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The AGNEP
There are n players, each labeled by v =1,---  n.

n

Parameterized by rivals’ strategies «™ £ ("), _,,

a convex quadratic program:

player v's optimization is
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Remark: There is no player-dependent coupled constraint of the form:
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LCP with no structural assumption on multipliers

Introducing multipliers A\¥P (for private constraints) and A\**® (for shared con-
straints), we obtain a linear complementarity formulation of the game:

0 < 2ne L wne £ gne + Mnezne > 0, with
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Note the structures in the last block in the first row (block diagonal) and the
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same block in last column (repeating rows).
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In general, H"' %= HY'"V for v # v'; H" is symmetric positive semidefinite.
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A statement of Lemke’s algorithm

The augmented LCP with covering vector d > O:
0<zlw&g+7rd+ Mz > 0.

3 possible outcomes of Lemke's algorithm: (a) cycling (degeneracy resolu-
tion), (b) ray termination, or (c) solution obtained.

(I) If the algorithm terminates at a secondary ray, then there exists a tuple
(w*, w, 23, z0, 2*,z) with z} > 0 and z # 0 such that for all = > 0,
0 0

OL< 2471z Lw' +rw=q+d(z5+720) + M(z*+72) > 0. (1)

(II) If M is a semimonotone matrix, then the scalar zp satisfying (1)) must
equal zero; hence, if for every scalar zo > 0, SOL(q¢+dzq, M) is bounded, then
the LCP (g, M) has a solution that can be computed by Lemke's method with

d as the covering vector (with a degeneracy resolution scheme). []



Specialization to the LCP (gng, MNE)

et
B Hll Hln | —(Bl)T 7]
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o If Jyg IS sSemimonotone, and if the nonzero entries in each row of the matrix
A are of a single sign, then Mpyg is semimonotone.

e Under further conditions:
SOL(O,JNE) = {O} = SOL(O,MNE) =0
= successful termination of Lemke

under degeneracy resolution



An illustrative example: degeneracy is reall
Consider a 2-person game with individual optimization problems as follows:

maxi>n3ize 21(1 — 0.527 — 0.5x5) maxi>n8ize 22(2 — 0.5217 — 0.5x5)
o (M) o (A=)
subjectto 1 —xz1—x22o > O subjectto 1 —xz1—a22 > O

The following 2 tableaux detail the first pivot in Lemke’'s algorithm.

q zo I o A1 A2 q || wo T o A1 Ao
w1 | -1 1 1 0.5 1 0 wi | 1 1 0.5 -05 1 -1
wo | -2 | 1 0.5 1 0 1 zo | 2 1 -0.5 -1 0O -1
s1 ] 1 1 -1 -1 0 0] s1 |13 1 -15 -2 0O -1
s | 1 1 -1 -1 0 0 s> | 3 1 -15 -2 0O -1

e s> made nonbasic: pivots of < sp, 20 >; < wi, A2 >; < 20,21 > terminate at
the solution (1,0,0,1.5).

e s; made nonbasic: pivot of < si1,xo > leads to ray termination and the
method fails.

2 remarks: (a) algorithm may fail, and (b) only one multiplier (\>) is positive.
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LCP with common multipliers on shared constraints

Variational equilibria: A\Y% = X% for all v; i.e., common multipliers
of shared constraints.

ZVE —

)\S
collapsed
\ into one )
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Excluding the upper left block, My has a skew symmetry structure that is
absent in the previous non-VE formulation. Let

Hll L. Hln

A

JVE = . :
Hnl L. Hnn

e If Jyg is copositive, then so is MvEg.
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Summary of results with Lemke’s algorithm
pertaining to multipliers of shared constraints

e Applied to the non-VE formulation, Lemke’'s algorithm, if successful, com-
putes only one kind of NE, those for which at most one player has a non-zero
multiplier associated with each shared constraint.

e T hus, many NE are elusive by this algorithm, motivating the need to modify
it for (a) robustness, and (b) capability to compute NE of other Kinds.

e Multipliers provide meaningful insights on the constraints; thus desirable to
be able to compute solutions with different kinds of multipliers.

e Introduced the notion of a partial VE computable by a modified Lemke
method; such a partial VE enforced multiplier consistency across all players
for certain shared constraints.

e Rosen’'s VE can be approximated by specialized regularizations of the LCP
formulation of the game.

e Introduced an equivalent reformulation of shared constraints and a param-
eterization idea, yielding computable NE with yet a different property of the
multipliers of these constraints.
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Structural property of multipliers in Lemke solutions

