On the solution of affine generalized Nash games with shared constraints by Lemke's algorithm

Jong-Shi Pang

Department of Industrial and Systems Engineering
University of Southern California
presented at

6th International Conference on Complementarity Problems Humboldt Universität zur Berlin, Germany

$$
\text { August 4-8, } 2014
$$

Contents of presentation

- The affine generalized Nash equilibrium problem
- The linear complementarity problem
- Variational equilibria
- Summary of results
- Details
D.A. Schiro, J.S. Pang, and U.V. Shanbhag. On the solution of affine generalized Nash equilibrium problems with shared constraints by Lemke's method. Mathematical Programming, Series A 146 (2013) 1-46.

There are n players, each labeled by $\nu=1, \cdots, n$.
Parameterized by rivals' strategies $x^{-\nu} \triangleq\left(x^{\nu^{\prime}}\right)_{\nu \neq \nu^{\prime}=1}^{n}$, player ν^{\prime} s optimization is a convex quadratic program:

$$
\operatorname{minimize}_{x^{\nu} \in \equiv \equiv^{\prime}\left(x^{-\nu}\right)} \theta_{\nu}\left(x^{\nu}, x^{-\nu}\right) \triangleq \underbrace{\frac{1}{2}\left(x^{\nu}\right)^{T} H^{\nu \nu} x^{\nu}+\left(x^{\nu}\right)^{T}\left(h^{\nu}+\sum_{\nu \neq \nu^{\prime}=1}^{n} H^{\nu \nu^{\prime}} x^{\nu^{\prime}}\right)}_{\text {convex quadratic in } x^{\nu} \text { given } x^{-\nu}} \text {, where }
$$

$\equiv^{\nu}\left(x^{-\nu}\right) \triangleq\{x^{\nu} \in \mathbb{R}_{+}^{n_{\nu}} \mid \underbrace{B^{\nu} x^{\nu} \geq f^{\nu}}_{\text {private constraint }}, \underbrace{\sum_{\nu^{\prime}=1}^{n} A^{\nu^{\prime}} x^{\nu^{\prime}} \geq b}_{\text {common, coupled constraint }}\}$.
Remark: There is no player-dependent coupled constraint of the form:

$$
\sum_{\nu^{\prime}=1}^{n} A^{\nu \nu^{\prime}} x^{\nu^{\prime}} \geq b^{\nu}
$$

LCP with no structural assumption on multipliers
Introducing multipliers $\lambda^{\nu, p}$ (for private constraints) and $\lambda^{\nu, s}$ (for shared constraints), we obtain a linear complementarity formulation of the game:

$$
\left.\begin{array}{c}
0 \leq z_{\mathrm{NE}} \perp w_{\mathrm{NE}} \triangleq q_{\mathrm{NE}}+M_{\mathrm{NE}} z_{\mathrm{NE}} \geq 0, \text { with } \\
\left(\begin{array}{c}
\left(\begin{array}{c}
x^{1} \\
\vdots \\
x^{n}
\end{array}\right) \\
--- \\
z_{\mathrm{NE}} \triangleq\left(\begin{array}{c}
\lambda^{1, \mathrm{p}} \\
\vdots \\
\lambda^{n, \mathbf{p}}
\end{array}\right) \\
--- \\
\left(\begin{array}{c}
y^{1} \\
\vdots \\
y^{n}
\end{array}\right) \\
--- \\
\vdots \\
\lambda^{n, \mathrm{~s}}
\end{array}\right)
\end{array}\right), w_{\mathrm{NE}} \triangleq\left(\begin{array}{c}
s^{1, \mathrm{p}} \\
\vdots \\
s^{n, \mathrm{p}}
\end{array}\right) .\binom{--}{\left(\begin{array}{c}
s^{1, \mathrm{~s}} \\
\vdots \\
s^{n, \mathbf{s}}
\end{array}\right)} .
$$

Note the structures in the last block in the first row (block diagonal) and the same block in last column (repeating rows).

