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f (t, x) = x4

8 −
3
4x

2 − tx for t = −3
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t

x

0

0

glob. min.

loc. max.

glob. min.

loc. min.

loc. min.

Unfolded set of critical points
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Nondegenerate critical points

Necessary condition

x̄ ∈ Rn local minimizer of f ⇒ ∇f (x̄) = 0.

Definitions

x̄ ∈ Rn is called nondegenerate critical point of f ∈ C 2(Rn,R),
if ∇f (x̄) = 0, and D2f (x̄) is nonsingular.

The number of negative eigenvalues of D2f (x̄) is called the Morse
index or quadratic index of x̄ , briefly QI (x̄).

Theorem (Jongen/Jonker/Twilt, 1983)

Generically, all critical points of f ∈ C 2(Rn,R) are nondegenerate.
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Nondegenerate critical points

Characterization of local minimality

For any nondegenerate critical point x̄ of f we have

x̄ is a local minimizer of f ⇔ QI (x̄) = 0.

Theorem (Morse Lemma - local structure)

Let x̄ be a nondegenerate critical point of f ∈ C 2(Rn,R).
Then, modulo a local C 1 diffeomorphism, locally around x̄ we have

f (x) = −x2
1 − x2

2 − . . .− x2
QI (x̄) + x2

QI (x̄)+1 + . . .+ x2
n .
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Deformation and cell attachment - global structure

gph f levα f

15 / 45 Oliver Stein Topologically relevant stationarity concepts



The unconstrained smooth case
The constrained smooth case

Mathematical programs with complementarity constraints
Mathematical programs with vanishing constraints

Necessary condition and nondegeneracy
Morse theory and homotopy

Constrained smooth optimization

Consider the restriction of f ∈ C 2(Rn,R) to

M = {g(x) ≥ 0, h(x) = 0}

with g ∈ C 2(Rn,Rp), h ∈ C 2(Rn,Rq), and let

L(x , λ, µ) = f (x)− λᵀg(x)− µᵀh(x)

be the Lagrangian of f on M.

Necessary condition

x̄ ∈ Rn local minimizer of f on M with some CQ
⇒ x̄ KKT point of f on M.
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Nondegenerate critical points

Definitions

x̄ ∈ M is called nondegenerate critical point of f on M with
multipliers λ̄ and µ̄ if

∇xL(x̄ , λ̄, µ̄) = 0,

LICQ holds at x̄ in M,

λ̄i 6= 0 for all active gi ,

D2
xL(x̄ , λ̄, µ̄)|T (x̄ ,M) is nonsingular.

The number of negative λ̄i is called linear index of x̄ (LI (x̄)), and
the number of negative eigenvalues of D2

xL(x̄ , λ̄, µ̄)|T (x̄ ,M) is called
quadratic index of x̄ (QI (x̄)).
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Nondegenerate critical points

Characterization of local minimality

For any nondegenerate critical point x̄ of f on M we have

x̄ is a local minimizer of f ⇔ LI (x̄) + QI (x̄) = 0.
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Morse theory and homotopy

The generalizations to the constrained case of genericity,
Morse lemma, deformation theorem and cell attachment
theorem have been shown by Jongen/Jonker/Twilt (1983).

For deformation and cell attachment, only the nondegenerate
KKT points are relevant, that is, the nondegenerate critical
points with LI (x̄) = 0.

Homotopy methods have been studied by, e.g., Guddat/Guerra
Vázquez/Jongen (1990) (LI (x̄) ≥ 0 is relevant).
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Mathematical programs with complementarity constraints

Consider the restriction of f ∈ C 2(Rn,R) to the set

M = {Gi (x) ≥ 0, Hi (x) ≥ 0, Gi (x)Hi (x) = 0, i = 1, . . . `}

with G ∈ C 2(Rn,R`), H ∈ C 2(Rn,R`), and let

L(x , γ, η) = f (x)− γᵀG (x)− ηᵀH(x)

be the Lagrangian of f on M.
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Applications of MPCCs

Game theory

Obstacle problems

Truss topology design

Network equilibria

Bilevel optimization

Semi-infinite optimization

...
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C-stationarity

C-stationarity

x̄ ∈ M is called C-stationary point of f on M with multipliers γ̄
and η̄ if

∇xL(x̄ , γ̄, η̄) = 0,

γ̄i = 0 for all i with Gi (x̄) > 0, Hi (x̄) = 0,

η̄i = 0 for all i with Gi (x̄) = 0, Hi (x̄) > 0,

γ̄i η̄i ≥ 0 for all i with Gi (x̄) = Hi (x̄) = 0.