Proposition. If Lemke's method finds a solution of the LCP (gne, Mng) of
the non-VE formulation of the AGNEP, then for each shared constraint ¢ =
1,---,ms 3 in that solution at most one v € {1,---,N} such that \;° > 0. O

Thus, the only VE that can be computed by Lemke’s algorithm when applied
to the LCP (gng, Mne) is the one with all multipliers equal to zero.
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A modified Lemke algorithm for the AGNEP

Perform Lemke’'s method until the s-variables of shared constraint ¢ become
blocking. Call this Tableau 1 and randomly choose sZ’S to pivot out of the

basis so that the next entering variable is \;®. Define I £ {v}.

v,s

e If ray termination occurs at any point after s,” is made nonbasic, choose
sv® with v’ ¢ I as the blocking variable in Tableau 1 so that \/*® is the next
entering variable.

e Resume the usual operation of the algorithm using the new blocking variable
in Tableau 1. Stop if a solution is found. Otherwise, either return to Step 1
with T = I U {v'} or proceed to Step 2 following ray termination.

e If ray termination has occurred after all sz’s pivots, return to Tableau 1 and

e delete all but one row corresponding to the ¢th shared constraint and
relabel the variable sj;

e combine all A\}” variables into a single multiplier labeled A$;

e recalculate the Aj column of the new tableau.
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An illustration of the modified scheme

A river basin pollution game
(Haurie-Krawczyk 1997; Nabetani-Tseng-Fukushima 2011)

3 competitive players and 2 shared constraints:

minimize [apxy +0.01(x1 + a0+ 23) — X0 ] 20

.’L']/ZO
subject to —100 < —3.2bx7 — 1.25x5 — 4.12bx3
and —100 < —2.2915x1 — 1.5625x, — 2.8125x3,

with parameters a3 = 0.01, ap, = 0.05, az3 = 0.01, x;1 = 2.9,
X2 = 2.88, and x3 = 2.85.
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q 20 a1 2 A S D YD Ve D o
wy | -29 || I 0.04 0.01 001 325 0 0 229 O 0
wy | -2.88 | 1 001 012 001 0 125 0 0 156 O
w3 | -2.85 | 1 0.01 0.0l 004 O 0 412 0 0 281
57| 100 | 1 -3.25 -1.25 -412 0 0 0 0 0 0
s3] 100 | 1 -325 -125 -412 O 0 0 0 0 0
s3] 100 | 1 -325 -125 -412 0 0 0 0 0 0
sy | 100 | 1 -230 -151 -281 0 0 0 0 0 0
s5° | 100 | 1 -230 -1.51 -2.81 O 0 0 0 0 0
s2° | 100 | 1 -2.30 -1.51 -2.81 0 0 0 0 0 0

Table 0: The river basic game: Original formulation
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Is s 3,8 Is 2.8 3,8
q w1 Wy w3 T3 Al A5 4 Al A5 A5 A5

20 2.8 -0.3 -0.09 1.42 -0.05 1.08 0.1 -5.9 0.8 0.1 -4

1 1.7 33.3 0 -33 1 -108 0 138 -76.4 0 94

T2 0.3 0 9.1 -9.1 0.3 0 -11.4 37.5 0] -14 26
si’s 97.1 -109 -11.5 121 -7.8 353 14 -500 249 18 -341
sf’s 97.1 -109 -11.5 121 -7.8 353 14 -500 249 18 -341
sf’s 97.1 -109 -11.5 121 -7.8 353 14 -500 249 18 -341

sé’s 98.6 || -76.7 -13.8 91.6 -5.6 249.3 17.3 -377.7 176 21.6 -258
sg’s 98.6 || -76.7 -13.8 91.6 -5.6 249.3 17.3 -377.7 176 21.6 -258
sg’s 98.6 || -76.7 -13.8 916 -5.6 249.3 17.3 -377.7 176 21.6 -258

Table 1: After 3 pivots from original, x3 is the entering variable

Note the repetition of the rows of the shared constraints, leading to ties in choosing the

leaving variable.
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q w1 W w3 s}’s )\}’S )\%S X;”S )\é’s )\3,5 )\g’s
20 | 2.17 |[ 0.40 -0.01 0.60 0.01 -1.31 0.02 -2.48 -0.93 0.02 -1.69
1| 14 | 193 -15 -17.7 -0.13 -62.9 1.8 73 -44 2.3 50
x| 37 || -38 87 -48 -0.04 124 -109 20 8.7 -13.6 13.6
x3 | 125 || -14 -1.5 156 -0.13 455 1.8 -64.3 321 23  -44
s37° | 0 0 0 0 1 0 0 0 0 0 0
s3] 0 0 0 0 1 0 0 0 0 0 0
s 29 | 1.2 -56 47 07 -39 7 -195 -27 88 -13.3
s2° | 29 12 -56 47 07 -39 7 -195 -27 88 -13.3
s2° | 29 12 -56 47 07 -39 7 -195 -27 88 -13.3

