On the solution of affine generalized Nash games with shared constraints by Lemke's algorithm

## Jong-Shi Pang

Department of Industrial and Systems Engineering

University of Southern California

presented at

6th International Conference on Complementarity Problems Humboldt Universität zur Berlin, Germany August 4–8, 2014

# **Contents of presentation**

- The affine generalized Nash equilibrium problem
- The linear complementarity problem
- Variational equilibria
- Summary of results
- Details

D.A. Schiro, J.S. Pang, and U.V. Shanbhag. On the solution of affine generalized Nash equilibrium problems with shared constraints by Lemke's method. *Mathematical Programming, Series A* 146 (2013) 1–46.

### The AGNEP

There are *n* players, each labeled by  $\nu = 1, \dots, n$ . Parameterized by rivals' strategies  $x^{-\nu} \triangleq (x^{\nu'})_{\nu \neq \nu'=1}^{n}$ , player  $\nu$ 's optimization is a convex quadratic program:

$$\underset{x^{\nu} \in \Xi^{\nu}(x^{-\nu})}{\text{minimize}} \theta_{\nu}(x^{\nu}, x^{-\nu}) \triangleq \underbrace{\frac{1}{2} (x^{\nu})^{T} H^{\nu \nu} x^{\nu} + (x^{\nu})^{T} \left( h^{\nu} + \sum_{\nu \neq \nu'=1}^{n} H^{\nu \nu'} x^{\nu'} \right)}_{\text{convex quadratic in } x^{\nu} \text{ given } x^{-\nu}}, \quad \text{where}$$

$$\equiv^{\nu} (x^{-\nu}) \triangleq \left\{ x^{\nu} \in \mathbb{R}^{n_{\nu}}_{+} \mid \underbrace{B^{\nu} x^{\nu} \geq f^{\nu}}_{\text{private constraint}}, \underbrace{\sum_{\nu'=1}^{n} A^{\nu'} x^{\nu'} \geq b}_{\text{common, coupled constraint}} \right\}.$$

Remark: There is no player-dependent coupled constraint of the form:

$$\sum_{\nu'=1}^{n} A^{\nu\nu'} x^{\nu'} \ge b^{\nu}$$

3

### LCP with no structural assumption on multipliers

Introducing multipliers  $\lambda^{\nu,p}$  (for private constraints) and  $\lambda^{\nu,s}$  (for shared constraints), we obtain a linear complementarity formulation of the game:

$$0 \leq z_{\mathsf{NE}} \perp w_{\mathsf{NE}} \triangleq q_{\mathsf{NE}} + M_{\mathsf{NE}} z_{\mathsf{NE}} \geq 0, \text{ with}$$
$$\begin{pmatrix} x^{1} \\ \vdots \\ x^{n} \end{pmatrix}_{----} \\ \begin{pmatrix} \lambda^{1,\mathsf{p}} \\ \vdots \\ \lambda^{n,\mathsf{p}} \end{pmatrix}_{-----} \\ \begin{pmatrix} \lambda^{1,\mathsf{s}} \\ \vdots \\ \lambda^{n,\mathsf{s}} \end{pmatrix}, w_{\mathsf{NE}} \triangleq \begin{pmatrix} \begin{pmatrix} y^{1} \\ \vdots \\ y^{n} \end{pmatrix}_{-----} \\ \begin{pmatrix} s^{1,\mathsf{p}} \\ \vdots \\ s^{n,\mathsf{p}} \end{pmatrix}_{------} \\ \begin{pmatrix} s^{1,\mathsf{s}} \\ \vdots \\ s^{n,\mathsf{s}} \end{pmatrix} \end{pmatrix}$$



Note the structures in the last block in the first row (block diagonal) and the same block in last column (repeating rows).

In general,  $H^{\nu\nu'} \neq H^{\nu',\nu}$  for  $\nu \neq \nu'$ ;  $H^{\nu\nu}$  is symmetric positive semidefinite.

### A statement of Lemke's algorithm

The augmented LCP with covering vector d > 0:

 $0 \leq z \perp w \triangleq q + \tau d + Mz \geq 0.$ 

3 possible outcomes of Lemke's algorithm: (a) cycling (degeneracy resolution), (b) ray termination, or (c) solution obtained.