In general, $H^{\nu \nu^{\prime}} \neq H^{\nu^{\prime}, \nu}$ for $\nu \neq \nu^{\prime} ; H^{\nu \nu}$ is symmetric positive semidefinite.

A statement of Lemke's algorithm

The augmented LCP with covering vector $d>0$:

$$
0 \leq z \perp w \triangleq q+\tau d+M z \geq 0
$$

3 possible outcomes of Lemke's algorithm: (a) cycling (degeneracy resolution), (b) ray termination, or (c) solution obtained.
(I) If the algorithm terminates at a secondary ray, then there exists a tuple ($w^{*}, \widetilde{w}, z_{0}^{*}, \widetilde{z}_{0}, z^{*}, \widetilde{z}$) with $z_{0}^{*}>0$ and $\widetilde{z} \neq 0$ such that for all $\tau \geq 0$,

$$
\begin{equation*}
0 \leq z^{*}+\tau \widetilde{z} \perp w^{*}+\tau \widetilde{w}=q+d\left(z_{0}^{*}+\tau \widetilde{z}_{0}\right)+M\left(z^{*}+\tau \widetilde{z}\right) \geq 0 \tag{1}
\end{equation*}
$$

(II) If M is a semimonotone matrix, then the scalar \widetilde{z}_{0} satisfying (1) must equal zero; hence, if for every scalar $z_{0}>0, \operatorname{SOL}\left(q+d z_{0}, M\right)$ is bounded, then the LCP (q, M) has a solution that can be computed by Lemke's method with d as the covering vector (with a degeneracy resolution scheme).

Specialization to the LCP $\left(q_{N E}, M_{\mathrm{NE}}\right)$

Let

$$
J_{\mathrm{NE}} \triangleq\left[\begin{array}{llllll}
H^{11} & \cdots & H^{1 n} & -\left(B^{1}\right)^{T} & & \\
\vdots & \ddots & \vdots & & \ddots & \\
H^{n 1} & \cdots & H^{n n} & & & -\left(B^{n}\right)^{T} \\
-- & -- & -- & -- & -- & -- \\
B^{1} & & & & & \\
& \ddots & & & &
\end{array}\right], \quad \mathbf{A} \triangleq\left[\begin{array}{lll}
A^{1} & \cdots & A^{n}
\end{array}\right]
$$

- If J_{NE} is semimonotone, and if the nonzero entries in each row of the matrix A are of a single sign, then M_{NE} is semimonotone.
- Under further conditions:

$$
\begin{aligned}
\mathrm{SOL}\left(0, J_{\mathrm{NE}}\right)=\{0\} \Rightarrow & \operatorname{SOL}\left(0, M_{\mathrm{NE}}\right)=0 \\
\Rightarrow & \text { successful termination of Lemke } \\
& \text { under degeneracy resolution }
\end{aligned}
$$

An illustrative example: degeneracy is real!
Consider a 2-person game with individual optimization problems as follows:

$\underset{x_{1} \geq 0}{\operatorname{maximize}}$	$x_{1}\left(1-0.5 x_{1}-0.5 x_{2}\right)$
subject to	$1-x_{1}-x_{2} \stackrel{\left(\lambda_{1}\right)}{\geq} 0$

$\underset{x_{2} \geq 0}{\operatorname{maximize}}$	$x_{2}\left(2-0.5 x_{1}-0.5 x_{2}\right)$
subject to	$1-x_{1}-x_{2} \stackrel{\left(\lambda_{2}\right)}{\geq} 0$

The following 2 tableaux detail the first pivot in Lemke's algorithm.

	q	z_{0}	x_{1}	x_{2}	λ_{1}	λ_{2}
w_{1}	-1	1	1	0.5	1	0
w_{2}	-2	1	0.5	1	0	1
s_{1}	1	1	-1	-1	0	0
s_{2}	1	1	-1	-1	0	0

	q	w_{2}	x_{1}	x_{2}	λ_{1}	λ_{2}
w_{1}	1	1	0.5	-0.5	1	-1
z_{0}	2	1	-0.5	-1	0	-1
s_{1}	3	1	-1.5	-2	0	-1
s_{2}	3	1	-1.5	-2	0	-1

- s_{2} made nonbasic: pivots of $<s_{2}, x_{2}>$; $<w_{1}, \lambda_{2}>$; $<z_{0}, x_{1}>$ terminate at the solution ($1,0,0,1.5$).
- s_{1} made nonbasic: pivot of $<s_{1}, x_{2}>$ leads to ray termination and the method fails.