Necessary condition

x̄ ∈ Rn local minimizer of f on M with some MPEC-CQ
⇒ x̄ C-stationary for f on M.
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Nondegenerate C-stationary points

Definitions (Ralph/St., 2006, Jongen/Rückmann/Shikhman, 2009)

A C-stationary point x̄ of f on M with multipliers γ̄ and η̄ is called
nondegenerate if

MPEC-LICQ holds at x̄ ,

D2
xL(x̄ , γ̄, η̄)|T (x̄ ,M) is nonsingular,

γ̄i η̄i > 0 for all i with Gi (x̄) = Hi (x̄) = 0. (?)

The number of pairs (γ̄i , η̄i ) with negative entries in (?) is called
biactive index of x̄ (BI (x̄)), the number of negative eigenvalues of
D2
xL(x̄ , γ̄, η̄)|T (x̄ ,M) is called quadratic index of x̄ (QI (x̄)), and

their sum BI (x̄) + QI (x̄) is called C-index of x̄ .
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Nondegenerate C-stationary points

Characterization of local minimality

For any nondegenerate C-stationary point x̄ of f on M we have

x̄ is a local minimizer of f ⇔ BI (x̄) + QI (x̄) = 0.
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Morse theory and homotopy for MPCCs

The (full) generalizations to MPCCs of genericity, Morse
lemma, deformation theorem and cell attachment theorem
have been shown by Jongen/Rückmann/Shikhman (2009).

Homotopy methods for (special) generic MPCCs have been
studied by Ralph/St. (2006).
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An MPCC homotopy

��

��

��
t

x2

x1

x1

glob. min.

loc. max.

glob. min.

loc. min.

t

x2
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Limits of KKT points

Smoothed MPCCs (Scholtes 2001, Steffensen/Ulbrich 2010,
Hoheisel/Kanzow/Schwartz 2011)

For a sequence of smoothing parameters tk ↘ 0 and a sequence of
KKT points xk of some smoothing problem NLP(tk)
with xk → x̄ , under some CQ the point x̄ is C-stationary for
MPCC.
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Example: Scholtes smoothing for an MPCC
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x1
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Example: Scholtes smoothing for an MPCC
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x2

x1

x2

x1LI = 0, QI = 1

BI = 1, QI = 0
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First order descent directions at C-stationary points

Nondegenerate C-stationary points with positive biactive index
allow first order descent directions.

This is due to the nonsmoothness of MPCCs and cannot be
avoided in a topologically relevant stationarity concept.
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T-stationarity

Definition

For a given class of optimizations problems we call a set of
conditions a stationarity concept, if these conditions hold (under
some CQ) at each local minimizer, and we call the stationarity
concept topologically relevant, if it admits

a nondegeneracy concept

the definition of a (Morse) index,

a Morse lemma,

a deformation theorem,

and a cell attachment theorem.

The stationarity concept is then also called T-stationarity.
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T-stationarity

Examples:

Unconstrained smooth optimization:

T-stationarity = stationarity

Constrained smooth optimization:

T-stationarity = KKT-stationarity

MPCCs:

T-stationarity = C-stationarity

Disjunctive optimization:

T-stationarity = stationarity (Jongen/Rückmann/St. 1997)
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Limits of KKT points for MPCCs revisited

Smoothed MPCCs (Scholtes 2001, Steffensen/Ulbrich 2010,
Hoheisel/Kanzow/Schwartz 2011)

For a sequence of smoothing parameters tk ↘ 0 and a sequence of
KKT-stationary points xk of some smoothing problem NLP(tk)
with xk → x̄ , under some CQ the point x̄ is C-stationary for
MPCC.
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Mathematical programs with vanishing constraints

Consider the restriction of f ∈ C 2(Rn,R) to the set

M = {Hi (x) ≥ 0, Gi (x)Hi (x) ≤ 0, i = 1, . . . `}

with G ∈ C 2(Rn,R`), H ∈ C 2(Rn,R`), and let

L(x , γ, η) = f (x)− γᵀG (x)− ηᵀH(x)

be the Lagrangian of f on M.
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Application of MPVCs

MPVC was introduced as a model for structural and topology
optimization.