(I) If the algorithm terminates at a secondary ray, then there exists a tuple  $(w^*, \tilde{w}, z_0^*, \tilde{z}_0, z^*, \tilde{z})$  with  $z_0^* > 0$  and  $\tilde{z} \neq 0$  such that for all  $\tau \ge 0$ ,

$$0 \leq z^* + \tau \widetilde{z} \perp w^* + \tau \widetilde{w} = q + d \left( z_0^* + \tau \widetilde{z}_0 \right) + M(z^* + \tau \widetilde{z}) \geq 0.$$
 (1)

(II) If M is a semimonotone matrix, then the scalar  $\tilde{z}_0$  satisfying (1) must equal zero; hence, if for every scalar  $z_0 > 0$ ,  $SOL(q+dz_0, M)$  is bounded, then the LCP (q, M) has a solution that can be computed by Lemke's method with d as the covering vector (with a degeneracy resolution scheme).

# Specialization to the LCP $(q_{NE}, M_{NE})$

Let

$$J_{\mathsf{NE}} \triangleq \begin{bmatrix} H^{11} & \cdots & H^{1n} & | & -(B^{1})^{T} \\ \vdots & \ddots & \vdots & | & & \ddots & \\ H^{n1} & \cdots & H^{nn} & | & & -(B^{n})^{T} \\ -- & -- & -- & | & -- & -- & -- \\ B^{1} & & & | & & \\ & \ddots & & | & & \\ & & B^{n} & & & \end{bmatrix}, \quad \mathbf{A} \triangleq \begin{bmatrix} A^{1} & \cdots & A^{n} \end{bmatrix}.$$

• If  $J_{\text{NE}}$  is semimonotone, and if the nonzero entries in each row of the matrix A are of a single sign, then  $M_{\text{NE}}$  is semimonotone.

#### • Under further conditions:

 $SOL(0, J_{NE}) = \{0\} \Rightarrow SOL(0, M_{NE}) = 0$ 

 $\Rightarrow$  successful termination of Lemke

under degeneracy resolution

### An illustrative example: degeneracy is real!

Consider a 2-person game with individual optimization problems as follows:

| $\max_{x_1 \ge 0}$ | $x_1(1-0.5x_1-0.5x_2)$                     |
|--------------------|--------------------------------------------|
| subject to         | $1-x_1-x_2 \stackrel{(\lambda_1)}{\geq} 0$ |

 $\begin{array}{ll} \underset{x_{2}\geq 0}{\text{maximize}} & x_{2}(2-0.5x_{1}-0.5x_{2})\\ \text{subject to} & 1-x_{1}-x_{2} \stackrel{(\lambda_{2})}{\geq} 0 \end{array}$ 

The following 2 tableaux detail the first pivot in Lemke's algorithm.

|       | q  | $z_0$ | $x_1$ | $x_2$ | $\lambda_1$ | $\lambda_2$ |
|-------|----|-------|-------|-------|-------------|-------------|
| $w_1$ | -1 | 1     | 1     | 0.5   | 1           | 0           |
| $w_2$ | -2 | 1     | 0.5   | 1     | 0           | 1           |
| $s_1$ | 1  | 1     | -1    | -1    | 0           | 0           |
| $s_2$ | 1  | 1     | -1    | -1    | 0           | 0           |

|       | q | $w_2$ | $x_1$ | <i>x</i> <sub>2</sub> | $\lambda_1$ | $\lambda_2$ |
|-------|---|-------|-------|-----------------------|-------------|-------------|
| $w_1$ | 1 | 1     | 0.5   | -0.5                  | 1           | -1          |
| $z_0$ | 2 | 1     | -0.5  | -1                    | 0           | -1          |
| $s_1$ | 3 | 1     | -1.5  | -2                    | 0           | -1          |
| $s_2$ | 3 | 1     | -1.5  | -2                    | 0           | -1          |

•  $s_2$  made nonbasic: pivots of  $\langle s_2, x_2 \rangle$ ;  $\langle w_1, \lambda_2 \rangle$ ;  $\langle z_0, x_1 \rangle$  terminate at the solution (1, 0, 0, 1.5).