Table 2: Next pivot is on the distinguished shared multiplier Aj ;

Note the two rows of the first shared constraints one of whose slack variables (s}’s) IS

nonbasic.
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q w1 wo w3 51,1 T )\f’s )\i”s )\é’s )\g’s )\g,s
z | 1.88 | 0 -002 097 001 002 -002 -401 0 -0.03 274
Aj; | 023 | 031 -0.02 -0.28 -0.002 -0.02 003 12 -0.71 0.04 0.8
x> | 6.5 0 84 -83 -0.06 -0.20 -10.5 34.4 0 -13.1 235
z3 | 227 0o -25 28 -022 -0.72 3.18 -11.4 0 4 7.8
s7° | 0 0 0 0 1 0 0 0 0 0 0
s 0 0 0 0 1 0 0 0 0 0 0
s2* 1281 0 -55 538 0.7 006 69  -24 0 8.7 -16.4
s> 1281 0 -55 538 0.7 006 69  -24 0 8.7 -16.4
s2® | 28.1 | 0O 55 5.8 07 0.06 69 -24 0 8.7 -16.4

Table 3: Post pivot on )\}’S; ray termination on wi

Return to Table 1 and choose s:f’s as the blocking variable; ray termination occurs after pivot.

Return to Table 1 and make the last choice to break tie; i.e., choose s>*° as the blocking

variable, leading also to ray termination.
Now we group the first shared constraints and the corresponding multipliers, obtaining the

next table.
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Is 2.8 3,8
q w1 W7 w3 T3 Al A5 A5 A5

2.83 -0.33 -0.09 1.42 -0.05 -4.68 0.76 0.14 -4.01
1.67 33.33 0] -33.33 1 29.17 -76.38 0 93.75
0.27 0 9.09 -9.09 0.27 26.14 0 -14.20 25.57

97.07 || -108.67 -11.45 121.12 -7.77 -132.14 249.01 17.90 -340.65
98.60 -76.72 -13.84 91.56 -56.57 -111.04 175.80 21.63 -257.51
98.60 -76.72 -13.84 91.56 -56.57 -111.04 175.80 21.63 -257.51
98.60 -76.72 -13.84 91.56 -5.57 -111.04 175.80 21.63 -257.51

Table 4: After collapsing shared constraint 1 and its multipliers
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q w1 wWo w3 S1 A )\é’s /\g,s )\g,s
20 2.17 0.40 -0.01 0.60 0.01 -3.78 -0.93 0.02 -1.69
r1 | 14.16 19.35 -1.47 -17.74 -0.13 12.16 -44.33 2.30 49.90
o 3.68 -3.81 8.69 -4.84 -0.04 21.50 8.74 -13.58 13.61
x3 | 12.50 || -13.99 -1.47 1559 -0.13 -17.01 32.05 2.30 -43.85
sé’s 29.01 1.19 -5.63 4.73 0.72 -16.32 -2.72 8.80 -13.30
sg’s 29.01 1.19 -5.63 4.73 0.72 -16.32 -2.72 8.80 -13.30
sg’s 29.01 1.19 -5.63 4.73 0.72 -16.32 -2.72 8.80 -13.30

Table 5: Solution

found after pivot on Aj

20




Regularization and generalized VE

_ gt
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ENP
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EMP
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where E/"P*® is a positive diagonal matrix with lim E/”*?* =0 and for all v,
11— 00
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Generalized VE

n

For any m, positive matrices £ £ [e/”'] _. € R™" satisfying e;"'e/” =1 for

all v and v/, let A(E%) be defined as follows:

A(E®) £ {)\S | A = eé’”’)\Z”S forall¢=1,--- ,ms, and all v,v' =1, -- ,n}.
Rosen’s normalized Nash equilibria correspond to the case where each matrix
&, is the same with entries given by eg”’/' = e, /e, for a positive vector e € R".

A variational equilibrium is a special kind of normalized NE where e is the
vector of all ones.

Proposition. If 2 = limz® with z¢ € SOL(gne, M;), then z £ (E,XP,XS) is a

1—00

solution of the LCP (gng, Mne) and NN= A(E?). O]
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