2 remarks: (a) algorithm may fail, and (b) only one multiplier $\left(\lambda_{2}\right)$ is positive.

LCP with common multipliers on shared constraints
Variational equilibria: $\lambda^{\nu, s}=\lambda^{s}$ for all ν; i.e., common multipliers of shared constraints.

$$
z_{\mathrm{VE}} \triangleq\left(\begin{array}{c}
\left(\begin{array}{c}
x^{1} \\
\vdots \\
x^{n}
\end{array}\right) \\
--- \\
\left(\begin{array}{c}
\lambda^{1, \mathbf{p}} \\
\vdots \\
\lambda^{n, \mathbf{p}}
\end{array}\right) \\
--- \\
\begin{array}{c}
\lambda^{\mathbf{s}} \\
\text { collapsed } \\
\text { into one }
\end{array}
\end{array}\right)
$$

$$
M_{\mathrm{VE}} \triangleq\left[\begin{array}{llllll|c}
H^{11} & \cdots & H^{1 n} & -\left(B^{1}\right)^{T} & & & -\left(A^{1}\right)^{T} \\
\vdots & \ddots & \vdots & & & & \vdots \\
H^{n 1} & \cdots & H^{n n} & & & & -\left(B^{n}\right)^{T} \\
-- & -- & -- & -- & -- & -- & -\left(A^{n}\right)^{T} \\
B^{1} & & & & & -- \\
& \ddots & & & & & \\
& & B^{n} & & & & \\
-- & -- & -- & -- & -- & -- & -- \\
A^{1} & \cdots & A^{n} & & & &
\end{array}\right]
$$

Excluding the upper left block, $M_{\text {VE }}$ has a skew symmetry structure that is absent in the previous non-VE formulation. Let

$$
J_{\mathrm{VE}} \triangleq\left[\begin{array}{lll}
H^{11} & \cdots & H^{1 n} \\
\vdots & \ddots & \vdots \\
H^{n 1} & \cdots & H^{n n}
\end{array}\right]
$$

- If $J_{V E}$ is copositive, then so is $M_{V E}$.

Summary of results with Lemke's algorithm pertaining to multipliers of shared constraints

- Applied to the non-VE formulation, Lemke's algorithm, if successful, computes only one kind of NE, those for which at most one player has a non-zero multiplier associated with each shared constraint.
- Thus, many NE are elusive by this algorithm, motivating the need to modify it for (a) robustness, and (b) capability to compute NE of other kinds.
- Multipliers provide meaningful insights on the constraints; thus desirable to be able to compute solutions with different kinds of multipliers.
- Introduced the notion of a partial VE computable by a modified Lemke method; such a partial VE enforced multiplier consistency across all players for certain shared constraints.
- Rosen's VE can be approximated by specialized regularizations of the LCP formulation of the game.
- Introduced an equivalent reformulation of shared constraints and a parameterization idea, yielding computable NE with yet a different property of the multipliers of these constraints.

Structural property of multipliers in Lemke solutions

Proposition. If Lemke's method finds a solution of the LCP ($q_{\mathrm{NE}}, M_{\mathrm{NE}}$) of the non-VE formulation of the AGNEP, then for each shared constraint $\ell=$ $1, \cdots, m_{s}, \exists$ in that solution at most one $\nu \in\{1, \cdots, N\}$ such that $\lambda_{\ell}^{\nu, s}>0$.

Thus, the only VE that can be computed by Lemke's algorithm when applied to the LCP ($q_{\mathrm{NE}}, M_{\mathrm{NE}}$) is the one with all multipliers equal to zero.

