot is on the distinguished shared multiplier λs1,1

Note the two rows of the first shared constraints one of whose slack variables (s1,s
1 ) is

nonbasic.
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q w1 w2 w3 s1,1 x1 λ2,s
1 λ3,s

1 λ1,s
2 λ2,s

2 λ3,s
2

z0 1.88 0 -0.02 0.97 0.01 0.02 -0.02 -4.01 0 -0.03 -2.74

λs1,1 0.23 0.31 -0.02 -0.28 -0.002 -0.02 0.03 1.2 -0.71 0.04 0.8

x2 6.5 0 8.4 -8.3 -0.06 -0.20 -10.5 34.4 0 -13.1 23.5

x3 22.7 0 -2.5 2.8 -0.22 -0.72 3.18 -11.4 0 4 -7.8

s2,s
1 0 0 0 0 1 0 0 0 0 0 0

s3,s
1 0 0 0 0 1 0 0 0 0 0 0

s1,s
2 28.1 0 -5.5 5.8 0.7 0.06 6.9 -24 0 8.7 -16.4

s2,s
2 28.1 0 -5.5 5.8 0.7 0.06 6.9 -24 0 8.7 -16.4

s3,s
2 28.1 0 -5.5 5.8 0.7 0.06 6.9 -24 0 8.7 -16.4

Table 3: Post pivot on λ1,s
1 ; ray termination on w1

Return to Table 1 and choose s3,s
1 as the blocking variable; ray termination occurs after pivot.

Return to Table 1 and make the last choice to break tie; i.e., choose s2,s
1 as the blocking

variable, leading also to ray termination.

Now we group the first shared constraints and the corresponding multipliers, obtaining the

next table.
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q w1 w2 w3 x3 λs1 λ1,s
2 λ2,s

2 λ3,s
2

z0 2.83 -0.33 -0.09 1.42 -0.05 -4.68 0.76 0.14 -4.01

x1 1.67 33.33 0 -33.33 1 29.17 -76.38 0 93.75

x2 0.27 0 9.09 -9.09 0.27 26.14 0 -14.20 25.57

ss1 97.07 -108.67 -11.45 121.12 -7.77 -132.14 249.01 17.90 -340.65

s1,s
2 98.60 -76.72 -13.84 91.56 -5.57 -111.04 175.80 21.63 -257.51

s2,s
2 98.60 -76.72 -13.84 91.56 -5.57 -111.04 175.80 21.63 -257.51

s3,s
2 98.60 -76.72 -13.84 91.56 -5.57 -111.04 175.80 21.63 -257.51

Table 4: After collapsing shared constraint 1 and its multipliers
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q w1 w2 w3 s1 λs1 λ1,s
2 λ2,s

2 λ3,s
2

z0 2.17 0.40 -0.01 0.60 0.01 -3.78 -0.93 0.02 -1.69

x1 14.16 19.35 -1.47 -17.74 -0.13 12.16 -44.33 2.30 49.90

x2 3.68 -3.81 8.69 -4.84 -0.04 21.50 8.74 -13.58 13.61

x3 12.50 -13.99 -1.47 15.59 -0.13 -17.01 32.05 2.30 -43.85

s1,s
2 29.01 1.19 -5.63 4.73 0.72 -16.32 -2.72 8.80 -13.30

s2,s
2 29.01 1.19 -5.63 4.73 0.72 -16.32 -2.72 8.80 -13.30

s3,s
2 29.01 1.19 -5.63 4.73 0.72 -16.32 -2.72 8.80 -13.30

Table 5: Solution found after pivot on λs1
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Regularization and generalized VE

Mi , MNE +



E1;x
i

. . .

En;x
i

E1;p
i

. . .

En;p
i

E1;s
i

. . .

En;p
i


where E ν;x,p,s

i is a positive diagonal matrix with lim
i→∞

E ν;x,p,s
i = 0 and for all ν,

ν ′ = 1, · · · , n and all ` = 1, · · · ,ms,

lim
i→∞

(
E ν;s
i

)
``(

Eν ′;s
i

)
``

= e νν
′

` > 0;
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Generalized VE

For any ms positive matrices Es
` ,

[
e νν

′

`

]n
ν,ν ′=1

∈ Rn×n satisfying e νν
′

` e ν
′ν

` = 1 for

all ν and ν ′, let Λ(Es) be defined as follows:

Λ(E s) ,
{
λs | λν,s` = e νν

′

` λν
′,s
` for all ` = 1, · · · ,ms, and all ν, ν ′ = 1, · · · , n

}
.

Rosen’s normalized Nash equilibria correspond to the case where each matrix
Es
` is the same with entries given by e νν

′

` = e ν ′/eν for a positive vector e ∈ Rn.

A variational equilibrium is a special kind of normalized NE where e is the
vector of all ones.

Proposition. If ẑ = lim
i→∞

zi with zi ∈ SOL(qNE,Mi), then ẑ ,
(
x̂, λ̂p, λ̂ s

)
is a

solution of the LCP (qNE,MNE) and λ̂ s ∈ Λ(E s). �
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