•  $s_1$  made nonbasic: pivot of  $\langle s_1, x_2 \rangle$  leads to ray termination and the method fails.

**2** remarks: (a) algorithm may fail, and (b) only one multiplier  $(\lambda_2)$  is positive.

LCP with common multipliers on shared constraints

Variational equilibria:  $\lambda^{\nu,s} = \lambda^s$  for all  $\nu$ ; i.e., common multipliers of shared constraints.

$$z_{\mathsf{VE}} \triangleq \begin{pmatrix} x^{1} \\ \vdots \\ x^{n} \end{pmatrix} \\ ---- \\ \begin{pmatrix} \lambda^{1, \mathsf{p}} \\ \vdots \\ \lambda^{n, \mathsf{p}} \end{pmatrix} \\ ---- \\ \hline \lambda^{\mathsf{s}} \\ \text{collapsed} \\ \text{into one} \end{pmatrix}$$

Excluding the upper left block,  $M_{\rm VE}$  has a skew symmetry structure that is absent in the previous non-VE formulation. Let

$$J_{\mathsf{VE}} \triangleq \left[ \begin{array}{ccc} H^{11} & \cdots & H^{1n} \\ \vdots & \ddots & \vdots \\ H^{n1} & \cdots & H^{nn} \end{array} \right].$$

• If  $J_{VE}$  is copositive, then so is  $M_{VE}$ .

# Summary of results with Lemke's algorithm pertaining to multipliers of shared constraints

• Applied to the non-VE formulation, Lemke's algorithm, if successful, computes only one kind of NE, those for which at most one player has a non-zero multiplier associated with each shared constraint.

• Thus, many NE are elusive by this algorithm, motivating the need to modify it for (a) robustness, and (b) capability to compute NE of other kinds.

• Multipliers provide meaningful insights on the constraints; thus desirable to be able to compute solutions with different kinds of multipliers.

• Introduced the notion of a partial VE computable by a modified Lemke method; such a partial VE enforced multiplier consistency across all players for certain shared constraints.

• Rosen's VE can be approximated by specialized regularizations of the LCP formulation of the game.

• Introduced an equivalent reformulation of shared constraints and a parameterization idea, yielding computable NE with yet a different property of the multipliers of these constraints.

# Structural property of multipliers in Lemke solutions

**Proposition**. If Lemke's method finds a solution of the LCP  $(q_{NE}, M_{NE})$  of the non-VE formulation of the AGNEP, then for each shared constraint  $\ell = 1, \dots, m_s$ ,  $\exists$  in that solution at most one  $\nu \in \{1, \dots, N\}$  such that  $\lambda_{\ell}^{\nu, s} > 0$ .  $\Box$ 

Thus, the only VE that can be computed by Lemke's algorithm when applied to the LCP  $(q_{NE}, M_{NE})$  is the one with all multipliers equal to zero.

# A modified Lemke algorithm for the AGNEP

Perform Lemke's method until the *s*-variables of shared constraint  $\ell$  become blocking. Call this Tableau 1 and randomly choose  $s_{\ell}^{\nu,s}$  to pivot out of the basis so that the next entering variable is  $\lambda_{\ell}^{\nu,s}$ . Define  $I \triangleq \{\nu\}$ .

• If ray termination occurs at any point after  $s_{\ell}^{\nu,s}$  is made nonbasic, choose  $s_{\ell}^{\nu',s}$  with  $\nu' \notin I$  as the blocking variable in Tableau 1 so that  $\lambda_{\ell}^{\nu',s}$  is the next entering variable.

• Resume the usual operation of the algorithm using the new blocking variable in Tableau 1. Stop if a solution is found. Otherwise, either return to Step 1 with  $I \triangleq I \cup \{\nu'\}$  or proceed to Step 2 following ray termination.

- If ray termination has occurred after all  $s_\ell^{\bullet,\mathrm{s}}$  pivots, return to Tableau 1 and
  - delete all but one row corresponding to the  $\ell$ th shared constraint and relabel the variable  $s_{\ell}^{\rm s}$ ;
  - combine all  $\lambda_{\ell}^{\bullet,s}$  variables into a single multiplier labeled  $\lambda_{\ell}^{s}$ ;
  - recalculate the  $\lambda_{\ell}^{s}$  column of the new tableau.