It is motivated by the fact that the constraint Gi does not
play any role whenever Hi is active.
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T-stationarity for MPVCs

T-stationarity (Dorsch/Shikhman/St., 2010)

x̄ ∈ M is called T-stationary point of f on M with multipliers γ̄
and η̄ if

∇xL(x̄ , γ̄, η̄) = 0,

γ̄i = 0 for all i with Gi (x̄) < 0, Hi (x̄) ≥ 0,

γ̄i = 0 for all i with Gi (x̄) > 0, Hi (x̄) = 0,

γ̄i ≤ 0 for all i with Gi (x̄) = 0, Hi (x̄) ≥ 0,

η̄i = 0 for all i with Hi (x̄) > 0,

η̄i ≥ 0 for all i with Gi (x̄) < 0, Hi (x̄) = 0,

γ̄i η̄i ≥ 0 for all i with Gi (x̄) = Hi (x̄) = 0.
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T-stationarity for MPVCs

Necessary condition

x̄ ∈ Rn local minimizer of f on M with some MPVC-CQ
⇒ x̄ T-stationary for f on M.
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Nondegenerate T-stationary points

Definitions (Dorsch/Shikhman/St., 2010)

A T-stationary point x̄ of f on M with multipliers γ̄ and η̄ is called
nondegenerate if

MPVC-LICQ holds at x̄ ,

D2
xL(x̄ , γ̄, η̄)|T (x̄ ,M) is nonsingular,

γ̄i < 0 for all i with Gi (x̄) = 0, Hi (x̄) ≥ 0,

η̄i > 0 for all i with Gi (x̄) < 0, Hi (x̄) = 0,

γ̄i η̄i > 0 for all i with Gi (x̄) = Hi (x̄) = 0. (?)

The number of pairs (γ̄i , η̄i ) with negative entries in (?) is called
biactive index of x̄ (BI (x̄)), the number of negative eigenvalues of
D2
xL(x̄ , γ̄, η̄)|T (x̄ ,M) is called quadratic index of x̄ (QI (x̄)), and

their sum BI (x̄) + QI (x̄) is called T-index of x̄ .
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Nondegenerate T-stationary points

Characterization of local minimality

For any nondegenerate T-stationary point x̄ of f on M we have

x̄ is a local minimizer of f ⇔ BI (x̄) + QI (x̄) = 0.
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Morse theory for MPVCs

The generalizations to MPVCs of genericity, Morse lemma,
deformation theorem and cell attachment theorem have been
shown by Dorsch/Shikhman/St. (2010).
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Limits of KKT points

Smoothed MPVCs (Hoheisel/Kanzow/Schwartz 2011)

For a sequence of smoothing parameters tk ↘ 0 and a sequence of
KKT-stationary points xk of some smoothing problem NLP(tk)
with xk → x̄ , under some CQ the point x̄ is T-stationary for
MPVC.
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Observation and a conjecture

In the known smoothing methods for MPCC, as well as for MPVC,
any nondegenerate T-stationary point x̄ of the nonsmooth problem

locally ‘unfolds’ into a smooth curve {x(t)| t ∈ U(0)} of KKT
points of the smoothing problems (with smoothing parameter
t, x(0) = x̄ , via the implicit function theorem),

and the T-index of x̄ coincides with the Morse index of x(t),
t ∈ U(0) (via continuity arguments).

Conjecture 1

These effects occur for ‘a large class of smoothing methods’
for ‘a large class of nonsmooth problems’.
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Another conjecture

Conjecture 2

T-stationarity is uniquely defined for ‘a large class of nonsmooth
problems’.
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Conclusion

For any class of optimization problems, the T-stationarity concept
is the natural one for

topological considerations

design of homotopy methods

limits of KKT points

(design of Newton methods).
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