A modified Lemke algorithm for the AGNEP

Perform Lemke's method until the s-variables of shared constraint ℓ become blocking. Call this Tableau 1 and randomly choose $s_{\ell}^{\nu, s}$ to pivot out of the basis so that the next entering variable is $\lambda_{\ell}^{\nu, \mathrm{s}}$. Define $I \triangleq\{\nu\}$.

- If ray termination occurs at any point after $s_{\ell}^{\nu, s}$ is made nonbasic, choose $s_{\ell}^{\nu^{\prime}, \mathrm{s}}$ with $\nu^{\prime} \notin I$ as the blocking variable in Tableau 1 so that $\lambda_{\ell}^{\nu^{\prime}, \text { s }}$ is the next entering variable.
- Resume the usual operation of the algorithm using the new blocking variable in Tableau 1. Stop if a solution is found. Otherwise, either return to Step 1 with $I \triangleq I \cup\left\{\nu^{\prime}\right\}$ or proceed to Step 2 following ray termination.
- If ray termination has occurred after all $s_{\ell}^{\boldsymbol{\bullet}, \text { s }}$ pivots, return to Tableau 1 and
- delete all but one row corresponding to the ℓ th shared constraint and relabel the variable $s_{\ell}^{\text {s }}$;
- combine all $\lambda_{\ell}^{\boldsymbol{\bullet}, \mathrm{s}}$ variables into a single multiplier labeled $\lambda_{\ell}^{\mathrm{s}}$;
- recalculate the $\lambda_{\ell}^{\text {s }}$ column of the new tableau.

An illustration of the modified scheme

A river basin pollution game

(Haurie-Krawczyk 1997; Nabetani-Tseng-Fukushima 2011)

3 competitive players and 2 shared constraints:

$$
\begin{array}{ll}
\underset{x_{\nu} \geq 0}{\operatorname{minimize}} & {\left[\alpha_{\nu} x_{\nu}+0.01\left(x_{1}+x_{2}+x_{3}\right)-\chi_{\nu}\right] x_{\nu}} \\
\text { subject to } & -100 \leq-3.25 x_{1}-1.25 x_{2}-4.125 x_{3} \\
\text { and } & -100 \leq-2.2915 x_{1}-1.5625 x_{2}-2.8125 x_{3},
\end{array}
$$

with parameters $\alpha_{1}=0.01, \alpha_{2}=0.05, \alpha_{3}=0.01, \chi_{1}=2.9$, $\chi_{2}=2.88$, and $\chi_{3}=2.85$.

	q	z_{0}	x_{1}	x_{2}	x_{3}	$\lambda_{1}^{1, \mathrm{~s}}$	$\lambda_{1}^{2, \mathrm{~s}}$	$\lambda_{1}^{3, \mathrm{~s}}$	$\lambda_{2}^{1, \mathrm{~s}}$	$\lambda_{2}^{2, \mathrm{~s}}$	$\lambda_{2}^{3, \mathrm{~s}}$
w_{1}	-2.9	1	0.04	0.01	0.01	3.25	0	0	2.29	0	0
w_{2}	-2.88	1	0.01	0.12	0.01	0	1.25	0	0	1.56	0
w_{3}	-2.85	1	0.01	0.01	0.04	0	0	4.12	0	0	2.81
$s_{1}^{1, \mathrm{~s}}$	100	1	-3.25	-1.25	-4.12	0	0	0	0	0	0
$s_{1}^{2, \mathrm{~s}}$	100	1	-3.25	-1.25	-4.12	0	0	0	0	0	0
$s_{1}^{3, \mathrm{~s}}$	100	1	-3.25	-1.25	-4.12	0	0	0	0	0	0
$s_{2}^{1, \mathrm{~s}}$	100	1	-2.30	-1.51	-2.81	0	0	0	0	0	0
$s_{2}^{2, \mathrm{~s}}$	100	1	-2.30	-1.51	-2.81	0	0	0	0	0	0
$s_{2}^{3, \mathrm{~s}}$	100	1	-2.30	-1.51	-2.81	0	0	0	0	0	0