### An illustration of the modified scheme

### A river basin pollution game

(Haurie-Krawczyk 1997; Nabetani-Tseng-Fukushima 2011)

3 competitive players and 2 shared constraints:

$$\begin{array}{ll} \underset{x_{\nu} \geq 0}{\text{minimize}} & \left[ \alpha_{\nu} x_{\nu} + 0.01 \left( x_{1} + x_{2} + x_{3} \right) - \chi_{\nu} \right] x_{\nu} \\ \text{subject to} & -100 \leq -3.25 x_{1} - 1.25 x_{2} - 4.125 x_{3} \\ \text{and} & -100 \leq -2.2915 x_{1} - 1.5625 x_{2} - 2.8125 x_{3}, \end{array}$$

with parameters  $\alpha_1 = 0.01$ ,  $\alpha_2 = 0.05$ ,  $\alpha_3 = 0.01$ ,  $\chi_1 = 2.9$ ,  $\chi_2 = 2.88$ , and  $\chi_3 = 2.85$ .

|                      | q     | $z_0$ | $x_1$ | $x_2$ | $x_3$ | $\lambda_1^{1,\mathrm{s}}$ | $\lambda_1^{2,\mathrm{s}}$ | $\lambda_1^{3,\mathrm{s}}$ | $\lambda_2^{1,\mathrm{s}}$ | $\lambda_2^{2,\mathbf{s}}$ | $\lambda_2^{3,s}$ |
|----------------------|-------|-------|-------|-------|-------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-------------------|
| $w_1$                | -2.9  | 1     | 0.04  | 0.01  | 0.01  | 3.25                       | 0                          | 0                          | 2.29                       | 0                          | 0                 |
| w2                   | -2.88 | 1     | 0.01  | 0.12  | 0.01  | 0                          | 1.25                       | 0                          | 0                          | 1.56                       | 0                 |
| w3                   | -2.85 | 1     | 0.01  | 0.01  | 0.04  | 0                          | 0                          | 4.12                       | 0                          | 0                          | 2.81              |
| $s_1^{1,\mathrm{s}}$ | 100   | 1     | -3.25 | -1.25 | -4.12 | 0                          | 0                          | 0                          | 0                          | 0                          | 0                 |
| $s_1^{2,s}$          | 100   | 1     | -3.25 | -1.25 | -4.12 | 0                          | 0                          | 0                          | 0                          | 0                          | 0                 |
| $s_1^{3,s}$          | 100   | 1     | -3.25 | -1.25 | -4.12 | 0                          | 0                          | 0                          | 0                          | 0                          | 0                 |
| $s_2^{1,s}$          | 100   | 1     | -2.30 | -1.51 | -2.81 | 0                          | 0                          | 0                          | 0                          | 0                          | 0                 |
| $s_2^{2,s}$          | 100   | 1     | -2.30 | -1.51 | -2.81 | 0                          | 0                          | 0                          | 0                          | 0                          | 0                 |
| $s_2^{3,s}$          | 100   | 1     | -2.30 | -1.51 | -2.81 | 0                          | 0                          | 0                          | 0                          | 0                          | 0                 |

Table 0: The river basic game: Original formulation

|                      | q    | $w_1$ | $w_2$ | w <sub>3</sub> | $x_3$ | $\lambda_1^{1,\mathrm{s}}$ | $\lambda^s_{2,1}$ | $\lambda_1^{3,\mathrm{s}}$ | $\lambda_2^{1,\mathrm{s}}$ | $\lambda_2^{2,s}$ | $\lambda_2^{3,s}$ |
|----------------------|------|-------|-------|----------------|-------|----------------------------|-------------------|----------------------------|----------------------------|-------------------|-------------------|
| $z_0$                | 2.8  | -0.3  | -0.09 | 1.42           | -0.05 | 1.08                       | 0.1               | -5.9                       | 0.8                        | 0.1               | -4                |
| $x_1$                | 1.7  | 33.3  | 0     | -33            | 1     | -108                       | 0                 | 138                        | -76.4                      | 0                 | 94                |
| x2                   | 0.3  | 0     | 9.1   | -9.1           | 0.3   | 0                          | -11.4             | 37.5                       | 0                          | -14               | 26                |
| $s_1^{1,\mathrm{s}}$ | 97.1 | -109  | -11.5 | 121            | -7.8  | 353                        | 14                | -500                       | 249                        | 18                | -341              |
| $s_1^{2,s}$          | 97.1 | -109  | -11.5 | 121            | -7.8  | 353                        | 14                | -500                       | 249                        | 18                | -341              |
| $s_1^{3,s}$          | 97.1 | -109  | -11.5 | 121            | -7.8  | 353                        | 14                | -500                       | 249                        | 18                | -341              |
| $s_2^{1,s}$          | 98.6 | -76.7 | -13.8 | 91.6           | -5.6  | 249.3                      | 17.3              | -377.7                     | 176                        | 21.6              | -258              |
| $s_2^{2,s}$          | 98.6 | -76.7 | -13.8 | 91.6           | -5.6  | 249.3                      | 17.3              | -377.7                     | 176                        | 21.6              | -258              |
| $s_2^{3,s}$          | 98.6 | -76.7 | -13.8 | 91.6           | -5.6  | 249.3                      | 17.3              | -377.7                     | 176                        | 21.6              | -258              |

**Table 1:** After 3 pivots from original,  $x_3$  is the entering variable

Note the repetition of the rows of the shared constraints, leading to ties in choosing the leaving variable.

|             | q    | $w_1$ | <i>w</i> <sub>2</sub> | <i>w</i> <sub>3</sub> | $s_1^{1,\mathrm{s}}$ | $\lambda_1^{1,\mathrm{s}}$ | $\lambda_1^{2,\mathrm{s}}$ | $\lambda_1^{3,\mathrm{s}}$ | $\lambda_2^{1,\mathrm{s}}$ | $\lambda_2^{2,\mathbf{s}}$ | $\lambda_2^{3,\mathbf{s}}$ |
|-------------|------|-------|-----------------------|-----------------------|----------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| $z_0$       | 2.17 | 0.40  | -0.01                 | 0.60                  | 0.01                 | -1.31                      | 0.02                       | -2.48                      | -0.93                      | 0.02                       | -1.69                      |
| $x_1$       | 14   | 19.3  | -1.5                  | -17.7                 | -0.13                | -62.9                      | 1.8                        | 73                         | -44                        | 2.3                        | 50                         |
| $x_2$       | 3.7  | -3.8  | 8.7                   | -4.8                  | -0.04                | 12.4                       | -10.9                      | 20                         | 8.7                        | -13.6                      | 13.6                       |
| x3          | 12.5 | -14   | -1.5                  | 15.6                  | -0.13                | 45.5                       | 1.8                        | -64.3                      | 32.1                       | 2.3                        | -44                        |
| $s_1^{2,s}$ | 0    | 0     | 0                     | 0                     | 1                    | 0                          | 0                          | 0                          | 0                          | 0                          | 0                          |
| $s_1^{3,s}$ | 0    | 0     | 0                     | 0                     | 1                    | 0                          | 0                          | 0                          | 0                          | 0                          | 0                          |
| $s_2^{1,s}$ | 29   | 1.2   | -5.6                  | 4.7                   | 0.7                  | -3.9                       | 7                          | -19.5                      | -2.7                       | 8.8                        | -13.3                      |
| $s_2^{2,s}$ | 29   | 1.2   | -5.6                  | 4.7                   | 0.7                  | -3.9                       | 7                          | -19.5                      | -2.7                       | 8.8                        | -13.3                      |
| $s_2^{3,s}$ | 29   | 1.2   | -5.6                  | 4.7                   | 0.7                  | -3.9                       | 7                          | -19.5                      | -2.7                       | 8.8                        | -13.3                      |

**Table 2:** Next pivot is on the distinguished shared multiplier  $\lambda_{1,1}^s$ 

Note the two rows of the first shared constraints one of whose slack variables  $(s_1^{1,s})$  is nonbasic.