Table 0: The river basic game: Original formulation

	q	w_{1}	w_{2}	w_{3}	x_{3}	$\lambda_{1}^{1, \mathrm{~s}}$	$\lambda_{2,1}^{s}$	$\lambda_{1}^{3, \mathrm{~s}}$	$\lambda_{2}^{1, \mathrm{~s}}$	$\lambda_{2}^{2, \mathrm{~s}}$	$\lambda_{2}^{3, \mathrm{~s}}$
z_{0}	2.8	-0.3	-0.09	1.42	-0.05	1.08	0.1	-5.9	0.8	0.1	-4
x_{1}	1.7	33.3	0	-33	1	-108	0	138	-76.4	0	94
x_{2}	0.3	0	9.1	-9.1	0.3	0	-11.4	37.5	0	-14	26
$s_{1}^{1, \mathrm{~s}}$	97.1	-109	-11.5	121	-7.8	353	14	-500	249	18	-341
$s_{1}^{2, \mathrm{~s}}$	97.1	-109	-11.5	121	-7.8	353	14	-500	249	18	-341
$s_{1}^{3, \mathrm{~s}}$	97.1	-109	-11.5	121	-7.8	353	14	-500	249	18	-341
$s_{2}^{1, \mathrm{~s}}$	98.6	-76.7	-13.8	91.6	-5.6	249.3	17.3	-377.7	176	21.6	-258
$s_{2}^{2, \mathrm{~s}}$	98.6	-76.7	-13.8	91.6	-5.6	249.3	17.3	-377.7	176	21.6	-258
$s_{2}^{3, \mathrm{~s}}$	98.6	-76.7	-13.8	91.6	-5.6	249.3	17.3	-377.7	176	21.6	-258

Table 1: After 3 pivots from original, x_{3} is the entering variable

Note the repetition of the rows of the shared constraints, leading to ties in choosing the leaving variable.

	q	w_{1}	w_{2}	w_{3}	$s_{1}^{1, \mathrm{~s}}$	$\lambda_{1}^{1, \mathrm{~s}}$	$\lambda_{1}^{2, \mathrm{~s}}$	$\lambda_{1}^{3, \mathrm{~s}}$	$\lambda_{2}^{1, \mathrm{~s}}$	$\lambda_{2}^{2, \mathrm{~s}}$	$\lambda_{2}^{3, \mathrm{~s}}$
z_{0}	2.17	0.40	-0.01	0.60	0.01	-1.31	0.02	-2.48	-0.93	0.02	-1.69
x_{1}	14	19.3	-1.5	-17.7	-0.13	-62.9	1.8	73	-44	2.3	50
x_{2}	3.7	-3.8	8.7	-4.8	-0.04	12.4	-10.9	20	8.7	-13.6	13.6
x_{3}	12.5	-14	-1.5	15.6	-0.13	45.5	1.8	-64.3	32.1	2.3	-44
$s_{1}^{2, \mathrm{~s}}$	0	0	0	0	1	0	0	0	0	0	0
$s_{1}^{3, \mathrm{~s}}$	0	0	0	0	1	0	0	0	0	0	0
$s_{2}^{1, \mathrm{~s}}$	29	1.2	-5.6	4.7	0.7	-3.9	7	-19.5	-2.7	8.8	-13.3
$s_{2}^{2, \mathrm{~s}}$	29	1.2	-5.6	4.7	0.7	-3.9	7	-19.5	-2.7	8.8	-13.3
$s_{2}^{3, \mathrm{~s}}$	29	1.2	-5.6	4.7	0.7	-3.9	7	-19.5	-2.7	8.8	-13.3

Table 2: Next pivot is on the distinguished shared multiplier $\lambda_{1,1}^{s}$
Note the two rows of the first shared constraints one of whose slack variables $\left(s_{1}^{1, \mathrm{~s}}\right)$ is nonbasic.