|                      | q    | $w_1$ | $w_2$ | $w_3$ | $s_{1,1}$ | $x_1$ | $\lambda_1^{2,\mathrm{s}}$ | $\lambda_1^{3,\mathrm{s}}$ | $\lambda_2^{1,\mathrm{s}}$ | $\lambda_2^{2,\mathrm{s}}$ | $\lambda_2^{3,\mathbf{s}}$ |
|----------------------|------|-------|-------|-------|-----------|-------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| $z_0$                | 1.88 | 0     | -0.02 | 0.97  | 0.01      | 0.02  | -0.02                      | -4.01                      | 0                          | -0.03                      | -2.74                      |
| $\lambda_{1,1}^s$    | 0.23 | 0.31  | -0.02 | -0.28 | -0.002    | -0.02 | 0.03                       | 1.2                        | -0.71                      | 0.04                       | 0.8                        |
| $x_2$                | 6.5  | 0     | 8.4   | -8.3  | -0.06     | -0.20 | -10.5                      | 34.4                       | 0                          | -13.1                      | 23.5                       |
| x3                   | 22.7 | 0     | -2.5  | 2.8   | -0.22     | -0.72 | 3.18                       | -11.4                      | 0                          | 4                          | -7.8                       |
| $s_1^{2,\mathbf{s}}$ | 0    | 0     | 0     | 0     | 1         | 0     | 0                          | 0                          | 0                          | 0                          | 0                          |
| $s_1^{3,s}$          | 0    | 0     | 0     | 0     | 1         | 0     | 0                          | 0                          | 0                          | 0                          | 0                          |
| $s_2^{1,s}$          | 28.1 | 0     | -5.5  | 5.8   | 0.7       | 0.06  | 6.9                        | -24                        | 0                          | 8.7                        | -16.4                      |
| $s_2^{2,s}$          | 28.1 | 0     | -5.5  | 5.8   | 0.7       | 0.06  | 6.9                        | -24                        | 0                          | 8.7                        | -16.4                      |
| $s_2^{3,s}$          | 28.1 | 0     | -5.5  | 5.8   | 0.7       | 0.06  | 6.9                        | -24                        | 0                          | 8.7                        | -16.4                      |

**Table 3:** Post pivot on  $\lambda_1^{1,s}$ ; ray termination on  $w_1$ 

Return to Table 1 and choose  $s_1^{3,s}$  as the blocking variable; ray termination occurs after pivot. Return to Table 1 and make the last choice to break tie; i.e., choose  $s_1^{2,s}$  as the blocking variable, leading also to ray termination.

Now we group the first shared constraints and the corresponding multipliers, obtaining the next table.

|                      | q     | $w_1$   | $w_2$  | $w_3$  | $x_3$ | $\lambda_1^{	ext{s}}$ | $\lambda_2^{1,\mathrm{s}}$ | $\lambda_2^{2,	ext{s}}$ | $\lambda_2^{3,	ext{s}}$ |
|----------------------|-------|---------|--------|--------|-------|-----------------------|----------------------------|-------------------------|-------------------------|
| $z_0$                | 2.83  | -0.33   | -0.09  | 1.42   | -0.05 | -4.68                 | 0.76                       | 0.14                    | -4.01                   |
| $x_1$                | 1.67  | 33.33   | 0      | -33.33 | 1     | 29.17                 | -76.38                     | 0                       | 93.75                   |
| $x_2$                | 0.27  | 0       | 9.09   | -9.09  | 0.27  | 26.14                 | 0                          | -14.20                  | 25.57                   |
| $s_1^s$              | 97.07 | -108.67 | -11.45 | 121.12 | -7.77 | -132.14               | 249.01                     | 17.90                   | -340.65                 |
| $s_2^{1,\mathrm{s}}$ | 98.60 | -76.72  | -13.84 | 91.56  | -5.57 | -111.04               | 175.80                     | 21.63                   | -257.51                 |
| $s_2^{2,s}$          | 98.60 | -76.72  | -13.84 | 91.56  | -5.57 | -111.04               | 175.80                     | 21.63                   | -257.51                 |
| $s_{2}^{3,s}$        | 98.60 | -76.72  | -13.84 | 91.56  | -5.57 | -111.04               | 175.80                     | 21.63                   | -257.51                 |