	q	w_{1}	w_{2}	w_{3}	$s_{1,1}$	x_{1}	$\lambda_{1}^{2, \mathrm{~s}}$	$\lambda_{1}^{3, \mathrm{~s}}$	$\lambda_{2}^{1, \mathrm{~s}}$	$\lambda_{2}^{2, \mathrm{~s}}$	$\lambda_{2}^{3, \mathrm{~s}}$
z_{0}	1.88	0	-0.02	0.97	0.01	0.02	-0.02	-4.01	0	-0.03	-2.74
$\lambda_{1,1}^{s}$	0.23	0.31	-0.02	-0.28	-0.002	-0.02	0.03	1.2	-0.71	0.04	0.8
x_{2}	6.5	0	8.4	-8.3	-0.06	-0.20	-10.5	34.4	0	-13.1	23.5
x_{3}	22.7	0	-2.5	2.8	-0.22	-0.72	3.18	-11.4	0	4	-7.8
$s_{1}^{2, \mathrm{~s}}$	0	0	0	0	1	0	0	0	0	0	0
$s_{1}^{3, \mathrm{~s}}$	0	0	0	0	1	0	0	0	0	0	0
$s_{2}^{1, \mathrm{~s}}$	28.1	0	-5.5	5.8	0.7	0.06	6.9	-24	0	8.7	-16.4
$s_{2}^{2, \mathrm{~s}}$	28.1	0	-5.5	5.8	0.7	0.06	6.9	-24	0	8.7	-16.4
$s_{2}^{3, \mathrm{~s}}$	28.1	0	-5.5	5.8	0.7	0.06	6.9	-24	0	8.7	-16.4

Table 3: Post pivot on $\lambda_{1}^{1, \mathrm{~s}}$; ray termination on w_{1}
Return to Table 1 and choose $s_{1}^{3, s}$ as the blocking variable; ray termination occurs after pivot. Return to Table 1 and make the last choice to break tie; i.e., choose $s_{1}^{2, s}$ as the blocking variable, leading also to ray termination.

Now we group the first shared constraints and the corresponding multipliers, obtaining the next table.

	q	w_{1}	w_{2}	w_{3}	x_{3}	λ_{1}^{s}	$\lambda_{2}^{1, \mathrm{~s}}$	$\lambda_{2}^{2, \mathrm{~s}}$	$\lambda_{2}^{3, \mathrm{~s}}$
z_{0}	2.83	-0.33	-0.09	1.42	-0.05	-4.68	0.76	0.14	-4.01
x_{1}	1.67	33.33	0	-33.33	1	29.17	-76.38	0	93.75
x_{2}	0.27	0	9.09	-9.09	0.27	26.14	0	-14.20	25.57
s_{1}^{s}	97.07	-108.67	-11.45	121.12	-7.77	-132.14	249.01	17.90	-340.65
$s_{2}^{1, \mathrm{~s}}$	98.60	-76.72	-13.84	91.56	-5.57	-111.04	175.80	21.63	-257.51
$s_{2}^{2, \mathrm{~s}}$	98.60	-76.72	-13.84	91.56	-5.57	-111.04	175.80	21.63	-257.51
$s_{2}^{3, \mathrm{~s}}$	98.60	-76.72	-13.84	91.56	-5.57	-111.04	175.80	21.63	-257.51

Table 4: After collapsing shared constraint 1 and its multipliers

	q	w_{1}	w_{2}	w_{3}	s_{1}	λ_{1}^{s}	$\lambda_{2}^{1, \mathrm{~s}}$	$\lambda_{2}^{2, \mathrm{~s}}$	$\lambda_{2}^{3, \mathrm{~s}}$
z_{0}	2.17	0.40	-0.01	0.60	0.01	-3.78	-0.93	0.02	-1.69
x_{1}	14.16	19.35	-1.47	-17.74	-0.13	12.16	-44.33	2.30	49.90
x_{2}	3.68	-3.81	8.69	-4.84	-0.04	21.50	8.74	-13.58	13.61
x_{3}	12.50	-13.99	-1.47	15.59	-0.13	-17.01	32.05	2.30	-43.85
$s_{2}^{1, \mathrm{~s}}$	29.01	1.19	-5.63	4.73	0.72	-16.32	-2.72	8.80	-13.30
$s_{2}^{2, \mathrm{~s}}$	29.01	1.19	-5.63	4.73	0.72	-16.32	-2.72	8.80	-13.30
$s_{2}^{3, \mathrm{~s}}$	29.01	1.19	-5.63	4.73	0.72	-16.32	-2.72	8.80	-13.30