 Table 4: After collapsing shared constraint 1 and its multipliers

|                       | q     | $w_1$  | $w_2$ | $w_{3}$ | $s_1$ | $\lambda_1^{	ext{s}}$ | $\lambda_2^{1,\mathrm{s}}$ | $\lambda_2^{2,\mathbf{s}}$ | $\lambda_2^{3,\mathrm{s}}$ |
|-----------------------|-------|--------|-------|---------|-------|-----------------------|----------------------------|----------------------------|----------------------------|
| $z_0$                 | 2.17  | 0.40   | -0.01 | 0.60    | 0.01  | -3.78                 | -0.93                      | 0.02                       | -1.69                      |
| $x_1$                 | 14.16 | 19.35  | -1.47 | -17.74  | -0.13 | 12.16                 | -44.33                     | 2.30                       | 49.90                      |
| <i>x</i> <sub>2</sub> | 3.68  | -3.81  | 8.69  | -4.84   | -0.04 | 21.50                 | 8.74                       | -13.58                     | 13.61                      |
| <i>x</i> <sub>3</sub> | 12.50 | -13.99 | -1.47 | 15.59   | -0.13 | -17.01                | 32.05                      | 2.30                       | -43.85                     |
| $s_2^{1,\mathrm{s}}$  | 29.01 | 1.19   | -5.63 | 4.73    | 0.72  | -16.32                | -2.72                      | 8.80                       | -13.30                     |
| $s_2^{2,s}$           | 29.01 | 1.19   | -5.63 | 4.73    | 0.72  | -16.32                | -2.72                      | 8.80                       | -13.30                     |
| $s_2^{3,s}$           | 29.01 | 1.19   | -5.63 | 4.73    | 0.72  | -16.32                | -2.72                      | 8.80                       | -13.30                     |

Table 5: Solution found after pivot on  $\lambda_1^s$ 

### Regularization and generalized VE



where  $E_i^{\nu;x,\mathbf{p},\mathbf{s}}$  is a positive diagonal matrix with  $\lim_{i\to\infty} E_i^{\nu;x,\mathbf{p},\mathbf{s}} = 0$  and for all  $\nu$ ,  $\nu' = 1, \dots, n$  and all  $\ell = 1, \dots, m_s$ ,

$$\lim_{i \to \infty} \frac{\left(E_i^{\nu; \mathbf{s}}\right)_{\ell\ell}}{\left(E_i^{\nu'; \mathbf{s}}\right)_{\ell\ell}} = e_{\ell}^{\nu\nu'} > 0;$$

21

### Generalized VE

For any  $m_s$  positive matrices  $\mathcal{E}^{s}_{\ell} \triangleq \left[e^{\nu\nu'}_{\ell}\right]^{n}_{\nu,\nu'=1} \in \mathbb{R}^{n \times n}$  satisfying  $e^{\nu\nu'}_{\ell}e^{\nu'\nu}_{\ell} = 1$  for all  $\nu$  and  $\nu'$ , let  $\Lambda(\mathcal{E}^{s})$  be defined as follows:

$$\Lambda(\mathcal{E}^{s}) \triangleq \left\{ \lambda^{s} \mid \lambda_{\ell}^{\nu,s} = e_{\ell}^{\nu\nu'} \lambda_{\ell}^{\nu',s} \text{ for all } \ell = 1, \cdots, m_{s}, \text{ and all } \nu, \nu' = 1, \cdots, n \right\}.$$

Rosen's normalized Nash equilibria correspond to the case where each matrix  $\mathcal{E}^{s}_{\ell}$  is the same with entries given by  $e^{\nu\nu'}_{\ell} = e_{\nu'}/e_{\nu}$  for a positive vector  $e \in \mathbb{R}^{n}$ .

A variational equilibrium is a special kind of normalized NE where e is the vector of all ones.

Proposition. If  $\hat{z} = \lim_{i \to \infty} z^i$  with  $z^i \in \text{SOL}(q_{\text{NE}}, M_i)$ , then  $\hat{z} \triangleq (\hat{x}, \hat{\lambda}^{\text{p}}, \hat{\lambda}^{\text{s}})$  is a solution of the LCP  $(q_{\text{NE}}, M_{\text{NE}})$  and  $\hat{\lambda}^{\text{s}} \in \Lambda(\mathcal{E}^{\text{s}})$ .