Table 5: Solution found after pivot on $\lambda_{1}^{\text {s }}$

Regularization and generalized VE

$$
M_{i} \triangleq M_{\mathrm{NE}}+\left[\begin{array}{cc|ccc|ccc}
E_{i}^{1 ; x} & & & & & & \\
& \ddots . & & & & & \\
& E_{i}^{n ; x} & & & & & \\
\hline & & E_{i}^{1 ; \mathbf{p}} & & & & \\
\hline & & \ddots & & & & \\
\hline & & & & E_{i}^{n ; \mathbf{p}} & & \\
\hline
\end{array}\right.
$$

where $E_{i}^{\nu ; x, \mathbf{p}, \mathbf{s}}$ is a positive diagonal matrix with $\lim _{i \rightarrow \infty} E_{i}^{\nu ; x, \mathbf{p}, \mathbf{s}}=0$ and for all ν, $\nu^{\prime}=1, \cdots, n$ and all $\ell=1, \cdots, m_{s}$,

$$
\lim _{i \rightarrow \infty} \frac{\left(E_{i}^{\nu ; \mathrm{s}}\right)_{\ell \ell}}{\left(E_{i}^{\nu^{\prime} ; \mathrm{s}}\right)_{\ell \ell}}=e_{\ell}^{\nu \nu^{\prime}}>0
$$

Generalized VE

For any m_{s} positive matrices $\mathcal{E}_{\ell}^{s} \triangleq\left[e_{\ell}^{\nu \nu^{\prime}}\right]_{\nu, \nu^{\prime}=1}^{n} \in \mathbf{R}^{n \times n}$ satisfying $e_{\ell}^{\nu \nu^{\prime}} e_{\ell}^{\nu^{\prime} \nu}=1$ for all ν and ν^{\prime}, let $\Lambda\left(\mathcal{E}^{s}\right)$ be defined as follows:

$$
\Lambda\left(\mathcal{E}^{\mathrm{s}}\right) \triangleq\left\{\boldsymbol{\lambda}^{\mathrm{s}} \mid \lambda_{\ell}^{\nu, \mathrm{s}}=e_{\ell}^{\nu \nu^{\prime}} \lambda_{\ell}^{\nu^{\prime}, \mathrm{s}} \text { for all } \ell=1, \cdots, m_{s}, \text { and all } \nu, \nu^{\prime}=1, \cdots, n\right\} .
$$

Rosen's normalized Nash equilibria correspond to the case where each matrix $\mathcal{E}_{\ell}^{\mathrm{s}}$ is the same with entries given by $e_{\ell}^{\nu \nu^{\prime}}=e_{\nu^{\prime}} / e_{\nu}$ for a positive vector $e \in \mathbb{R}^{n}$.

A variational equilibrium is a special kind of normalized NE where e is the vector of all ones.

Proposition. If $\widehat{z}=\lim _{i \rightarrow \infty} z^{i}$ with $z^{i} \in \operatorname{SOL}\left(q_{\mathrm{NE}}, M_{i}\right)$, then $\widehat{z} \triangleq\left(\widehat{x}, \widehat{\lambda}^{\mathrm{p}}, \widehat{\lambda}^{\mathrm{s}}\right)$ is a solution of the LCP ($q_{\mathrm{NE}}, M_{\mathrm{NE}}$) and $\widehat{\lambda}^{\mathrm{s}} \in \Lambda\left(\mathcal{E}^{\mathrm{s}}\right)$.

